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Abstract

Given one or two examples, humans are good at understanding how to solve a problem

independently of its domain, because they are able to detect what the problem is and

to choose the appropriate background knowledge according to the context. For instance,

presented with the string “8/17/2017” to be transformed to “17th of August of 2017”,

humans will process this in two steps: (1) they recognise that it is a date and (2) they

map the date to the 17th of August of 2017. Inductive Programming (IP) aims at learning

declarative (functional or logic) programs from examples. Two key advantages of IP

are the use of background knowledge and the ability to synthesise programs from a few

input/output examples (as humans do). In this paper we propose to use IP as a means for

automating repetitive data manipulation tasks, frequently presented during the process of

data wrangling in many data manipulation problems. Here we show that with the use of

general-purpose declarative (programming) languages jointly with generic IP systems and

the definition of domain-specific knowledge, many specific data wrangling problems from

different application domains can be automatically solved from very few examples. We

also propose an integrated benchmark for data wrangling, which we share publicly for the

community.

Keywords: Inductive Programming, Data Wrangling Automation, Declarative

Programming Languages, Domain-specific Background Knowledge
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1. Introduction

The term ‘data wrangling’ usually refers to a great deal of repetitive
and very time-consuming data preparation tasks, such as the acquisition,
integration, manipulation, cleansing, enriching and transformation of data
from their raw format to a more structured and valuable form for easy access
and analysis [1]. The use of ETL1 tools and other scripting languages for data
wrangling partially alleviate the problem, but most of the effort is still manual
and non-systematic. Consequently, progress in the (semi-)automation of data
wrangling tasks can have an enormous impact in the costs of data science
projects and other data manipulation problems, and can also allow data
scientists focus on the valuable knowledge discovery process or in the actual
task they are doing.

Many data wrangling problems look automatable, especially because the
user can indicate a few illustrative examples that can be used by an Inductive
Programming (IP) system [2, 3, 4, 5] to infer a pattern, or inductive hypoth-
esis, that can be used to complete the rest of the examples automatically.
Table 1 shows one example that can be completed by non-expert people eas-
ily, without further knowledge about the source of the data. It is a very
encapsulated problem, inputs and outputs, which should be well handled by
machines.

Id Input Outputs Id Input Output

1 25-03-74 25/03/74 5 17-05-17 17/05/17
2 29-03-86 29/03/86 6 25-08-05 25/08/05
3 11-02-96 11/02/96 7 30-06-75 30/06/75
4 11-17-98 17/11/98 8 ... ...

Table 1: Dataset composed of dates (input) and desired output format. An automatic data
wrangling system is fed with the two first examples (in italics) and should automatically
complete the rest of the cells (outputs).

Nevertheless, many other data wrangling problems are more challenging,
and require an important degree of background knowledge because they de-
pend on the application context of the data. Table 2 shows an example of a
common data wrangling problem: given a list of dates, extract the day from

1Originally from the data warehousing terminology, ETL is the process responsible for
the extraction, transformation and load of the data into a repository.
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each of them. The difficulty in this problem lies in the different date formats
(dependent on the original country where the data come from), where the
day can be the first, second or third number, and these numbers can be de-
limited by different symbols. A system based on string transformations may
never find the right solution using its search space since it does not know
what the real problem is: extracting the first number? the first two digits?
or everything before any symbol? In order to understand and complete the
transformation, we must know how dates work, their constraints and how
they are usually represented. We know that there are only twelve months,
that days can only range between 1 and 31 and that years are usually abbre-
viated with two single digits.

Id Input Output Id Input Output

1 25-03-74 25 5 17/05/57 17
2 03/29/86 29 6 25-08-05 25
3 21.02.98 21 7 06 30 1975 30
4 1998/12/25 25 8 ... ...

Table 2: Dataset composed of dates under very different formats (input) from which the
day is extracted (output).

In order to solve this problem, we can split the data wrangling problem
into two steps: first, we need to know which the domain is (e.g., dates); and,
second, we need to know which transformations we have to apply to the input
to obtain the output. For humans this is a relatively easy step because we
have information of the context, but it is not so easy for machines. We need
to specify relevant background knowledge as well as the necessary transfor-
mations (depending on the domain). Of course, some of this knowledge may
be insufficient to sort out some ambiguities, such as “11.02.18” (this date can
be in DDMMYY, YYMMDD or MMDDYY formats). This problem may be
automatically solved by computers (through program synthesis) if they are
able to recognise the domain (i.e., dates), and have a sufficiently rich set of
functions to deal with the context. Not only does this impose a strong bias
that guides the process of finding the transformation pattern that has to be
applied but also introduces some useful functions that render the solution
(the inferred program) much shorter in terms of the functions involved. This
size of the solution (in terms of primitives/functions involved) is known as
the depth (d).
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Of course, dates are not the only kind of data. If we want to deal with
physical addresses, we need to provide functions that handle symbols such
as “St”, “Rd”, order of postcodes, etc. Similarly, if we want to deal with
people names, we should understand strings such as “Mrs”, “Dr”, etc. Since
all of these cases are very common in databases and other kinds of data that
are processed in data science projects, we can add the relevant functions to
a general domain library. However, as more kinds of data are required, this
library would become huge. Even if the depth would have not changed for
the original date problem, the inductive inference process needs to choose
from a much larger space of functions, which makes it much harder. This is
known as the breadth (b). Clearly, both the depth and the breadth highly
influence the hardness of the problem, jointly with the number of examples,
n. Actually, for hypothesis-oriented induction, hardness strongly depends on
d and b, in a way that is usually exponential, O(bd) [6, 7]. How can we keep
both, and especially b, at very low levels?

In this paper, we control the depth and breadth of the inductive inference
problem by choosing a domain-specific background knowledge (DSBK) for
each kind of problem. Based on any IP system, which is hypothesis-oriented
rather than data-oriented, we see that the effort only depends on these two
parameters, d and b, being almost constant on the number of examples. The
user just needs to suggest which domain to use for a particular problem:
dates, times, emails, names, phones, etc. Nevertheless, we envisage that this
step is easily automatable too, using some domain inference process that can
suggest this to the user, as we discuss at the end of the paper. It is important
to remark that the inductive inference engine is the same, independently of
whether we are handling dates or telephone numbers. We do not build a
data wrangling system specialised for a particular domain-specific language
for each case. Instead of this, we allow the system to use different DSBKs.

There are several advantages of this approach. The same data wrangling
tool can be used for a diversity of problems and domains, without specialised
tools for every domain. Second, a set of DSBK libraries can be provided
by the tool but also extended by users and communities, especially if the
language for adding or modifying functions is general-purpose and well known
(e.g., Haskell [8, 9], Prolog [10], etc.).

Overall, this paper contains several contributions:

• We illustrate how the use of general program induction, as a kind of
hypothesis-driven machine learning, can be applied flexibly for prob-
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lems where knowledge is important, through the definition of domain-
specific domain. More generally, we see a combination of knowledge-
based and learning AI approaches.

• We show that this generic approach, combining an off-the-shelf IP sys-
tem with appropriate operators to define the necessary background
knowledge for a domain, is able to improve the results of other state-
of-the-art –and more specific– data wrangling approaches.

• We analyse how the breadth, depth and number of instances affect the
efficiency, showing that we can achieve a trade-off between breadth and
depth, and still solve many problems using only one example.

• We provide a set of datasets specifically designed to be the first bench-
mark for the evaluation of data wrangling tools focusing on column
transformation problems.

The paper is organised as follows. Section 2 summarises the most relevant
related works. Section 3 addresses the problem of automating data wrangling
with an IP system. The domains employed are detailed in Section 3.2. The
experimental evaluation is included in Section 4. Finally, Section 5 remarks
the conclusions and future work.

2. Related Work

The importance of data wrangling in the quality and cost of data science
projects has motivated an enormous effort in techniques and approaches, in-
cluding commercial platforms that go beyond ETL tools. For instance, Open-
Refine2 provides a set of built-in operators to specify data transformations.
Ajax [11] brings a SQL-like language to statements extended with advanced
facilities for entity resolution) that enables the user to specify the sequence
of data transformations. Trifacta Wrangler [12] generates a ranked list of
suggested transformations and text extractions also inferred automatically
from user input, the data type and some heuristics using programming-by-
demonstration techniques. Dataxformer [? ] uses a big corpus of web tables
of data to find the most useful transformation for each problem.

The above systems are able to use different approaches depending on the
data type. In general, these tools have predefined “types” or structures for

2OpenRefine: http://www.openrefine.org
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emails, gender, phones, credit cards, social security number, etc. However,
their pattern generation engines are usually based on predefined rules, but
not on a proper AI technology, such as a fully inductive inference system.

Given this limitation, research has focused on the inductive inference part
of the problem, when the pattern involves the combination of several manip-
ulation functions. A new generation of approaches is based on Inductive
Programming, which has recently shown a large potential for data wrangling
automation [13]. IP addresses the problem of learning small (but complex)
programs from very few representative input/output examples, generated
as the user transforms one (or very few) particular instances of the data.
The application has been so successful that Microsoft includes some of these
tools in Excel, known as FlashFill [14]. One of the reasons of the success of
these systems is the use of domain-specific languages (DSLs). As an example,
FlashFill is able to make syntactic transformations of strings using restricted
forms of regular expressions, conditionals and loops on spreadsheet tables.

The use of DSLs has overcome the limitations of general-purpose IP
systems such as Progol [15], IGOR2 [16], MagicHaskeller [17], FLIP [18],
Metagol [19], gErl [20], and many others. The languages behind these sys-
tems (Prolog, Haskell, etc.) have such a diversity of functions and possible
combinations that the breadth and depth for the search problem is usually
problematic. DSLs, on the other hand, are much more ad-hoc when dealing
with specific data wrangling problems, and reduce the search space consid-
erably.

However, the use of DSL systems for data wrangling automation also
brings some disadvantages: (1) DSLs imply the use of languages that are
specifically defined for a particular type of data processing (e.g., string pro-
cessing, number processing, etc.). Whenever a new application or domain is
required, a new domain-specific language has to be created, and the induc-
tive engine recoded for it. Despite the effort of making this process more
efficient in the recent years, it still depends on languages that are not of
general purpose, and users need some effort to understand them; (2) these
systems work using a specific set of transformations depending on the type of
input, assuming the input to be in a unique format. This means that, even
when the domain of the data is known or can be inferred, whether different
formats of a data type appear in different rows of the same column (such as
the examples of dates seen in Table 2), the system is unable to find a solu-
tion for transforming each example, resulting in the correct transformation
of only those examples with the same type of the example used as input.
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Row No. Station Date
1 001

03/10/2016 00:18:36
001 03/10/2016 00:25:45

… … …

69852 001

6-10-16 20:35

Output
2016

2016

…
IP System

Dates.dom

transformToLongYear(getYear(getDate Date)))2016
69851

Figure 1: Automating data wrangling with IP: process example. The first row (Data and
Output) is used as a input predicate for the IP system. The function returned using the
correct domain is applied to the rest of the instances to obtain the outputs.

In this paper, we propose the use of IP systems which (1) are ‘specialised’
with appropriate libraries that define domain-specific background knowledges
(DSBKs), reducing the breadth of the search problem; and (2) are able to
extract or transform data from one or few input examples to correct outputs,
depending on the data domain and context and independently of the different
formats appearing on the input column.

3. Automating data wrangling

The overall idea is to automate the process of transforming data from one
format to another, depending on the data domain, using a general-purpose
IP system at the core, but enhanced to handle configurable function libraries
for each domain (see Figure 1). For this, we do the following steps:

1. We take a dataset of input-output pairs and detect the domain of the
data.

2. We set the domain as background knowledge for the IP system.

3. One or more examples are sent to the IP system as inputs, such as the
few first rows in Table 1, in the same way a user could complete a few
examples. These examples are used as input predicates for the system.

4. With the correct DSBK, The system is able to return a list of trans-
formations addressing the problem as the resulting function (f) that
is applied to the rest of the inputs, obtaining the new values for the
output column.
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3.1. Domain-Specific Induction

For the purpose of this work we have used MagicHaskeller [17] as the IP
core system for several reasons3. First of all, MagicHaskeller is a general-
purpose learning system that works with Haskell, a functional programming
language that makes it much easier to add domains and transformations. Be-
sides, MagicHaskeller is a very powerful system that can solve many prob-
lems using only one example from the data. It is also possible to provide
MagicHaskeller with different data wrangling domains as different sets of
background knowledge’s functions.

In a nutshell, MagicHaskeller is a general-purpose inductive functional
programming system that learns Haskell programs from pairs of input-output
examples, also expressed in Haskell. MagicHaskeller receives an input exam-
ple (x) and the expected result (y), and returns a list of functions (f) that
make the values of the expressions fx and y be equal, which in Haskell nota-
tion is expressed as the boolean predicate f x == y. MagicHaskeller looks
for combinations of one or more functions that are defined in its library to
work like the f above.

MagicHaskeller works in two steps: (1) The Hypotheses Generation phase,
and (2) the Hypotheses Selection phase. In (1), MagicHaskeller starts with
a predefined dmax value (maximum d allowed for the solution) and a set of
b functions in the library. Then, MagicHaskeller continues with the prepa-
ration of hypotheses by generating all the type-correct expressions that can
be expressed by function application and lambda abstraction using up to
the maximum depth (dmax) the functions provided in the library. Although
MagicHaskeller is very powerful for finding the simplest and most effective
solutions (that is, those with smallest Kolmogorov complexity), depending
on the problem, the solution might require the combination of many function
symbols (that is, a solution with a large depth d). When the d required is
higher than the dmax value used, MagicHaskeller is not able to find the solu-
tion (because it cannot reach the necessary number of functions combined).
Trying to increase the dmax value to achieve the result may cause an incre-
ment of time over the top. On the contrary, trying to reduce d, we may be
tempted to add many powerful and abstract functions to the library. But, in
this case, MagicHaskeller will have too many primitives to choose from (the
breadth value b), and may not find it either because of the time needed to

3Note that all the experiments could be replicated using any other IP learning system.
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combine all of them.
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Figure 2: (a) Time MagicHaskeller needs for training with a set of primitives depending
on the maximum number of primitives that are allowed in any synthesised function (dmax)
and the number of primitives in the set (b). (b) Time MagicHaskeller needs for training
and solve the same problem (concatenate two strings), using a set fixed of b = 15 primitives,
with varying dmax from 1 to 10.

In general, it is usually estimated that for hypothesis-driven inductive
inference, the computational complexity might be in the order of O(bd) [21].
Figure 2 (a) illustrates this by showing the time used by MagicHaskeller in
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this phase when we vary both the number of functions included in the library
(b) and the maximum depth value to obtain the solution (dmax).

Finally, in phase (2) we can provide one or more examples (as I/O pairs)
to solve a specific problem. MagicHaskeller will use the combinations learnt
at (1) to find one or more possible solutions to the problem. This solution (if
exists) will be a combination of d functions (where d ≤ dmax). In this regard,
Figure 2(b) shows the time spent during phases (1) and (2) to solve an specific
problem (with actual solution of d = 1), using the same set of functions
(with b = 15), but changing the dmax value. We acknowledge that dmax value
has a strong influence too even when there are solutions that require fewer
primitives than the maximum depth. Given the heuristics and optimisations
included in MagicHaskeller, it is still possible to have solutions in cases where
O(bd) grows very fast, but we still see the exponential behaviour in both cases.
In the next sections we will show that a good trade-off between d and b can
be achieved by using specific domain libraries. Thus, in that follows, we will
refer to our approach as Domain-Specific Induction (DSI).

3.2. Domain-specific Background Knowledge

By default, MagicHaskeller includes a list of 189 basic Haskell functions.
Table 3 shows some of these functions4. Although MagicHaskeller is able
to solve many string and boolean problems by using its default library [17],
this list of functions is not enough to solve more complex problems. For
instance, the example shown previously in Table 1 is impossible to solve
with MagicHaskeller ’s default library since there is a need to replace each
dash symbol (’-’) with a slash symbol (’/’), and MagicHaskeller is unable to
generate or use any character or digit if it is not defined as constant in its
library or if it is not provided as an input parameter.

In order to solve this kind of problem we have to add constants to the
library and some new functions to work with string problems. For this par-
ticular case, we can solve the problem by adding the primitives in Table 4 to
the library.

Following this and some other examples [22] and the most common oper-
ators used by other data science tools [23][12][24], we have added to Magic-
Haskeller many new functions for solving common problems related to string

4The complete list of functions is published at: https://github.com/liconoc/
DataWrangling-DSI
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Functions

0 :: Int 1 :: Int
(++) :: forall a . (-¿) ([a]) ([a] -¿ [a]) filter :: forall a . (a -¿ Bool) -¿ [a] -¿ [a]
isLower :: (-¿) Char Bool words :: [Char] -¿ [[Char]]
(+) :: Int -¿ Int True :: Bool
False :: Bool isPunctuation :: (-¿) Char Bool
(+) :: (-¿) Int ((-¿) Int Int) takeWhile :: forall a . (a -¿ Bool) -¿ [a] -¿ [a]
isDigit :: (-¿) Char Bool not :: (-¿) Bool Bool
(-) :: Int -¿ Int -¿ Int (&&) :: (-¿) Bool ((-¿) Bool Bool)
(——) :: (-¿) Bool ((-¿) Bool Bool) not :: (-¿) Bool Bool
(-) :: Int -¿ Int -¿ Int reverse :: forall a . [a] -¿ [a]

Table 3: Some default functions in MagicHaskeller.

Functions Description

dash :: [Char] Constant for dash (’-’) symbol
slash :: [Char] Constant for slash (’/’) symbol
changePunctuationString :: [Char] -¿ [Char] -¿ [Char] Replace a punctuation sign

Table 4: Functions needed to replace a dash symbol with a slash symbol using MagicHas-
keller.

manipulation. Concretely, we have added 108 functions to solve the following
string operations:

• Constants: Symbols, numbers, words or list of words.

• Map: Boolean functions for checking string structures.

• Transform: Functions that return the string transformed using one
or more of the following operations:

– Add: Appending elements to a string, adding them at the begin-
ning, ending or a fixed position.

– Split: Splitting the string into two or more strings by positions,
constants or a given parameter.

– Concatenate: Joining strings, elements of an array, constants
or given parameters with or without adding other parameters or
constants between them.

– Replace: Changing one or more string elements by some other
given element . This operation includes converting a string to
uppercase and lowercase.
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– Exchange: Swapping elements inside strings.

– Delete/Drop/Reduce: Deleting one or more string elements
by some other given parameter, a position, size or mapping some
parameter or constant.

– Extraction: Get one or more string elements.

With this set of functions in the system’s library, we are able to solve many
common string manipulation problems, such as the example in Table 1. How-
ever, the results can be less accurate for different examples. Trying to solve
the example in Table 2 using the first row as a predicate (f ”25-03-74” ==
”25”) the first three results obtained may be: (1) takeWhile isDigit ”25-03-
86”; (2) getStartToFirstSymbol ”25-03-86” dash; and (3) take 2 ”25-03-86”.
When we apply these functions to the firs row, we obtain the desired results,
but, what happens if we apply these functions to the rest of the table? We
can see the results in Table 5. It should be noted that only in the cases when
the day is the first element of the date (with solutions 1 and 3) and the next
symbol is a dash (with solution 2) the result is correct. The problem here is
that we cannot assume that all the data in a column has always the same
format. In this case, dates come from very different formats and extracting
the first element not always results in getting the day. When data belong to
a particular domain and the problem at hand ends up being a very exclusive
task pertaining to that domain, more precise functions are needed in order to
get correct results considering the context. However, as we have seen in the
previous section, it is critical to reduce b while at the same time having the
appropriate abstract primitives to learn the function with a short hypothesis
(small d). This could be solved by detecting the domain of the data to be
transformed and choosing a domain-specific library for it.

A high number of different domains can appear in any data science project
related to data manipulation problems. In order to make our experiments
and as other data wrangling tools have already done [25][26][27], we have se-
lected some of the most used domains [26] and their most common problems
[25] to work with. In this sense, for each domain we have a different back-
ground knowledge with a set of possible transformations. As we are working
with MagicHaskeller, they are represented as Haskell functions. These are
independent text files, editable by the user, which can be included as a pa-
rameter when MagicHaskeller is invoked. The DSBK files are:

• Dates: The DSBK includes 23 functions related to date manipulation

12



Id Input Expected Output Actual Output (1) Actual Output (2) Actual Output (3)

1 25-03-74 25
2 03/29/86 29 03 03/29/86 03
3 21.02.98 11 21 21.02.98 21
4 1998/12/25 25 1998 1998/12/25 19
5 17/05/57 17 17 17/05/17 17
6 25-08-05 25 25 25 25
7 06 30 1975 30 06 06 30 1975 06
8 ... ... ... ... ...

Table 5: Example of a dataset with an input column composed of dates under very different
formats, the expected output (day) and the actual outputs obtained using an inductive
system with string manipulation functions. The first row is used as input predicate for the
system. Green examples are correct results. Red examples are incorrect results. Solution
(1): takeWhile isDigit ”input”; Solution (2): getStartToFirstSymbol ”input” dash; and
Solution (3): take 2 ”input”.

(and includes 139 primitives from the freetext BK), such as determining
whether a substring is a month, getting the day in ordinal format,
converting a month to numeric format or extending a two-digit year to
a four-digit full format.

• Emails: This DSBK includes 9 functions related to email manipulation
(and includes 93 primitives from the freetext BK), such as getting the
words after or before the ’@’ symbol, append the ’@’ symbol at the end
of a string or join two strings with the ’@’ symbol.

• Names: The DSBK includes 12 functions related to personal names
manipulation (and includes 104 primitives from the freetext BK), such
as getting the initials of a name or creating a user login.

• Phones: This DSBK includes 5 functions related phone numbers ma-
nipulation (and includes 124 primitives from the freetext BK), for ex-
ample, setting the prefix by a country name or code.

• Times: This DSBK has 24 functions to deal with strings containing
time (and includes 124 primitives from the freetext BK), such as 12/24h
formats or changing time zone.

In total we have used 374 different functions. Although we are considering
only six domains besides the basic string manipulation functions, it should
be noted that many other domains can be created, and it is also easy to build
domains that are defined as the union between two existing domains. Also,
MagicHaskeller can be called with a small dmax parameter with one domain

13



to get results quickly and, if unsuccessful, try with a larger dmax or another
domain. In this way, the search effort can be better handled, depending on
the knowledge of the domain and the expected size of the solution.

4. Experiments

The aim of our experiments is to analyse the extended capabilities of an
IP learning system as a data wrangler. Besides, the experiments explore the
improvement in the results when selecting the right DSBK in front of using
a general background knowledge or an inappropriate DSBK. Also, and more
importantly, we want to compare with other data wrangling systems on a
range of data wrangling problems.

To perform the experiments we have followed a trained/test evaluation
procedure, similar to [28, 29, 30, 14, 31]. We have used a set of datasets with
different data wrangling problems (explained in the following sub-section)
including inputs and expected outputs. For each of these datasets, we use
only the first example as the input predicate for the IP system. Then, we
fed the system with this first input/output example using, for each dataset,
all the different DSBK. The result is a function f that is applied to the
rest of the outputs. The accuracy in each case is the result of compare the
transformed outputs with the real expected outputs.

For replicability reasons, the source code (scripts, domain files, primi-
tive files MagicHaskeller, etc.) and all the results of these experiments are
available online 5.

4.1. Data Wrangling Benchmark

Unfortunately, there is no general benchmark or public dataset repository
accessible in reusable formats to analyse the quality of new data wrangling
tools (for instance, in [29] the authors use a dataset with hundreds of data
manipulation problems, but the benchmark is not public). In order to over-
come this limitation, we have collected most of the datasets tested previously
in other tools for data manipulation (such as FlashFill or Wrangler) and pre-
sented in the literature [28, 29, 30, 14, 31]. In addition, we have generated
new datasets based on problems from these papers.

Overall, we have collected or generated 32 datasets and we have published
them on the first data wrangling dataset repository, which is online and

5https://github.com/liconoc/DataWrangling-DSI
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id Domain #Ex. Description of the problem to solve

1 Freetext 12 Complete brackets (From [29])
2 Freetext 12 Extract the first character (From [32])
3 Freetext 24 Delete punctuation (From [29])
4 Freetext 18 Extract the capital letters (From [29])
5 Freetext 12 Extract a substring (From [33] )
6 Dates 26 Change the punctuation of a date (From [30])
7 Dates 26 Extract the day from a date (Generated)
8 Dates 12 Extract the day from a date in ordinal format (Generated)
9 Dates 12 Extract the month from dates (Generated)
10 Dates 12 Extract the name of the month from dates (From [33] )
11 Dates 9 Add punctuation to a date (From [33] )
12 Dates 25 Change date format and punctuation (Generated)
13 Dates 12 Add punctuation and change the format of a date (From [33] )
14 Emails 24 Extract words after ’@’ (From [33] )
15 Emails 18 Join words with ’@’ (From [28])
16 Names 12 Generate a login from a name (Generated)
17 Names 12 Reduce name from one input (From [14])
18 Names 12 Reduce name from two inputs (From [14])
19 Names 12 Extract the honorific forms (From [14])
20 Phones 12 Add phone prefix by country name (From PROSE )
21 Phones 12 Add phone prefix by country name and ’+’ symbol (Generated)
22 Phones 12 Add a given phone prefix (From [33] )
23 Phones 12 Extract a phone number from a string (From [33] )
24 Phones 12 Add punctuation to a phone number (Generated)
25 Times 12 Extract the time from a string (Generated)
26 Times 12 Append a specific given time (minutes or seconds) (Generated)
27 Times 12 Increase the hour by a given value (Generated)
28 Times 12 Convert the time to 24h format (Generated)
29 Times 12 Convert time by a given time zone (Generated)
30 Units 12 Extract the units of a value (From [32]
31 Units 12 Detect the system units by the units of a value (Generated)
32 Units 12 Convert a value to a different unit (Generated)

Table 6: Datasets included in the new data wrangling repository offered for the data
science research community. #Ex. shows cardinality.Freetext represents the functions
created for solving string manipulation problems.

available at http://dmip.webs.upv.es/datawrangling/. Table 6 shows a
summary of the datasets in this new repository.

4.2. Results

With a focus on our system, Table 7 shows the results (accuracy) for all
the datasets, using just one example (the first one of each dataset), when
MagicHaskeller is run without extra DSBK (default), adding the string
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manipulation functions (freetext), with a particular DSBK (dates, emails,
names, phones, times, units) and with all DSBKs together (a unique set of
primitives with all the functions together). In each case, MagicHaskeller re-
turns a potential solution (or nothing if the problem cannot be solved) which
is applied to the rest of input examples to see whether the obtained output
matches the expected one. Time execution is limited to 120s with dmax = 4.

id Domain default freetext dates emails names phones times units all
1 freetext 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00
2 freetext 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
3 freetext 0.48 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
4 freetext 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00
5 freetext 0.00 0.55 0.18 0.55 0.55 0.55 0.55 0.55 0.00
6 dates 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
7 dates 0.60 0.60 1.00 0.28 0.60 0.60 0.60 0.60 0.00
8 dates 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00
9 dates 0.00 0.00 1.00 0.00 0.27 0.00 0.00 0.00 0.00

10 dates 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 dates 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00
12 dates 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13 dates 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 emails 0.00 0.04 0.04 1.00 0.04 0.04 0.04 0.04 0.00
15 emails 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
16 names 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00
17 names 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00
18 names 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
19 names 0.45 0.73 0.45 0.73 1.00 0.73 0.73 0.73 0.00
20 phones 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
21 phones 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 phones 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
23 phones 0.00 0.27 0.00 0.27 0.27 1.00 0.27 0.27 0.00
24 phones 0.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00
25 times 0.36 0.91 0.91 0.91 0.91 0.91 1.00 0.91 0.00
26 times 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
27 times 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
28 times 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
29 times 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 units 0.64 0.18 0.18 0.73 0.18 0.18 0.18 1.00 0.00
31 units 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
32 units 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 7: Accuracy obtained per dataset depending on the set of primitives (DSBK) used
to train MagicHaskeller. The results are obtained with dmax=4, n = 1 and a maximum
execution time of 120s. Maximum accuracy values in bold.
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id input expected output FlashFill DSI

3

1-452-789-4567 14527894567
1-406-789-1562 14067891562 14067891562 14067891562
1-4565 14565 14565 14565
Etiam dapibus. Etiamdapibus Etiamdapibus

Accuracy: 0.48 1

4

International Business Machines IBM
Principles Of Programming Languages POPL POPL POPL
International Conference on Data Mining series ICDM ICDM ICDM
Association of Computational Linguistics ACL ACL ACL

Accuracy: 1 1

8

3/29/86 29th
10 12 69 10th 12th 10th
04/05/99 04th 05th 04th
27/07/2007 27th 07th 27th

Accuracy: 0 1

9

2 of September of 2010, Monday September
13 November 2008 November 2008 November
Tuesday, September 16, 1986 September September September
February 4, 2008 February 2008 February

Accuracy: 0.36 1

14

Nancy.FreeHafer@fourthcoffee.com fourthcoffee.com
iabetrae@yahoo.es yahoo.es yahoo.es yahoo.es
Sb.edhxo.sk8@hotmail.com hotmail.com hotmail.com hotmail.com
dala aguera m500@hotmail.com hotmail.com hotmail.com hotmail.com

Accuracy: 1 1

15

Sophia & domain Sophia@domain.com
elizabeth & gmail elizabeth@gmail.com elizabeth@gmail.com elizabeth@gmail.com
joypao & hotmail joypao@hotmail.com joypao@hotmail.com joypao@hotmail.com
casper & canal13 casper@canal13.com casper@canal13.com casper@canal13.com

Accuracy: 1 1

17

Damian Gobbee D.Gobbee
Antonio Hege A.Hege A.Hege A.Hege
Damancio Hivser-Kleiner D.Hivser-Kleiner D.Kleiner D.Hivser-Kleiner
Prof. Edward Davis E.Davis P.Davis E.Davis

Accuracy: 0.63 0.91

19

Dr. B. Schdur Dr.
Prof. H. Huifen Prof. Prof. Prof.
Louis Johnson, PhD PhD Lou PhD
Robert Mills Rob

Accuracy: 0.72 1

20

235-7654 & Taiwan (886) 235-7654
17-455-81-39 & Spain (34) 17-455-81-39 (886) 17-455-81-39 (34) 17-455-81-39
618-4390 & Panama (507) 618-4390 (886) 618-4390 (507) 618-4390
25-613-24-50 & Chile (56) 25-613-24-50 (886) 25-613-24-50 (56) 25-613-24-50

Accuracy: 0 1

23

23/11/18 425-785-4210 425-785-4210
425-613-2450 000-000 425-613-2450 2450 000-000 425-613-2450
[TS]865-000-0000 - 06-23-09 865-000-0000 06-23-2009 865-000-0000
17:58-19:29, 425-743-1650 425-743-1650 425-743-1650 425-743-1650

Accuracy: 0.36 1

25

08:55 PM CET 08:55
20:15:00 20:15:00 20:15:00 20:15:00
10:05:00 AM 10:05:00 10:05:00 10:05:00
UTC 21:20 21:20 UTC 21:20 21:20

Accuracy: 0.91 1

28

01:34:00 & 5 06:34:00
01:55 & 5 06:55 06:55 06:55
16:15:12 & 5 21:15:12 06:15:12 21:15:12
21:20 & 5 02:20 06:20 02:20

Accuracy: 0.10 1

30

56.77cl cl
84Kg Kg Kg Kg
39.88 A A A A
1nm nm nm nm

Accuracy: 1 1

31

56.77cl Volume
84Kg Mass Volume Mass
39.88 A Electricity Volume Electricity
1nm Length Volume Length

Accuracy: 0.10 1

Table 8: Example of results obtained (using MagicHaskeller as IP core) compared with
FlashFill. Output is the expected output. The first row of each dataset (id) is the example
given to FlashFill and MagicHaskeller to learn. Green and Red colours mean, respectively,
correct and incorrect results. The accuracy is correct examples/(total examples − n),
where n = 1.
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The results are much better when the right domain is chosen for the prob-
lem. Note that putting all domains together (all) implies such big a value of
b that MagicHaskeller could not solve many problems within the maximum
time period. In the same way, some specific problems (datasets #10, #12,
#13, #21, #27, #29 and #32) cannot be solved using a dmax=4 because
they need a higher value in order to find the correct solution.It has to be
noticed that since all the DSBK contain some functions for string manip-
ulation, many of them can solve problems related to basic string problems
(freetext domain). Some problems related to specific domains can also be
solved by using basic string manipulation functions, therefore, in this case,
any DSBK containing these functions is able to solve the problem. For in-
stance, dataset #6 (dates domain) can be solved by using constants and the
freetext function changePunctuationString, as we have seen in section 3.2.
Since these functions are included in other domains not only dates has the
best accuracy, but also freetext, emails, phones, times and units.

We have also compared the performance of our DSI approach using Magic-
Haskeller with other data wrangling tools, concretely, FlashFill [14]. Flashfill
works in the same way as our approach, namely, it uses one or more input in-
stances to try to induce a potential solution, which is then applied to the rest
of examples. If no solution is found or the problem at hand is not solvable
by FlashFill, it returns, respectively, a void function or an error.

Table 8 shows some illustrative outcomes obtained for each dataset and
tool6 as well as the accuracy values for each dataset. The first instance
(in italic) for each dataset (input column) is the one used for inducing the
solution in the different tools. Here, we can see some strength and weakness
in each tool. For instance, Flashfill works fine with emails and some basic
string transformations, but it fails when it has to deal with titles or honorific
forms in people names, with problems related to phones prefixes or times and
when it has to work with dates in different formats. For its part, DSI using
MagicHaskeller is able to find the correct solution for the problem at hand,
even with only one example, although it still has problems with unexpected
punctuation marks (for instance in dataset #17). In summary, the results
show that our approach is able to overcome other tools when dealing with
data wrangling problems.

6For the complete description of results see https://github.com/liconoc/
DataWrangling-DSI
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5. Conclusions

In this paper we have adapted a general IP tool to deal with a range
of data wrangling problems by using domain-specific background knowledge.
Given the impact that the size of the library (b) and the size of the solution
(d) have when solving a data manipulation problem, we found a trade-off
that produces positive solutions for many datasets. Finding this trade-off
and making it work is novel in the context of IP applied for manipulation
problems. All this is achieved without the need of increasing the number
of examples or using feedback from the user, other than the domain. Users
can also edit and create the domain files in a general-purpose functional pro-
gramming language, making the system more powerful and able to deal with
more and more domains. This contrasts with mainstream approaches based
on DSLs, where a change of the DSL aiming at covering other domains cannot
be done by the user and might require a redesign of the system. Further-
more, the experiments show that our DSI-based approach gets better results
than DSL-based approaches, such as FlashFill, mainly due to its adaptabil-
ity to the problem domain by using domain-specific background knowledge
(DSBK).

This shows that for these repetitive snippets of code that are necessary
for data manipulation problems, we can replace some of the tedious program-
ming effort by the selection of libraries or the definitions of proper functions
to handle existing or new domains. Functional programming languages, as
we have seen, are particularly appropriate for this. In the end, these data
wrangling systems over functional programming languages can actually have
the effect of truly incorporating automated programming and program syn-
thesis as a toolbox, even if at the level of the generation of small snippets,
for these kinds of applications.

Finally, we provide what might be considered as the first public reposi-
tory of datasets for testing data wrangling tools. Although there are several
approaches and systems in the literature dealing with the issue under consid-
eration here, none of them provide public access, nor a complete description
of the datasets used for their evaluation. In this way, the evaluation proce-
dures are not replicable and neither is the data reusable. We have collected
different problems from the literature and related software, together with a
few freshly-generated ones. With all this data, we have generated a variety
of datasets for six different domains covering different specific problems in
each of them. This repository is open and freely available, and it is already

19



being extended with more types of problems and domains.
As future work, we plan to automate the detection of the domain at hand

by using machine learning techniques. The idea is to learn a meta-model that
is able to automatically select (or suggest) the appropriate DSBK from the
features of the problem. Finally, we plan to integrate everything into a more
standalone tool or web service that would allow other users or applications to
use this approach in a more standard and accessible fashion. In this way, this
approach could be transformed into an API to be used with any language,
and potentially included in new tools to complement or compete with those
discussed in the related work section.

Beyond the application to data wrangling, we see that the effective com-
bination of background knowledge and hypothesis-driven learning is a par-
ticularly promising niche where other areas inside or outside AI, or machine
learning alone, are having more difficulties, especially in automation and
manipulation problems with very few examples.
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