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Abstract
Recently, world-class human players have been outperformed in a number of com-
plex two-person games (Go, Chess, Checkers) by Deep Reinforcement Learning 
systems. However, the data efficiency of the learning systems is unclear given that 
they appear to require far more training games to achieve such performance than any 
human player might experience in a lifetime. In addition, the resulting learned strat-
egies are not in a form which can be communicated to human players. This contrasts 
to earlier research in Behavioural Cloning in which single-agent skills were machine 
learned in a symbolic language, facilitating their being taught to human beings. In 
this paper, we consider Machine Discovery of human-comprehensible strategies for 
simple two-person games (Noughts-and-Crosses and Hexapawn). One advantage of 
considering simple games is that there is a tractable approach to calculating mini-
max regret. We use these games to compare Cumulative Minimax Regret for vari-
ants of both standard and deep reinforcement learning against two variants of a new 
Meta-interpretive Learning system called MIGO. In our experiments, tested vari-
ants of both normal and deep reinforcement learning have consistently worse perfor-
mance (higher cumulative minimax regret) than both variants of MIGO on Noughts-
and-Crosses and Hexapawn. In addition, MIGO’s learned rules are relatively easy to 
comprehend, and are demonstrated to achieve significant transfer learning in both 
directions between Noughts-and-Crosses and Hexapawn.
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Introduction

Deep Reinforcement Learning systems have been demonstrated capable of mas-
tering two-player games such as Go [25], outperforming the strongest human 
players. However, these systems (1) generally require a very large training set to 
converge toward a good strategy, (2) are not easily interpretable as they provide 
limited explanation about how decisions are made, and (3) do not provide trans-
ferability of the learned strategies to other games.

In this paper, we are interested in automated discovery of playing strategies 
for two-person games, with the aim of communicating the learned strategies 
to human players. In this way, our work follows in the tradition of Behavioural 
Cloning [3, 11, 15].

We demonstrate how machine learning strategies as logic programs not only 
produce comprehensible theories, but also learn accurate strategies using sub-
stantially smaller training sets than deep reinforcement learning.

As an example, consider the Noughts-and-Crosses positions shown in Fig. 1. 
In such positions, an applicable strategy is to create double attacks where pos-
sible. Player O executes a move from board A to board B which creates the two 
threats represented in green, and results in a forced win for O. The rules in Fig. 1 
describe such a strategy. A, B, and C are variables representing state descriptions 
which encode the board together with the active player. The rules state that a 
move by the active player from A to B is a winning move if the opponent cannot 
immediately win and the opponent cannot make a move to prevent an immediate 
win by the active player. These rules provide an understandable strategy for win-
ning in two moves. Moreover, these rules are transferable to more complex games 
as they are generally true for describing double attacks.

Fig. 1   Noughts-and-Crosses: example of optimal move for O from board A to board B. For all moves of 
X from board B, O can win in one move. This statement can be expressed with the logic program pre-
sented: O makes a move, such that X cannot immediately win nor make a move that blocks O
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We introduce, in this article, a new logical system called MIGO (Meta-Interpre-
tive Game Ordinator)1 designed for learning two-player game optimal strategies of 
the form presented in Fig. 1. It benefits from a strong inductive bias which provides 
the capability to learn efficiently from a few examples of games played. Learned 
hypotheses are provided in a symbolic form, which allows their interpretation. 
Moreover, learned strategies are generally true for all two-player games, which pro-
vides straightforward transferability to more complex games.

MIGO uses Meta-interpretive Learning (MIL), a recently developed Inductive 
Logic Programming (ILP) framework that supports predicate invention, the learn-
ing of recursive programs [20, 21], and Abstraction [5]. MIGO additionally supports 
Dependent Learning [13]. The learning operates in a staged fashion: simple defini-
tions are learned first and added to the background knowledge [13], allowing them 
to be reused during further learning tasks, and, thus, to build up more and more 
complex definitions. For instance, MIGO would first learn a simple definition of 
win_1/2 for winning in one move. Next, a predicate win_2/2 describing the action of 
winning in two moves can be built from win_1/2 as shown in Fig. 1.

To evaluate performance, we consider two evaluable games (Noughts-and-
Crosses and Hexapawn). Our results demonstrate that substantially lower Cumula-
tive Minimax Regret can be achieved by MIGO compared to variants of reinforce-
ment learning.

Our contributions are the introduction of a system for learning optimal two-
player-game strategies (Sect. 3) and the description of its implementation (Sect. 4). 
We demonstrate experimentally that it converges faster than reinforcement learning 
systems and that learned strategies are transferable to more complex games (Sect. 5).

Related Work

Learning Game Strategies

Various early approaches to game strategies [12, 24] used the decision tree learner 
ID3 to classify minimax depth-of-win for positions in chess end games. These 
approaches used a set of carefully selected board attributes as features. Conversely, 
MIGO is provided with a set of three relational primitives (move/2, won/1, drawn/1) 
representing the minimal information which a human would expect to know before 
playing a two-person game.

More recently, Transfer Learning of heuristic pattern concepts has been demon-
strated for simple games such as Tic-tac-toe and Connect4 [23]. Unlike MIGO, this 
approach does not learn to play from scratch, but, instead, uses an alpha–beta player 
with a heuristic function based on set of specialised concepts learned using the ILP 
system ALEPH [17].

1  From the children’s game-playing phrase My go! and the literal translation into English of the French 
word Ordinateur which means computer.
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Reinforcement Learning

Reinforcement Learning considers the task of identifying an optimal agent policy to 
maximise the cumulative reward perceived by an agent. MENACE (Matchbox Educa-
ble Noughts-And-Crosses Engine) [14] was the world’s earliest reinforcement learning 
system and was specifically designed to learn to play Noughts-and-Crosses. An early 
manual version of MENACE used a stack of matchboxes, one for each accessible board 
position. Each box contained coloured beads representing possible moves. Moves were 
selected by randomly drawing a bead from the current box. After having completed 
a game, MENACE’s punishment or reward consisted of subtracting or adding beads 
according to the outcome of the game. This modified the probability of the selected 
move being played in the position [4]. HER (Hexapawn Educational Robot) [9] is a 
similar system for the game of Hexapawn.

More generally, Q-learning [26] addresses the problem of learning an optimal policy 
from delayed rewards by trial and error. The learned policy takes the form of Q values 
for each actions available from a state. A guarantee of asymptotic convergence to opti-
mal behaviour has been proved [27].

Deep Q-learning [16] is an extension that uses a deep convolutional neural network 
to approximate the different Q values for each actions given a particular state. It pro-
vides better scalability which has been demonstrated through a diverse range of tasks 
from the Atari 2600 games. However, this framework generally requires the execution 
of many games to converge. Moreover, the learned strategy is implicitly encoded into 
the Q-value parameters, which do not provide interpretability. In [10], a hybrid neu-
ral–symbolic system is described which address some of these drawbacks. A neural 
back-end transforms images into a symbolic representation and generates features. 
A symbolic front end performs action selection. Conversely, MIGO is based upon a 
purely symbolic approach and the number of primitives considered is reduced.

Relational Reinforcement Learning

Relational reinforcement learning [8] is a reinforcement learning framework where 
states, actions, and policies are represented relationally. It benefits from background 
knowledge and declarative bias. It learns a Q function using a relational regression tree 
algorithm. Conversely, the learning framework MIGO is not based on the identification 
of Q values, but aims at deriving hypotheses describing an optimal strategy. Relational 
reinforcement learning also provides the ability to carry over the policies learned in 
simple domains to more complex situations. However, most systems aim at learning 
single-agent policy and, in contrast to MIGO, are not designed to learn to play two-
person games.
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Theoretical Framework

Credit Assignment

One can evaluate the success of a game by looking at its outcome. However, a 
problem arises for assigning the reward to the various moves performed. Rein-
forcement learning systems usually tackle this so-called Credit Assignment Prob-
lem by adjusting parameter values associated with the moves responsible for the 
reward observed. We introduce theorems for identifying moves that are necessar-
ily positive examples for the task of winning and drawing.

We assume that the learner P1 plays against an opponent P2 that follows an 
optimal strategy and that the game starts from a randomly chosen initial board B. 
We consider the following ordering over the different outcomes for P1 and dem-
onstrate the lemma below:

Lemma 1  The expected outcome of P1 can only decrease during a game.

Proof  P2 plays optimally and, therefore, any move of P2 maintains or lowers the 
expected outcome. Therefore P1 cannot increase its outcome. 	�  ◻

We demonstrate the Theorems below given these assumptions and Lemma 1:

Theorem 1  If the outcome is won for P1 , then every move of P1 is a positive example 
for the task of winning.

Proof  Suppose that there exists a move of P1 from the board B1 to the board B2 
within the game sequence that is a negative example for the task of winning. Then, 
the expected outcome of B1 is won and the expected outcome of B2 is strictly lower 
with respect to the order ≻ . Then, following Lemma 1, the outcome of the game is 
strictly lower than won, which leads to contradiction with the outcome observed. 	
� ◻

Theorem 2  We additionally assume an accurate strategy SW for winning has been 
learned by the learner P1 . If the outcome of the game is drawn and if the execution 
of SW from B fails, then any move played by P1 or P2 is a positive example for the 
task of drawing.

Proof  The initial position does not have an expected outcome of won for P2 ; other-
wise, the outcome would be won for P2 , since it plays optimally. The initial position 
is not an expected outcome of win for P1 by assumption. Therefore, the expected 
outcome of B is drawn. It follows from Lemma 1 that every position reached during 
the game has an expected outcome of drawn and that every move of both players is a 
positive example for the task of drawing. 	�  ◻

won ≻ drawn ≻ loss
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Theorems 1 and 2 demonstrate, that for an outcome of win for P1 or drawn and 
because the opponent plays optimally, the expected outcome is necessarily main-
tained as won or drawn respectively. This cannot be further generalised to P2 ’s 
moves: an outcome of won for P2 might be the consequence of a mistake of P1 who 
does not play optimally.

One should also highlight the fact that Theorems 1 and 2 do not provide any neg-
ative examples for win/2 or draw/2, as these theorems do not help to evaluate moves 
for which the expected outcome decreases. Practically, the learning system consid-
ered learns from positive examples only.

Game Evaluation

Given Theorems 1 and 2, the opponent chosen is an optimal player following the 
minimax algorithm. Both for Noughts-and-Crosses and Hexapawn, and more gener-
ally for most fair two-player games, the opponent can always ensure a draw from the 
initial board, which leaves no opportunities for the learner to win. To ensure pos-
sibilities of winning, we start the game from a board randomly sampled from the set 
of one move-ahead accessible boards; this set provides different expected outcomes 
for the games considered. Then, the actual outcome relies on both the initial board 
and the sequence of moves performed. We define the minimax regret as follows:

Definition 1  (Minimax Regret) The minimax regret of a game is the difference 
between the minimax expected outcome of the initial board and the actual outcome 
of the game.

Practically, the minimax expected outcome of a board can be evaluated from a 
minimax database computed beforehand. Definition 3.4 provides an absolute meas-
ure to evaluate the performances of a learning algorithm as it does not rely on the 
choice of initial board. Thereafter, we evaluate the cumulative minimax regret to 
compare different learning systems.

Meta‑Interpretive Learning (MIL)

The system MIGO introduced in this work is an MIL system. MIL is a form of ILP 
[19, 20]. The learner is given a set of examples E and background knowledge B 
composed of a set of Prolog definitions Bp and metarules M, such that B = Bp ∪M . 
The aim is to generate a hypothesis H, such that B,H ⊧ E . The proof is based on an 
adapted Prolog meta-interpreter. It, first, attempts to prove the examples considered 
deductively. Failing this, it unifies the head of a metarule with the goal, and saves 
the resulting meta-substitution. The body and then the other examples are simi-
larly proved. The meta-substitutions recovered for each successful proofs are saved 
and can be used in further proofs by substituting them into their corresponding 
metarules. Key features of MIL are that it supports predicate invention, the learning 
of recursive programs, and Abstraction [5]. In the following, we use the MIL system 
Metagol [6].
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MIGO Algorithm

We present within this section details of the MIGO algorithm.
Learning from positive examples Theorems 1 and 2 provide a way of assign-

ing positive labels to moves. Therefore, the learning is based on positive exam-
ples only. This is possible because of Metagol’s strong language bias and ability 
to generalise from a few examples only. However, one pitfall is the risk of over-
generalisation due to the absence of negative examples.

Dependent Learning For successive values of k, a series of inter-related defi-
nitions are learned for predicates win _k(A,B) and draw _k(A,B) . These predi-
cates define maintenance of minimax win and draw in k-ply when moving from 
position A to B. The learning algorithm is presented as Algorithm 1, each action 
’learn’ represents a call to Metagol. This approach is related to Dependent 
Learning [13]. The idea is to first learn low-level predicates. They are derived 
from single examples with limited complexity. The definitions are added into 
the background knowledge, such that they can be used in further definitions. The 
process iterates until no further predicates can be learned.

Algorithm 1 MIGO Algorithm
Input: Positive examples for win k and draw k
Output: Strategy for win k and draw k
1: for k in [1,Depth] do
2: for each example of win k/2 do
3: one shot learn a rule and add it to the BK
4: end for
5: Learn win k/2 and add it to the BK
6: end for
7: for k in [1,Depth] do
8: for each example of draw k/2 do
9: one shot learn a rule and add it to the BK
10: end for
11: Learn draw k/2 and add it to the BK
12: end for

Mixed Learning and Separated Learning Theorem 2 assigns positive labels to 
draw/2 examples assuming a winning strategy SW has already been learned. In 
practice, we distinguish two variants of MIGO:

1.	 Separated Learning: win/2 and draw/2 are learned in two stages. Win/2 is first 
learned. When a strategy for win/2 is stable for a given number of iterations, the 
learner starts learning draw/2.

2.	 Mixed Learning: win/2 and draw/2 are learned simultaneously. Examples of 
draw/2 are first evaluated with the current strategy for win/2. If this latter is 
updated, examples of draw/2 are re-tested against the updated version of win/2.
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Implementation

Representation

A board B is encoded as a 9-vector of marks from the set {O,X,Empty} . States 
s(B, M) are atoms that represent the current board B and the active player M.

Primitives and Metarules

The language belongs to the language class H2
2
 , which is the subset of Datalog 

logic programs with predicates of arity at most 2 and at most 2 literals in the body 
of each clause. Learned programs are formed of dyadic predicates, representing 
actions, and monadic predicates, representing fluents. The background knowledge 
contains a general move generator move/2, which is an action that modifies a state 
s(B, M) by executing a move on board B and updating the active player M. Move/2 
only holds for valid moves; in other words, the learner already knows the rules of 
the game. The background knowledge also contains two fluents: a won classifier 
won/1 and a drawn classifier drawn/1. They hold when a board is respectively 
won or drawn.

We consider the metarules postcond and negation described in Table  1. The 
metarule negation expresses the logical negation for primitive predicates, and 
is implemented as negation as failure. This form of Negation does not introduce 
invented predicates in Metagol.

Execution of the Strategy

For each rule learned for win_i and draw_i a clause of the form below is added to 
the background knowledge:

���(�, �) ∶ − ���_�(�, �).

����(�, �) ∶ − ����_�(�, �).

When executing a strategy described with a hypothesis H, the move performed 
is the first one consistent with H. Practically, it first attempts to prove win_i∕2 for 
increasing values for i. Failing that, it attempts to prove draw_i∕2 for increasing 
values for i. If these proofs fail, a move is selected at random among the possible 
moves.

Table 1   Metarules considered: the letters P, Q, and R denote existentially quantified higher order vari-
ables. The letters A, B, and C denote universally quantified first-order variables

Name Metarule

postcond P(A,B) ← Q(A,B),R(B).

negation P(A,B) ← Q(A,B), not(R(B,C)).
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The opponent plays a deterministic minimax strategy that yields the best outcome 
in the minimum number of moves.

Learning a Strategy

At the end of a game, the outcome is observed and the sequence of visited boards 
is divided into moves. The depth of each board is measured as the number of full 
moves until the end of the game in the observed sequence. Moves are added to the 
set of positive examples for win_k∕2 or draw_k∕2 if they satisfy Theorems 1 or 2. 
Strategies are relearned from scratch after each game using the MIGO algorithm 
presented above. One additional constraint is added, such that draw/2 cannot be 
learned before win/2, since this would cause the learner to always draw and never 
win.

Experiments

Experimental Hypothesis

This section describes experiments which evaluate the performance of MIGO for the 
task of learning optimal two-player game strategies.2 We use the games of Noughts-
and-Crosses and a variant of the game of Hexapawn [9]. MIGO is compared against 
the reinforcement learning systems MENACE/HER, Q-learning, and Deep Q-learn-
ing. Accordingly, we investigate the following null hypotheses:

Null Hypothesis 1:  MIGO cannot converge faster than MENACE/HER, Q-learn-
ing, and Deep Q-learning for learning optimal two-player game strategies.

We additionally test the ability of MIGO to transfer learned strategies to more 
complex games, and, thus, verify the following null hypothesis:

Null Hypothesis 2:  MIGO cannot transfer the knowledge learned during a previ-
ous task to a more complex game.

Convergence

Materials and Methods

Common We provide MIGO, Menace/HER, and Q-learning with the same set of ini-
tial boards randomly sampled from the set of one-full-move-ahead positions—posi-
tions that result from one move of each player. The systems studied play games start-
ing from these initial boards, and they face the same deterministic minimax player. 
Therefore, the only variable in the experiments is the learning system. It is assumed 
that the learner always starts the game. The performance is evaluated in terms of 
cumulative minimax regret (Fig. 2) and CPU time (Table 2).

2  Code for these experiments available at https​://githu​b.com/migo1​9/migo.git.

https://github.com/migo19/migo.git
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We follow an implementation of Tabular Q-learning available from [1] and used 
the parameter values which were provided for the Q-learning algorithm: the explora-
tion rate is set to 0; the initial q values are 1; the discount factor is � = 0.9 and the 
learning rate � = 0.3 . Similarly, we follow an implementation of Deep Q-learning 
available from [2]. The provided parameters were used: the discount factor is set to 
0.8; the regularization strength to 0.01 and the target network update rate to 0.01; 
the initial and final exploration rate are 0.6 and 0.1 respectively.

The results presented here have been averaged oven 40 runs for Hexapawn3 and 
20 for Noughts and Crosses. Average running times are presented in Fig. 2.

Noughts-and-Crosses The set of initial boards comprises 12 boards taking into 
account rotations and symmetries of the board. Among them, 7 are expected win, 
and 5 are expected draw. Therefore, the worst case regret of a random player is 1.58. 
The counter for starting learning draw/2 is set to 10.

Hexapawn Hexapawn’s initial board is represented in Fig.  2. The goal of each 
player is to advance one of their pawns to the opposite end. Pawns can move one 
square forward if the next square is empty or capture another pawn one square 
diagonally ahead of it [9]. Rules have been modified: the game is said to be drawn 
when the current player has no legal move. Thereafter, we refer to Hexapawn3 and 
Hexapawn4 for the game of Hexapawn in dimensions 3 by 3 and 4 by 4, respec-
tively. The set of initial boards comprises 5 boards taking into account the vertical 

Fig. 2   Initial boards for Hexapawn3 and Hexapawn4

Table 2   Average CPU time (s) 
of one iteration

OX Hexapawn3 Hexapawn4

MIGO mixed learning 1.5 ⋅ 10−1 3.0 ⋅ 10−3 3.9
MIGO separated learning 8.9 ⋅ 10−2 2.8 ⋅ 10−3 3.8
MENACE / HER 1.5 ⋅ 10−3 2.7 ⋅ 10−4 /
Q-learning 2.3 ⋅ 10−1 1.9 ⋅ 10−3 2.7 ⋅ 10−1

Deep Q-learning 2.4 ⋅ 10−1 1.7 ⋅ 10−2 2.1 ⋅ 10−1
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symmetry. Among them, 3 are expected draw and 2 are expected win. Therefore, the 
average worst case regret is 1.4. As the dimensions are smaller for Hexapawn3 than 
for Noughts and Crosses, the counter for starting learning draw/2 is set to 5.

Results

Results are presented in Fig. 3 and show that MIGO converges faster than MEN-
ACE/HER, Q-learning, and Deep Q-learning for both games, refuting null 
hypothesis 1. As the maximum depth is larger for Noughts-and-Crosses than for 
Hexapawn3 , all systems require more iterations to converge. Deep Q-learning 
performs worst for Hexapawn3 as the parameters selected are the ones tuned for 
Noughts and Crosses and might not be adapted. For both games, mixed learning 
has lower cumulative regret than separated learning, because mixed learning does 

nwapaxeHsessorC-dna-sthguoN 3

Fig. 3   Cumulative Minimax Regret versus the number of iterations for Noughts-and-Crosses and 
Hexapawn3

Fig. 4   Rules learned: a 
Noughts-and-Crosses (all) and 
Hexapawn3 (above the double 
line). b Calling diagram of 
Learned Strategies (a)

(b)
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not waste any examples of draw/2 from the initial period in which win/2 is being 
learned and it does not stop learning win/2 after the initial period.

Rules learned by MIGO are presented in Fig. 4a. MIGO converges toward this 
full set of rules when playing Noughts-and-Crosses. Because the maximum depth 
of Hexapawn3 is 2, MIGO learns up to the double line when playing Hexapawn3 . 
If unfolding, the first rule can be translated into English as: State A is won at 
depth 1 if there exists a move from A to B, such that B is won. Similarly, win-
ning at depth 2 can be described with the following statement: State A is won 
at depth 2 if there exists a move of the current player from A to B, such that B is 
not immediately won for the opponent and such that the opponent cannot make a 
move from B to C to prevent the current player from immediately winning. This 
statement is similar to the one presented in Sect. 1. Finally, winning at depth 3 
can be explained as: State A is won at depth 3 for the current player if there exists 
a move from A to B, such that B is not won for the opponent in 1 or 2 moves and 
such that the opponent cannot make a move from B to C to prevent the current 
player from winning in 1 or 2 moves. None of the other systems studied can pro-
vide similar explanation about the moves chosen. Rules are built on top on each 
other; the calling diagram in Fig.  4b represents the dependencies between each 
learned predicates.

Discussion

MENACE, HER, and Q-learning encode the knowledge into the parameters (num-
ber of beads or Q values). The states and their parameters are unique for each board. 
This results in a weaker generalisation ability: knowledge cannot be transferred from 
one state to another. Deep Q-learning can provide some generalisation ability; how-
ever, it is only visible after a large number of iterations. Conversely, MIGO general-
ises the boards characteristics and each rule learned describes a set of states, which 
considerably reduces the number of parameters to learn and, therefore, the number 
of examples required.

The reinforcement learning systems tested have an implicit representation of the 
problem. For instance, no geometrical concepts have been encoded. Conversely, 
MIGO benefits from a background knowledge which describes the notion of win-
ning, and from which it can extract a notion of alignment. This allows a degree of 
explanation.

The running time increases rapidly with the state dimensions for MIGO. This 
reflects the increasing execution time of the learned strategy which is not efficient, 
since a deep evaluation requires extensive evaluation to decide whether a move leads 
to a win.

MENACE/HER is specifically tailored for theses games. Conversely, Q-learning 
and Deep Q-learning are general approaches that can tackle a wide range of tasks, 
providing that parameters are tuned. MIGO benefits from underlying assumptions 
which reduce its range of applications. However, the primitives are abstract enough 
to allow playing a wide range of games and support transferring knowledge from 
one game to another as we will demonstrate in the next section.
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Transferability

Materials and Methods Strategies are first learned for Hexapawn3 and Noughts-
and-Crosses respectively. Strategies are learned with mixed learning and for 100 
iterations for Hexapawn3 and 200 iterations for Noughts and Crosses. The resulting 
learned program is transferred to the next learning task, which is learning a strategy 
for Hexapawn4 . Results have been averaged over 20 runs.

Results The results presented in Fig.  5 show that transferring the knowledge 
learned in a previous task help to converge faster, thus refuting null hypothesis 2. 
Since the learner benefits from an initial knowledge, it is substantially improved 
compared to an initial random player.

Conclusion and Future Work

This article introduces a novel logical system named MIGO for learning two-player 
game strategies. It is based on the MIL framework. This system distinguishes 
itself from classical reinforcement learning by the way that it addresses the Credit 
Assignment Problem. Our experiments have demonstrated that MIGO achieves 
lower Cumulative Minimax Regret compared to Deep and classical Q-Learning. 
Moreover, we have demonstrated that strategies learned with MIGO are transferable 
to more complex games. Strategies have also been shown to be relatively easy to 
comprehend.

Future Work One limitation of the system presented is the risk of over-generalisa-
tion, observable in the strategy learned. We will further extend the implementation 
to include a more-thorough context for learning from positive examples such as the 
one presented in [18].

The running time suggests that the execution time of the learned strategies 
increases with the dimensions of the states, which limits scalability. We will further 
extend MIGO to optimise the execution time for hypothesised programs. Selection 
of hypotheses could be performed following the idea described in [7].

(a) (b)

Fig. 5   Transfer learning: a Hexapawn3 to Noughts and Crosses, b Noughts and Crosses to Hexapawn4 . 
Similar results are obtained from Hexapawn3 to Hexapawn4
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Another limitation to scalability is the restriction imposed by the initial assump-
tions. The current version of MIGO requires an optimal opponent, which is intracta-
ble in large dimensions. We will further extend this system by relaxing Theorems 1 
and 2 and weakening the optimal opponent assumption. A solution could be to learn 
from self-play.

Because MIGO benefits from a strong declarative bias, the sample complexity 
is much improved compared to the other approaches. However, most of the exam-
ples are wasted as no labels could be attributed. We plan to evaluate whether Active 
Learning could further help to reduce the sample complexity. The learner could 
choose an initial board to start the game, the choice being based on an information 
gain criterion.

Although learned strategies provide a certain form of explanation, we will further 
study how comprehensible learned strategies are. We will evaluate whether MIGO 
can fulfill Michie’s Machine Learning Ultra Strong criterion, which requires the 
learner to be able to teach the learned hypothesis to a human [22].

Despite these limitations, we believe that the novel system introduced in this 
work opens exciting new avenues for machine learning game strategies.

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.
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