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Abstract. In recent years predicate invention has been under-
explored as a bias reformulation mechanism within Inductive Logic
Programming due to difficulties in formulating efficient search mech-
anisms. However, recent papers on a new approach called Meta-
Interpretive Learning have demonstrated that both predicate inven-
tion and learning recursive predicates can be efficiently implemented
for various fragments of definite clause logic using a form of abduc-
tion within a meta-interpreter. This paper explores the effect of bias
reformulation produced by Meta-Interpretive Learning on a series
of Program Induction tasks involving string transformations. These
tasks have real-world applications in the use of spreadsheet tech-
nology. The existing implementation of program induction in Mi-
crosoft’s FlashFill (part of Excel 2013) already has strong perfor-
mance on this problem, and performs one-shot learning, in which a
simple transformation program is generated from a single example
instance and applied to the remainder of the column in a spreadsheet.
However, no existing technique has been demonstrated to improve
learning performance over a series of tasks in the way humans do.
In this paper we show how a functional variant of the recently devel-
oped MetagolD system can be applied to this task. In experiments we
study a regime of layered bias reformulation in which size-bounds of
hypotheses are successively relaxed in each layer and learned pro-
grams re-use invented predicates from previous layers. Results indi-
cate that this approach leads to consistent speed increases in learning,
more compact definitions and consistently higher predictive accu-
racy over successive layers. Comparison to both FlashFill and human
performance indicates that the new system, MetagolDF , has perfor-
mance approaching the skill level of both an existing commercial
system and that of humans on one-shot learning over the same tasks.
The induced programs are relatively easily read and understood by a
human programmer.

1 Introduction

A remarkable aspect of human intelligence is the ability to learn a
general principle, concept, or procedure from a single instance. Sup-
pose you were told a computer program outputs “BOB” on input
“bob.” What will it produce on input “alice”? Will it return “BOB”
again, ignoring the input? Or perhaps it will return “BOLICE”, post-
pending to “BO” the all-caps transform of the input minus the first
two characters. Is it reasonable to think it returns the all-caps palin-
drome formed by all but the last letter of the input, so “alice” maps
to “ALICILA”? In practice most people will predict the program will
return “ALICE”, and not any of the above possibilities. Similarly,
guessing the program associated with any of the input-output pairs
in the rows of Table 1 seems straightforward, but the space of possi-
ble consistent transformations is deceptively large. The reason these
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Figure 1. Input-output pairs typifying string transformations in this paper

problems are easy for us, but often difficult for automated systems,
is that we bring to bear a wealth of knowledge about which kinds of
programs are more or less likely to reflect the intentions of the person
who wrote the program or provided the example.

There are a number of difficulties associated with successfully
completing such a task. One is inherent ambiguity: how should one
choose from the vast number of consistent procedures? There is no
clear objective function to minimize; nor is this objective function
a subjective utility an intelligent agent can set arbitrarily since there
is generally a consensus regarding the “right” answer. Another diffi-
culty is these consistent procedures lie sparsely within a vast set of
inconsistent procedures: how can one quickly search this space and
find a procedure satisfying the given example without directing the
search to trivial solutions? Finally, there is the difficulty of inductive
programming in general: the space of such procedures is unruly. Syn-
tactically similar procedures are not in general semantically similar.
General heuristics do not exist that reliably estimate a distance to a
solution from a partial solution or an incorrect solution.

It is often most effective and natural to teach another person a
new behavior or idea by providing a few examples, and the ease with
which someone extrapolates from a few examples seems to be a hall-
mark of intelligence in general and of expertise in specific domains.
To produce intelligent robots and interactive software that can flexi-
bly engage in novel tasks, we need to understand how such learning
can be accomplished. The literature on Programming By Example
has explored many of these questions, with the goal of producing
end-user software that automates repetitive tasks without requiring
a programmer’s expertise. For the most part, the tools produced by
these systems have not reached levels of accuracy, flexibility, and
performance suitable for end-user adoption [9].

Recent work by Gulwani et al [8] demonstrates that a carefully
engineered Domain Specific Language (DSL) for string transforma-
tions allows their system to induce string transformations from a
single input-output example with speeds and accuracies suitable for
commercial software. In further work [7], they demonstrate that care-
ful crafting of a DSL results in impressive inductive programming in
other domains such as intelligent tutoring.

The research presented here is intended as a first response to the



challenge Gulwani et al’s work seems to pose to AI: if carefully
crafted DSLs are a key ingredient for competent one-shot induction
of programs, then can we develop AI systems that attain such com-
petence by automatically learning these DSLs?

DSLs are useful, both for human and automated programmers, be-
cause they provide a correspondence between the semantic abstrac-
tions relevant to the domain and the syntactic elements provided by
the language. In doing so, they make programs that fall in the tar-
get domain easy to express, easy to reason about, and concise. For
a search algorithm exploring the space of programs, this amounts to
imposing a bias on the search trajectory.

MetagolD [13] is an Inductive Logic Programming (ILP) system
that uses the recently developed Meta-Interpretive Learning frame-
work to induce logical predicates from positive and negative exam-
ples. MetagolD is able to invent intermediate predicates to facilitate
the definition of target predicates. For example, asked to learn the
conceptancestor, and givenfatherandmotherrelationships between
individuals, MetagolD will automatically invent the predicatepar-
ent. Since our goal in this work is one-shot function induction in
a multitask setting we use a functional variant of MetagolD called
MetagolDF that uses predicates invented in the service of one task
to facilitate solving other, perhaps more difficult, tasks. In this way,
we can use MetagolDF as a model of the utility and practicality of
learning a DSL that biases a search over programs.
Our contribution In this paper, we introduce MetagolDF and ap-
ply it to the domain of string transformations to explore three aspects
of multi-task learning and bias reformulation in inductive program-
ming:
• we show incremental predicate invention using a revised version

of Metagol can generate a domain-specific bias that improves the
speed and performance of one-shot program induction;

• we compare a general purpose inductive learner to humans and
FlashFill and compare the degree to which a simple cypher influ-
ences their relative performances.

• we show that an ILP system, although primarily used to learn re-
lational predicates, can be used to learn functional predicates.

1.1 Related work

Both the challenge of learning computer programs and of learning an
inductive bias from related problems have a long history in AI, Ma-
chine Learning, and other fields [19, 2, 16]. A somewhat smaller lit-
erature relates these two problems (eg [15]). Work on statistical ma-
chine learning and neural networks has studied transfer of knowledge
from one problem domain to other problems domains and has empir-
ically explored the utility of such transfer learning (for an overview
see [18]). A theoretic model of “learning to learn” is presented in [1].

More recently, multitask learning has been framed as inference
in a hierarchical Bayesian model [20, 4]. This framing has been
used to apply these ideas to multitask learning of functional pro-
grams [5, 11], where a declarative bias is learned via inference overa
latent grammar on programs. Liang et al [11] uses a stochastic search
over programs and Dechter et al [5] uses an enumeration over pro-
grams, and both represent programs in the combinatory calculus. By
contrast, MetagolDF represents functions as logic programs and uses
SLD-resolution to guide program search. This results in more inter-
pretable programs and a potentially more intelligent search.

The field of Programming By Demonstration (and also known
as Programming By Example) aims to create systems that auto-
matically induce computer programs in order to facilitate human-
computer interactions [3]. Lau et al [10] applied the Inductive Logic
Programming system FOIL to Programming By Demonstration, but

MetagolDF is a qualitatively different approach to Inductive Logic
Programming which enables predicate invention and thus learning a
bias in the multitask setting.

The work in this paper is directly inspired by recent advances in
Programming Demonstration which use DSLs for various domains
of interest (see [6, 17, 21]). These approaches demonstrate the power
of DSLs in enabling efficient and reliable automated programming.
At least one attempt [12] has been made to extend this approach by
learning feature weights to guide the search but it does not learn new
features of program fragments.

2 Meta-Interpretive Learning framework

The framework described in this section is an extension of that found
in [13, 14]. The approach is based on an adapted version of a Prolog
meta-interpreter. Normally such a meta-interpreter derives a proof
by repeatedly fetching first-order Prolog clauses whose heads unify
with a given goal. By contrast, a meta-interpretive learner addition-
ally fetches higher-order metarules whose heads unify with the goal,
and saves the resulting meta-substitutions to form an hypothesis. To
illustrate the idea consider the metarule below.

Name Meta-Rule
Chain P (x, y) ← Q(x, z), R(z, y)

The uppercase lettersP, Q, R denote existentially quantified higher-
order variables while the lowercase lettersx, y, z are universally
quantified first-order variables. In the course of a proof meta-
substitutions for the existentially quantified variables are saved in an
abduction store. For instance, suppose the higher-order substitution
θ = {P/aunt, Q/sister, R/parent} applied to theChainmetarule
above allows the proof to complete. In this case the higher-order
ground atomchain(aunt, sister, parent) is saved in the abduction
store. Given this ground atom the substitutionθ can be reconstructed
and re-used in later proofs, allowing a form of inductive program-
ming which supports both predicate invention and the learning of
recursive definitions [13]. Following the proof of a goal consisting of
a set of examples, the hypothesised program is formed by applying
the resulting meta-substitutions to their corresponding metarules.

Example 1 Meta-substitution example. If the examples are
{aunt(mary, harry), aunt(jane, emma)} and we have back-
ground knowledge {sister(mary, lisa),parent(lisa, harry),
sister(jane, jack),parent(jack, emma)} then abducing
the statement chain(aunt, sister, parent), representing the
meta-substitutionθ above, results in the hypothesised clause
aunt(x, y) ← sister(x, z), parent(z, y).

2.1 Language classes, expressivity and complexity

The metarules can be viewed as limiting the hypothesis space to be-
ing within a particular language class. For instance, the Chain rule
above resticts hypothesised clauses to be definite with two atoms in
the body and having predicates of arity two. This restriction repre-
sents a subset of the language classH2

2 , which includes all datalog
definite logic programs with at most two atoms in the body of each
clause and having predicates of arity at most two.

Theorem 1 (The number ofH2

2 programs of sizen.) Givenp predi-
cate symbols andm metarules the number ofH2

2 programs express-
ible withn clauses isO(mnp3n).
Proof. The number of clausesSp which can be constructed from
an H2

2 metarule givenp predicate symbols is at mostp3. There-
fore the set of such clausesSm,p which can be constructed fromm



Generalised meta-interpreter
prove([], P rog, Prog).
prove([Atom|As], P rog1, P rog2) : −

metarule(Name, MetaSub, (Atom :- Body), Order),
Order,
abduce(metasub(Name, MetaSub), P rog1, P rog3),
prove(Body, Prog3, P rog4),
prove(As, Prog4, P rog2).

Figure 2. Prolog code for generalised meta-interpreter used in MetagolDF

distinct H2

2 metarules usingp predicate symbols has cardinality at
mostmp3. From this it follows that the number of logic programs
constructed from a selection ofn rules chosen fromSm,p is at most
(

mp3

n

)

≤ (mp3)n = O(mnp3n).

Given this exponential growth in the hypothesis space, our imple-
mentation (see Section 3) places a boundn = k on the maximum
number of clauses in any learned string transformation function.

2.2 String transformation functions

This paper studies the use of Meta-Interpretive Learning for induc-
ing a set of related string transformation functions each having the
form f : Σ∗ → Σ∗ whereΣ∗ is the set of sequences over a finite
alphabetΣ. In order to learn such functions, each dyadic predicate
P (x, y) used in the metarules is treated as a function fromx to y.
Additionally bothx andy are treated asInput/Output pairs where
Input andOutput are sequences fromΣ∗.

3 Implementation

This section describes MetagolDF , a variant of MetagolD [13],
aimed at learning functions rather than relations.

3.1 MetagolDF

Figure 2 shows the implementation of MetagolDF
3 as a gener-

alised Meta-Interpreter, similar in form to a standard Prolog meta-
interpreter. The meta-rule base (see Figure 3) is defined separately,
with each rule having an associated name (Name), quantification
(MetaSub), rule form (Atom : −Body) and Herbrand ordering
constraint (Order). This contrasts with MetagolD [13] in which the
meta-rules are not separable from the meta-interpreter. Separating
the meta-rules from the meta-interpreter makes it easier for users
to define meta-rules. The restriction of relations to functions is im-
plemented as a post-construction test which rejects every hypothe-
sised functionR for which there is a positive exampleR(x, y), while
R(x, z) is provable from the hypothesis wherex 6= z. In practice the
functional restriction largely obviates the need for negative examples.

3.2 Herbrand ordering constraints

Owing to the Turing-expressivity ofH2

2 it is necessary [13] to use
constraints on the application of the metarules to guarantee termi-
nation of the hypothesised program. The termination guarantees are
based on these constraints being consistent with a total ordering over
the Herbrand base of the hypothesised program. Thus the constraints
ensure that the head of each clause is proved on the basis of instances
of body atoms lower in the ordering over the Herbrand base. Since

3 Full code for MetagolDF together with all materials for the experiments in
Section 4 can be found at http://ilp.doc.ic.ac.uk/metagolDF/.

Name Meta-Rule Order
Base P (x, y) ← Q(x, y) P ≻ Q

Chain P (x, y) ← Q(x, z), R(z, y) P ≻ Q, P ≻ R

TailRec P (x, y) ← Q(x, z), P (z, y) P ≻ Q,
x ≻ z ≻ y

Figure 3. Table of Meta-rules with associated Herbrand ordering
constraints.≻ is a pre-defined ordering over symbols in the signature.

the ordering is not infinitely descending, this guarantees termina-
tion of the meta-interperpreter. Figure 3 shows the metarules used
in MetagolDF alongside their associated constraints.

3.3 Dependent learning

The implementation of the earlier MetagolD [13] system uses itera-
tive deepening of derivations of the meta-interpreter for each learning
episode up to a bound which is logarithmic in the number of exam-
ples. This leads to efficiency in the case of large numbers of exam-
ples. In this paper we consider the case of learning multiple learning
tasks each from a single training example. Sincelog 1 = 0 we use
an alternative approach in which iterative deepening is multiplexed
across the set of all learning tasks up to a given maximum depthk.
In the remainder of this paper we use the termDependent learning
to refer to this approach. Thus MetagolDF starts by setting the depth
boundd to 1 and finds all task definitions which can be expressed us-
ing a single clause. Nextd = 2 is tried for all remaining tasks, where
each task is allowed to re-use invented predicates from the previous
depth bound. The search continues in this way untild = k and re-
turns the set of all learned definitions. Given Theorem 1 the value of
k is restricted to5 in our experiments to avoid excessive runtimes.

3.4 Predicate invention

At each depthd the dependent learning allows the introduction of up
to d − 1 new predicate symbols. New predicates names are formed
by taking the name of the task (sayf4) and adding underscores and
numbers (sayf4 1, f4 2, etc). New predicate symbols are added into
the ordering≻ over the signature (see Figure 3) and placed imme-
diately below the name of the task being learned and immediately
above the names of all other predicate symbols.

4 Experiments

In this section, we evaluate the performance of MetagolDF on one-
shot learning when given different strength of learning biases. We
also compare the performance of MetagolDF to Excel’s FlashFill
and human beings via Mechanical Turk experiments.

4.1 Materials

MetagolDF In order to obtain string transformation tasks corre-
sponding to those naturally found in real-world settings, Gulwani
et al [6] compiled a set of typical string transformations from on-
line Microsoft Excel user forums. Since their data is not yet publicly
available, we compiled a set of examples from their papers, supple-
menting these with handcrafted examples in the spirit of common
spreadsheet manipulation tasks. This resulted in 30 problems, each
with five input-output examples; for an example of five such exam-
ple pairs, see Figure 4. Out of these 30 problems, there were 17 we
judged to be learnable given the primitive functions being consid-
ered in this paper. All comparisons in this paper are based on these
17 problems, and we are keen to address the remaining problems in
further extensions of this work (see Section 5).



miKe dwIGHT ⇒ Mike Dwight
IaN RoDny ⇒ Ian Rodny
StaNleY TRAVis ⇒ Stanley Travis
MELVIN Julian ⇒ Melvin Julian
mary gelman ⇒ Mary Gelman

Figure 4. A string transformation task

copyalphanum/2,copy1/2,
write1/3,skip1/2,
skipalphanum/2, skiprest/2,
makeuppercase1/2 .
makelowercase/2,
makeuppercase/2

Figure 5. Primitive operations given to MetagolDF

We provide initial background knowledge for MetagolDF , by
specifying a set of primitive string transformation operations, as
shown in Figure 5. Some of these operations only act on a
single character in the input or istring. For example, the pred-
icate make lowercase1/2 reads in the first letter on the in-
put, if it is alphabetical, and writes the lowercase verison of
that letter to the output stream. We also define operations that
consume and alter strings of multiple consecutive characters.
For example,make lowercase/2, which is written in terms of
make lowercase1/2, (see Figure 6), reads in the longest consecu-
tive string of alphabetical characters and writes its lowercase version
to the output string.

We also considered two different sets of metarules:Non-recursive
based on only the Chain metarule andRecursivebased on the Chain,
Base and TailRec metarules (see Section 2). Clearly, the language
generated by the Non-recursive set of metarules is more limited than
that generated by the Recursive set of metarules.

Humans and FlashFill To attain points of comparison for the per-
formance of MetagolDF , we assessed human subjects and FlashFill
on the seventeen problems on which we tested MetagolDF . People,
and, to a lesser extent, FlashFill, bring to these problems a large
amount of background knowledge. In an attempt to understand the
impact of such background knowledge on performance, we tested
both people and FlashFill on the original set of input-output exam-
ples and on a cyphered version. We used a substitution cypher on
the string characters that maintains the character category member-
ships given to MetagolDF . Alphabetical characters were mapped to
alphabetical characters but upper- and lowercase variants were pre-
served (i.e. if ‘a’→ ‘c’ then ‘A’ → ‘C’). Digits were mapped to dig-
its. The remaining symbols, including space, were mapped among
themselves. For example, the input-output pair〈“2007 (September)”,
“September”〉 was mapped to〈“8337}Ivanvqwvś’’, “Ivanvqwvs” 〉.

4.2 Method

MetagolDF We compare dependent learning to independent learn-
ing in terms of predictive accuracy and running time. Considering
only one example is used for training while there are five examples
in total, leave-four-out (keep-one-in) cross validation is conducted
by measuring the predictive accuracy from each example against the

makelowercase(X,Y) :- notalphanum(X).
makelowercase(X,Y) :- makelowercase1(X,Z),

makelowercase(Z,Y).
makelowercase1(X,Y) :- uppercase(X), downcase(X,Y).
makelowercase1([H|T1]/[H|T2],T1/T2) :- lowercase1(H).

Figure 6. Background knowledge (partial)

remaining four examples, and averaging the result. In the case of de-
pendent learning, different combinations of examples from each task
will affect the learning results, therefore we randomly permuted the
order of examples within each task, as well as the order of tasks.
Then during the leave-four-out cross validation, examples from the
same index of each task are drawn to form a sequence of training
examples. For example, at the first round, all the first examples from
each task are gathered for training, then similarly for the other four
rounds. For each task, MetagolDF is given maximum of ten minutes
to solve the problem. The average time taken for learning is around
one minute. If the time-out bound is reached, it moves to the next
task. All the experiments were run on a 1.6 GHz desktop computer
with 16 GB of memory available.

Humans and FlashFill FlashFill was assessed using the built-in
implementation shipped with Microsoft Office 2013. We employed
the same evaluation procedure as that in the MetagolDF experi-
ment, that is, leave-four-out cross validation. However, different from
MetagolDF , the example ordering no longer matters since FlashFill
solves each problem independently.

169 human subjects volunteered to do the experiments on Ama-
zon Mechanical Turk (http://www.mturk.org) and each subject was
paid $1.00 to provide responses on ten randomly selected responses
from the seventeen problems. Half the subjects saw only uncyphered
text and half the subjects saw only cyphered text. Each subject was
shown one randomly chosen example pair as the training example
for a question and was tested on two randomly chosen example pairs.
Accuracies were averaged across all questions and participants.

4.3 Results and discussion

Programs derived by dependent learning Figure 7(a) shows a
calling diagram for programs derived by dependent learning when
learning from the recursive metarules. Examples of a chain of learned
definitions with dependencies based on calling other definitions is
exemplified in Figure 8. It would be infeasible for such a program to
be learned from scratch all at once given the exponential nature of the
search. However, the layers of dependencies found by MetagolDF

facilitate this form of learning, allowing knowledge to be efficiently
and compactly learned in a bottom-up fashion with invented sub-
predicates being multiply re-used.

In contrast to Figure 7(a), Figure 7(b) shows the result of inde-
pendent learning, which exhibits no dependency among the hypoth-
esised programs. Compared to dependent learning, an independent
learner has to solve problems at larger size bound due to construct-
ing sub-functions which are not available for re-using. As shown in
Figure 7(b), there are more nodes at size bound 5 and time out re-
gion. Although task 3 appears at level 5 in both cases, it has only size
one in the case of dependent learning due to re-using the functions
f12 andf12 1 derived earlier. When solving the same task with inde-
pendent learning, the five clauses need to be built entirely from the
initial primitive set. Due to the dependency among programs, those
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Figure 7. A comparison of the programs generated by Dependent and
Independent Learning in a typical run of MetagolDF . Nodes markedn

correspond to programs which solve taskn, and nodes are arranged
vertically according to their sizes. For Dependent Learning (left), the arrows

correspond to the calling relationships of the induced programs.

derived by dependent learning are more compact than those derived
by independent learning.

f03(A,B) :- f12 1(A,C), f12(C,B).

f12(A,B) :- f12 1(A,C), f12 2(C,B).
f12 1(A,B) :- f12 2(A,C), skip1(C,B).
f12 2(A,B) :- f12 3(A,C), write1(C,B,’.’).
f12 3(A,B) :- copy1(A,C), f17 1(C,B).

f17(A,B) :- f17 1(A,C), f15(C,B).
f17 1(A,B) :- f15 1(A,C), f17 1(C,B).
f17 1(A,B) :- skipalphanum(A,B).

f15(A,B) :- f15 1(A,C), f16(C,B).
f15 1(A,B) :- skipalphanum(A,C), skip1(C,B).

f16(A,B) :- copyalphanum(A,C), skiprest(C,B).

Figure 8. Example of a chain of functional logic programs derived by
MetagolDF using dependent learning. Note that the hypothesised function

f03 callsf12 which callsf17 1. In turnf17 callsf15 which callsf16.

Independent learning vs. Dependent learning Each graph in
Figure 9 depicts the results of five train-and-test runs. Since each
point corresponds to learning a problem there are 85 points in total.

The horizontal axis represents the difference between the size of
programs derived by independent and dependent learning. All the
points are distributed on the positive side of the horizontal axis,
which means dependent learning always derives hypotheses with
smaller sizes than independent learning. The vertical axis of Fig-
ure 9 corresponds to the difference of log running times for inde-
pendent and dependent learning. Therefore, points distributed above
the horizontal axis corresponds to the cases when dependent learning
is faster.

According to Theorem 1, the hypothesis space grows exponen-
tially with the size of a program being searched for. Therefore de-
pendent learning’s gain in program compactness leads to exponen-
tial reducton in the running time. The linear regression line in Fig-
ure 9 is consistent with this theoretical result: the gain in speed cor-
relates with the gain in compactness. Independent learning is only
faster when there is no size difference or the difference is small, as
shown in Figure 9 where the points distributed below horizontal axis

No recursion Recursion

−3 −2 −1 0 1 2 3 4

Sind − Sdep

−15

−10

−5

0

5

10

15

lo
g
T
in
d
−l

o
g
T
d
ep

−3 −2 −1 0 1 2 3 4

Sind − Sdep

−15

−10

−5

0

5

10

15

lo
g
T
in
d
−l

o
g
T
d
ep

Figure 9. Independent vs. dependent learning: Running time correlated
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Figure 10. Independent vs. dependent learning: a) predictive accuracy and
b) percentage of solved tasks

gather atSInd −SDep = 0. This is due to the overhead in dependent
learning, since it has a larger number of predicates accumulated from
previous depth bounds.

Higher predictive accuracy As shown in Figure 10(a), dependent
learning makes it possible to solve more tasks than the independent
learning when given the same clause bound. This results in consis-
tently higher predictive accuracies when the learning involves recur-
sive programs. While in the case of learning non-recursive programs,
dependent learning still has significantly higher accuracies than in-
dependent ones with the exception of size bound 5 where the two
accuracy lines converge. The reasons for convergence are: (1)the
primitives given to Metagol are strong enough to construct programs
without re-using functions learned from other tasks; (2) hypothesis
space defined by the non-recursive metarules is small enough that in-
dependent learning manages to find a program with large size, with-
out running into time-out mode in the case of learning with recur-
sions. Although learning without recursion restricts the expressivity,
good approximations to a target recursive program often exist. There-
fore their predictive accuracies are not significantly hampered, only
decreasing slightly from 61.2% to 60.6%. However, this is not al-



ways the case, especially when the initial bias is weaker. Then there
is higher demand of learning recursions, such as reconstructing the
recursive function makelowercase/2 given in the current initial bias.

In separate trials we investigate such weaker initial bias, con-
sisting of only predicates which altered single characters. It was
found that Metagol is able to reformulate recursive functions like
makelowercase/2, producing a monontonic rise in predictive accu-
racy to a level of around 40%. Notably the starting point of the rise
for the weaker bias was delayed owing to the fact the initial concepts
to be learned required larger definitions.

Comparison to FlashFill and human performance Figure 10 in-
cludes the performance of human beings and the Flashfill on our set
of 17 tasks when the strings are cyphered. These results indicate that
the performance of MetagolDF approaches the level of both an exist-
ing commercial system and that of human beings on one-shot learn-
ing over these tasks. Note however, that since we chose these prob-
lems with the capabilities of the given primitive set for MetagolDF

in mind, we cannot make general claims about the performance of
MetagolDF as compared to FlashFill for a wider set of tasks.

For both people and FlashFill, we also acquired performance data
for the original uncyphered version of the tasks. The background
knowledge we gave to MetagolDF contained no primitives that dis-
criminate between the cyphered and uncyphered tasks, so the per-
formance of MetagolDF is invariant to which version of the tasks
were used. By contrast, the human subjects’ performance varied sig-
nificantly depending on whether the cypher was used or not. On the
cyphered version of the tasks, human subjects averaged 87% accu-
racy. On the uncyphered version, human subjects averaged only 74%.
FlashFill was much less sensitive to the cypher. It averaged 76% ac-
curacy for uncyphered tasks and 72% for cyphered tasks.

FlashFill encodes a domain specific language which in some cases
produces very unintuitive results. For example, FlashFill makes the
following prediction“IaN RoDny⇒ Man Ddny” for the learning
task shown in Figure 4. This is due to FlashFill’s bias of simply
copying the first capital letter from training examples. By contrast,
MetagolDF makes correct predictions for this problem.

Human beings also make generalisation errors similar to that of
Metagol when given the fifth example of task 10: ”mary gelman⇒
Mary Gelman”. Specifically, Metagol hypothesises a program which
only capitalise the first letter of the word and copies the rest. How-
ever, the target program makes all non-first letters lowercase. Most
subjects do not over fit on this training example due to our back-
ground knowledge. However, one human subject who made similar
generalisation errors to Metagol.

5 Conclusion and further work

In this paper, we have presented an approach for automatically learn-
ing a domain specific bias in a multitask inductive programming set-
ting. This bias reformulation, we argue, is necessary for an intelligent
system that can function in new domains and aspires to the kind of
one-shot learning that people commonly exhibit. After all, people are
not born with a set of inductive biases, one for every possible domain
of expertise they might encounter. Domain specific successes in AI
– whether in playing board games, folding laundry, or automating
spreadsheet operations – pose a challenge to create domain-general
systems that can flexibly acquire the appropriate biases whatever the
domain of interest. Our work here is meant as a step in that direction
within the framework of inductive programming.

Our work leaves many questions unanswered. Most important is
how to manage the complexity created by learned predicates. As
noted above, each learned predicate increases the branching factor of

the search space, and our algorithm, as described above, maintains
every learned predicate. By contrast human beings usually compress
the previous learned knowledge by further abstraction. Another po-
tential solution has been investigated by Liang et al [11] and Dechter
et al [5] who suggest a method to weight the set of invented pred-
icates. This weighted library of primitives could be used to direct
search within MetagolDF and prioritize the use of one invented pred-
icate over another. One future direction would be to incorporate such
an inference-based library learning within MetagolDF .

Although the design of better intelligent user interfaces is one mo-
tivation for our work, much remains to evaluate our approach in the
context of a working system for human-computer interaction, where
active user input and feedback response plays a significant role.

It also remains to be shown that string transformation examples are
generalizable to other one-shot function induction tasks. Although
theH2

2 fragment has been demonstrated to have Turing-expressivity,
other one-shot learning tasks need to be demonstrated using the same
approach. This paper is an initial study of one particular task in one-
shot learning, which we hope to extend in further work.

Another question left for future investigation is that of how to learn
“algorithmic” biases. Many domain specific algorithms benefit not
only from the bias imposed by the choice of representation but also
from special algorithmic properties of that representation. For exam-
ple, the FlashFill algorithm is very efficient because the DSL it uses
supports a data structure for compactly representing exponentially
large sets of programs consistent with the data [6]. This suggests an
area for future research: should automated systems constrain learned
representations to those that support these special properties? How
might learning in the space of such representations take place?

In future work we hope to also extend the approach to deal with
some of the 30-17=13 problems which could not be handled using the
primitive tranformations used in this paper. In particular, we hope to
investigate the use of primitives which go beyond tranferring char-
acters from the input to the output while maintaining their order.
One way this might be possible is by use of operations which push
text onto an internal stack. We would also like to investigate ways in
which it might be possible to allow effective learning from a weaker
initial bias. This might be possible by limiting the number of re-used
predicates based on their potential frequency of use.
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