
1

Alan Turing and the development of Artificial

Intelligence

Stephen Muggleton ∗,

During the centennial year of his birth Alan Turing
(1912-1954) has been widely celebrated as having laid
the foundations for Computer Science, Automated De-
cryption, Systems Biology and the Turing Test. In this
paper we investigate Turing’s motivations and expec-
tations for the development of Machine Intelligence, as
expressed in his 1950 article in Mind. We show that
many of the trends and developments within AI over
the last 50 years were foreseen in this foundational pa-
per. In particular, Turing not only describes the use
of Computational Logic but also the necessity for the
development of Machine Learning in order to achieve
human-level AI within a 50 year time-frame. His de-
scription of the Child Machine (a machine which learns
like an infant) dominates the closing section of the pa-
per, in which he provides suggestions for how AI might
be achieved. Turing discusses three alternative sug-
gestions which can be characterised as: 1) AI by pro-
gramming, 2) AI by ab initio machine learning and 3)
AI using logic, probabilities, learning and background
knowledge. He argues that there are inevitable limi-
tations in the first two approaches and recommends
the third as the most promising. We compare Turing’s
three alternatives to developments within AI, and con-
clude with a discussion of some of the unresolved chal-
lenges he posed within the paper.

Keywords: Alan Turing, Artificial Intelligence, Ma-
chine Intelligence

1. Introduction

In this section we will first review relevant parts
of the early work of Alan Turing which pre-dated
his paper in Mind [42].

1.1. Early work: the Entscheidungsproblem

Turing’s initial investigations of computation
stemmed from the programme set out by David

*Corresponding author: Stephen Muggleton, Department
of Computing, Imperial College London.

Hilbert at the 1928 International Mathematical
Congress. Hilbert presented three open questions
for logic and mathematics. Was mathematics

1. complete in the sense that any mathematical
assertion could either be proved or disproved,

2. consistent in the sense that false statements
could not be derived by a sequence of valid
steps and

3. decidable in the sense that there exists a def-
inite method to decide the truth or falsity of
every mathematical assertion.

Within three years Kurt Gödel [13] had shown
that not even the axoims of arithmetic are both
complete and consistent and by 1937 both Alonzo
Church [5] and Alan Turing [43] had demonstrated
the undecidability of particular mathematical as-
sertions.

While Gödel and Church had depended on
demonstrating their results using purely math-
ematical calculi, Turing had taken the unusual
route of considering mathematical proof as an ar-
tifact of human reasoning. He thus considered a
physical machine which emulated a human math-
ematician using a pen and paper together with a
series of instructions. Turing then generalised this
notion to a universal machine which could emu-
late all other computing machines. He used this
construct to show that certain functions cannot be
computed by such a universal machine, and conse-
quently demonstrated the undecidability of asser-
tions associated with such functions.

At the heart of Turing’s universal machine is
a model of human calculation. It was this choice
which set the scene for later discussions on the
degree to which computers might be capable of
more sophisticated human-level reasoning.

1.2. Bletchley Park

The outbreak of the Second World War provided
Turing with an opportunity and resources to de-

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved

2 S. Muggleton / Turing and the development of AI

sign and test a machine which would emulate hu-
man reasoning. Acting as the UK’s main wartime
decryption centre, Bletchley Park had recruited
many of the UK’s best mathematicians in an at-
tempt to decode German military messages. By
1940 the Bombe machine, designed by Turing and
Welchman [7], had gone into operation and was ef-
ficiently decrypting messages using methods pre-
viously employed manually by human decoders. In
keeping with Turing’s background in Mathemati-
cal Logic, the Bombe design worked according to
a reductio ad absurdum principle which simplified
the hypothesis space of 263 possible settings for the
Enigma machine to a small number of possibilities
based on a given set of message transcriptions.

The hypothesis elimination principle of the
Bombe was later refined in the design of the Colos-
sus I and II machines. The Tunny report [15] (de-
classified by the UK government in 2000), shows
that one of the key technical refinements of Colos-
sus was the use of Bayesian reasoning to order the
search through the space of hypothetical settings
for the Lorenz encryption machine. This combi-
nation of logical hypothesis generation tied with
Bayesian evaluation were later to become central
to approaches used within Machine Learning (see
Section 5). Indeed strong parallels exist between
decryption tasks on the one hand, which involve
hypothesising machine settings from a set of mes-
sage transcriptions and modern Machine Learning
tasks on the other hand, which involve hypothesis-
ing a model from a set of observations. Given their
grounding in the Bletchley Park decryption work
it is hardly surprising that two of the authors of
the Tunny report, Donald Michie (1923-2007) and
Jack Good (1916-2009), went on to play founding
roles in the post-war development of Machine In-
telligence and Subjective Probabilistic reasoning
respectively. In numerous out-of-hours meetings at
Bletchley Park, Turing discussed the problem of
machine intelligence with both Michie and Good.
According to Andrew Hodges [16], Turing’s biog-
rapher

These meetings were an opportunity for Alan
to develop the ideas for chess-playing machines
that had begun in his 1941 discussions with
Jack Good. They often talked about mechani-
sation of thought processes, bringing in the the-
ory of probability and weight of evidence, with
which Donald Michie was by now familiar. . . .

He (Turing) was not so much concerned with

the building of machines designed to carry out
this or that complicated task. He was now fas-
cinated with the idea of a machine that could
learn.

2. Turing’s 1950 paper in Mind

2.1. Structure of the paper

The opening sentence of Turing’s 1950 paper
[42] declares

I propose to consider the question, “Can ma-
chines think?”

The first six sections of the paper provide a philo-
sophical framework for answering this question.
These sections are briefly summarised below.

1. The Imitation Game. Often referred to as
the “Turing test”, this is a form of parlour
game involving a human interrogator who al-
ternately questions a hidden computer and a
hidden person in an attempt to distinguish
the identity of the respondents. The Imita-
tion Game is aimed at providing an objective
test for deciding whether machines can think.

2. Critique of the New Problem. Turing dis-
cusses the advantages of the game for the pur-
poses of deciding whether machines and hu-
mans could be attributed with thinking on
an equal basis using objective human judge-
ment.

3. The Machines Concerned in the Game. Tur-
ing indicates that he intends digital comput-
ers to be the only kind of machine permitted
to take part in the game.

4. Digital Computers. The nature of the new
digital computers, such as the Manchester
machine, is explained and compared to Charles
Babbage’s proposals for an Analytical En-
gine.

5. Universality of Digital Computers. Turing
explains how digital computers can emulate
any discrete-state machine.

6. Contrary Views on the Main Question. Nine
traditional philosophical objections to the
proposition that machines can think are in-
troduced and summarily dismissed by Tur-
ing.

S. Muggleton / Turing and the development of AI 3

2.2. Learning machines - Section 7 of Turing
paper

The task of engineering software which ad-
dresses the central question of Turing’s paper have
dominated Artificial Intelligence research over the
last sixty years. In the final section of the 1950
paper Turing addresses the motivation and possi-
ble approaches for such endeavours. His transition
from the purely philosophical nature of the first
six sections of the paper is marked as follows.

The only really satisfactory support that can
be given for the view expressed at the begin-
ning of section 6, will be that provided by wait-
ing for the end of the century and then doing
the experiment described. But what can we say
in the meantime?

Turing goes on to discuss three distinct strategies
which might be considered capable of achieving a
thinking machine. These can be characterised as
follows: 1) AI by programming, 2) AI by ab initio
machine learning and 3) AI using logic, probabil-
ities, learning and background knowledge. In the
next three sections we discuss these strategies of
Turing in relation to various phases of AI research
as it has been conducted over the past half century.

3. Version 1: AI by programming [1960s-1980s]

3.1. Storage capacity argument

Turing considers an argument concerning the
memory requirements for programming a digital
computer with similar capacity to a human being.

As I have explained, the problem is mainly one
of programming. Advances in engineering will
have to be made too, but it seems unlikely that
these will not be adequate for the requirements.
Estimates of the storage capacity of the brain
vary from 1010 to 1015 binary digits. I incline
to the lower values and believe that only a very
small fraction is used for the higher types of
thinking. Most of it is probably used for the re-
tention of visual impressions, I should be sur-
prised if more than 109 was required for satis-
factory playing of the imitation game, at any
rate against a blind man. (Note: The capac-
ity of the Encyclopaedia Britannica, 11th edi-
tion, is 2 × 109). A storage capacity of 107,

would be a very practicable possibility even by
present techniques. It is probably not necessary
to increase the speed of operations of the ma-
chines at all. Parts of modern machines which
can be regarded as analogs of nerve cells work
about a thousand times faster than the lat-
ter. This should provide a “margin of safety”
which could cover losses of speed arising in
many ways. Our problem then is to find out
how to programme these machines to play the
game. At my present rate of working I produce
about a thousand digits of programme a day,
so that about sixty workers, working steadily
through the fifty years might accomplish the
job, if nothing went into the wastepaper bas-
ket. Some more expeditious method seems de-
sirable.

In retrospect it is amazing that Turing managed to
foresee that “Advances in engineering” would lead
to computers with a Gigabyte of storage by the
end of the twentieth century. It is also noteworthy
that Turing suggests that in terms of hardware, it
is memory capacity rather than processing speed
which will be critical.

However, the final sentence of the quote above
indicates that Turing could already foresee that
manual composition of a program which could pass
the Turing test was not the most “expeditious”
method, despite the fact that a dedicated group of
around “sixty” programmers might complete the
task within “fifty years”” if “nothing went into
the wastepaper basket”. Turing must already have
been accutely aware, from his work with the early
pilot ACE computer, that plenty goes in the waste
basket in the process of debugging computer pro-
grams.

3.2. Programming approach to AI and the
Machine Intelligence series

Turing’s influence on the development of AI
from the 1960s to the 1980s is particularly evi-
dent in the Machine Intelligence book series, which
acted as a vanguard of cutting edge AI research
during this period. The series Executive Editor,
Donald Michie has already been mentioned as
one of Turing’s Bletchley colleagues. Michie was
also the founder of Europe’s first Department of
Artificial Intelligence in the 1960s in Edinburgh,
and later also founded the Turing Institute (an

4 S. Muggleton / Turing and the development of AI

AI research institute) in the 1980s in Glasgow.
Michie specifically chose topics for the Machine
Intelligence workshops which were closely related
to those which he and Jack Good had discussed
with Turing during the war. Indeed Jack Good
was a frequent contributor to the series on Turing-
inspired topics such as Computer Chess [14]. To
open the Machine Intelligence 5 volume Michie se-
lected “Intelligent machinery” [44], a previously
unpublished article, in which Turing discussed the
idea of designing intelligent robots which could
“roam the countryside” and learn from their expe-
rience.

Turing’s Version 1 Programming approach to
Artificial Intelligence was the dominating paradigm
for Artificial Intelligence research up until the mid-
1980s. Research during this period can largely be
divided into broad areas associated with 1) Rea-
soning, 2) Physical perception and 3) Physical ac-
tion.

Reasoning Simon and Newell’s General Prob-
lem Solver (GPS) [30] was an early and influ-
ential attempt to program a universal problem
solver which could be applied to a variety of for-
mal symbolic reasoning problems such as theo-
rem proving, geometry and chess playing. It was
clear that although GPS could solve simple prob-
lems, with more complex tasks, its reasoning was
rapidly swamped by the combinatorics of the
search. Throughout the 1960s-1980s a variety of
other more specific approaches were taken to the
problems of improving the efficiency of search (eg
[24,9]) and planning (eg [8,11,17]). Additionally a
variety of more special purpose techniques were de-
veloped for both theorem proving (eg [34,20]) and
chess playing (eg [38,14]).

During the same period, attempts to address
the difficulties, foreseen by Turing, of writing ef-
fective and efficient AI programs led to the rise of
a number of high-level languages. The methodolo-
gies on which these were based varied from the use
of λ-calculus (eg LISP) [21] to the development
of stack-based languages (eg POP1) [6] as well as
languages based on first-order predicate calculus
(eg Prolog) [46]. The approach of heuristic pro-
gramming, developed in systems such as Dendral
[4] and MYCIN [41], used constraints in the form
of rules to produce systems which could reason at
the level of human experts. These expert systems
became a key demonstrator for the achievements
of Artificial Intelligence in the early 1980s.

Physical perception The 1960s-1980s witnessed a
number of early and bold attempts to write pro-
grams which could recognise three-dimensional ob-
jects within a digital image (eg [19,3].) However,
these were generally limited to analysis of simple
polygons and it was unclear how they could be
extended to recognise real-world objects such as
trees, cars or people.

In the same period considerable advances were
made in natural language generation and under-
standing (eg [35,36,37]). Early systems directly ad-
dressed one of the key assumptions of Turing’s imi-
tation game, by supporting answering of questions
posed in natural language. However, just as with
the initial attempts at computer vision, these nat-
ural language systems were limited by the com-
plexity of grammars provided by their program-
mers.

Physical action As mentioned previously Tur-
ing [44] had discussed the idea of intelligent ma-
chines which could roam the countryside, learning
for themselves. Probably the best known mobile
robotics project from the early years was Stan-
ford’s Shakey project (1966-1972) [31]. By con-
trast, in the Edinburgh Freddy assembly robot
[2,1] the robot arm and associated digital camera
remained in a fixed position while a platform con-
taining sequentially assembled parts was directed
to move past it by the computer.

4. Version 2: AI by ab initio machine learning

In his 1950s paper Turing had already antici-
pated the difficulties of developing AI by manually
programming a digital computer. His suggested
remedy was that machines must learn in the same
way as a human child.

Instead of trying to produce a programme to
simulate the adult mind, why not rather try to
produce one which simulates the child’s? If this
were then subjected to an appropriate course
of education one would obtain the adult brain.
Presumably the child brain is something like
a notebook as one buys it from the station-
ers. Rather little mechanism, and lots of blank
sheets. (Mechanism and writing are from our
point of view almost synonymous.) Our hope
is that there is so little mechanism in the child
brain that something like it can be easily pro-

S. Muggleton / Turing and the development of AI 5

grammed. The amount of work in the educa-
tion we can assume, as a first approximation,
to be much the same as for the human child.

4.1. The ab initio Machine Learning movement
[1980s-1990s]

During the 1970s the success of the expert sys-
tems movement (see Section 3.2) became increas-
ingly stifled by the cost of involving experts in the
development and maintenance of large rule-based
systems. This problem became known as “Feigen-
baum’s bottleneck” [10]. However, early experi-
ments with Meta-Dendral [4], and later Michalski’s
Soy Bean expert system [23], showed that rules
could be automatically learned by machines from
observations. Moreover, Michalski demonstrated
that not only was this a more efficient method of
building and maintaining expert systems, but it
could also result in rules which were more accurate
than existing human experts. This resulted in the
start of a new series of workshops called Machine
Learning [22] led by Ryszard Michalski, Jaime Car-
bonell and Tom Mitchell. The workshops, which
later developed into the International Conference
on Machine Learning, were originally based on the
format of Donald Michie’s Machine Intelligence
workshops.

4.2. The limits of positive and negative examples

A common feature of systems developed within
the standard Machine Learning framework is that,
in Turing’s words, learning is conducted ab initio
(Turing’s phrase is from “blank sheets”) using a
set of vectors associated with positive and negative
classifications. Turing provides a mathematically-
inspired warning about such an approach.

The use of punishments and rewards can at
best be a part of the teaching process. Roughly
speaking, if the teacher has no other means of
communicating to the pupil, the amount of in-
formation which can reach him does not exceed
the total number of rewards and punishments
applied. By the time a child has learnt to re-
peat “Casabianca” he would probably feel very
sore indeed, if the text could only be discov-
ered by a “Twenty Questions” technique, every
“NO” taking the form of a blow.

Turing’s knowledge of information theory [39] had
led him to anticipate some of the limitations later
uncovered in the 1980s by Valiant’s theory of the
learnable [45]. That is, effective ab initio machine
learning is necessarily confined to the construction
of relatively small chunks of knowledge. However,
Valiant also demonstrated that the expected accu-
racy of the learned knowledge can be arbitrarily
high given sufficient examples. So, unfortunately
we have to return to Turing’s original question of
how to programme the 1012 bits of memory re-
quired to achieve human-level intelligence.

5. Version 3: AI using logic, probabilities,
learning and background knowledge

Turing’s answer to the problems which beset
ab initio machine learning follows immediately on
from the quote given in the previous Section.

It is necessary therefore to have some other
“unemotional” channels of communication. If
these are available it is possible to teach a ma-
chine by punishments and rewards to obey or-
ders given in some language, e.g., a symbolic
language. These orders are to be transmitted
through the “unemotional” channels. The use
of this language will diminish greatly the num-
ber of punishments and rewards required.

Turing’s claim is that by employing an “unemo-
tional” symbolic language it should be possible to
reduce the number of examples required for learn-
ing.

5.1. Logic-based learning with background
knowledge

The obvious question is the appropriate form
and function of the symbolic language to be em-
ployed. Again Turing’s suggestions follow immedi-
ately on from the last quote.

Opinions may vary as to the complexity which
is suitable in the child machine. One might
try to make it as simple as possible consistent
with the general principles. Alternatively one
might have a complete system of logical in-
ference “built in”. In the latter case the store
would be largely occupied with definitions and
propositions.

6 S. Muggleton / Turing and the development of AI

Alan Robinson’s introduction [34] of resolution-
based automatic theorem proving in 1965 led to
an explosion of interest in the use of first-order
predicate calculus as a representation for rea-
soning within AI systems. In line with Turing’s
idea of using “built-in” logical definitions, Gordon
Plotkin’s thesis [32] used resolution theorem prov-
ing as the context for investigating a form of ma-
chine learning which involves hypothesising logical
axioms from observations and background knowl-
edge. Within the era of Logic Programming [18]
in the 1980s, these early investigations by Plotkin
were taken up again by Shapiro [40] in the context
of using inductive inference for automatically re-
vising Prolog programs. However, it was not until
the 1990s that the school of Inductive Logic Pro-
gramming [25,26,28] started to investigate this ap-
proach in depth as a highly expressive Machine
Learning paradigm. A recent survey of the field
[29] points to the maturity of theory, implementa-
tion and applications in this area.

5.2. Uncertainty and probabilistic learning

Turing makes some interesting observations con-
cerning the uncertainty of learned rules.

Processes that are learnt do not produce a hun-
dred per cent certainty of result; if they did
they could not be unlearnt.

Over the last decade there has been increasing
interest in including probablities into Inductive
Logic Programming [33,12]. These probability val-
ues are used to give an indication of the uncer-
tainty of learned rules. Turing also makes the fol-
lowing point concerning the ephemeral nature of
learning.

The idea of a learning machine may appear
paradoxical to some readers. How can the rules
of operation of the machine change? They
should describe completely how the machine
will react whatever its history might be, what-
ever changes it might undergo. The rules are
thus quite time-invariant. This is quite true.
The explanation of the paradox is that the rules
which get changed in the learning process are
of a rather less pretentious kind, claiming only
an ephemeral validity.

It is in the nature of a Universal Turing machine
that it acts as a meta-logical interpreter. It is this
property which allows rules to be treated as data,
allowing them to be altered and updated. A recent
paper [27] by the author demonstrates that the
meta-interpretive nature of the Prolog Logic Pro-
gramming language can be used to efficiently sup-
port the introduction of auxilliary ‘invented‘’ pred-
icates and recursion within the context of learning
complex grammars.

6. The challenge of “super-criticality”

The previous sections indicate that many of the
issues which Turing discusses in the last section
of the paper have since been explored in the AI
literature. However, one of the Machine Learning
challenges which Turing mentions is still entirely
open.

Another simile would be an atomic pile of less
than critical size: an injected idea is to corre-
spond to a neutron entering the pile from with-
out. Each such neutron will cause a certain dis-
turbance which eventually dies away. If, how-
ever, the size of the pile is sufficiently increased,
the disturbance caused by such an incoming
neutron will very likely go on and on increas-
ing until the whole pile is destroyed. Is there
a corresponding phenomenon for minds, and is
there one for machines? There does seem to be
one for the human mind. The majority of them
seem to be ”subcritical,” i.e., to correspond in
this analogy to piles of subcritical size. An idea
presented to such a mind will on average give
rise to less than one idea in reply. A smallish
proportion are supercritical. An idea presented
to such a mind may give rise to a whole ”the-
ory” consisting of secondary, tertiary and more
remote ideas. Animals’ minds seem to be very
definitely subcritical. Adhering to this analogy
we ask, ”Can a machine be made to be super-
critical?”

Turing’s challenge to make a machine which is
“super-critical” seems to only makes sense in the
context of an extreme setting of the Version 3 ap-
proach (see Section 5) to Artificial Intelligence.
The situation in which a new observation “leads to
a theory consisting of secondary, tertiary and more
remote ideas” requires both an alert mind, but

S. Muggleton / Turing and the development of AI 7

also one which is abundantly stocked with relevant

background knowledge. Providing such abundant

background knowledge to a machine is challenging,

though the advent of the World-Wide-Web offers

an obvious source, as long as the available infor-

mation can be accessed for purposes of inductive

reasoning.

7. Conclusion

Turing closes the Mind paper with the following

statement.

We can only see a short distance ahead, but we

can see plenty there that needs to be done.

As the present article indicates, Turing’s vision

was far from myopic. Indeed he foresaw many of

the key issues which dominated Artificial Intelli-

gence research over the last fifty years. However,

it could still be argued that there has been no

convincing demonstration of a computer passing

the Turing test to date. Modern computers are

typically not well-equipped with deep natural lan-

guage facilities capable of playing the kind of par-

lour game which Turing describes. On the other

hand, when most people these days are faced with

an arcane (or even simple) question which they

cannot immediately solve they turn to the closest

computer or smart phone to find an answer. The

implicit assumption is that the collective power

of the World Web Web provides a greater degree

of intelligence than that provided by asking the

same question of whichever person is closest to

hand. Computers instantly search through volu-

minous encylopedias, find objects in images, learn

patterns of user behaviour and provide reasonable

translations of text in foriegn languages. Many of

the techniques used in these tasks grew out of the

research carried out by Artificial Intelligence labo-

ratories. We have Turing to thank not only for the

concept of the Universal Turing machine, which

gave rise to the computer industry, but also his

visions of intelligent machines, which inspired the

development of much of the software behind the

digital assistants which we find around us every-

where in the modern world.

Acknowledgements

The author would like to thank Donald Michie
and other colleagues for their inspiring discussions
on Alan Turing’s views on Machine Intelligence
and Machine Learning. The author would also like
to thank the Royal Academy of Engineering for
funding his present 5 year Research Chair.

References

[1] A.P. Ambler, H.G. Barrow, C.M. Brown, R.M.
Burstall, and R. J. Popplestone. A versatile system for
computer controlled assembly. Artificial Intelligence,
6(2):129–156, 1975.

[2] H.G. Barrow and S.H. Salter. Design of low-cost equip-
ment for cognitive robot research. In B. Meltzer and
D. Michie, editors, Machine Intelligence 5, pages 555–

566. Edinburgh University Press, 1969.

[3] H.G. Barrow and J.M. Tenenbaum. Interpreting line
drawings as three-dimensional surfaces. Artificial In-

telligence, 17:75–116, 1981.

[4] B. Buchanan, E. Feigenbaum, and N. Sridharan.
Heuristic theory formation: data interpretation and
rule formation. In B. Meltzer and D. Michie, editors,
Machine intelligence 7, pages 267–290. Edinburgh Uni-
versity Press, 1972.

[5] A. Church. An unsolvable problem of elementary num-
ber theory. American Journal of Mathematics, 58:345–

363, 1936.

[6] E. Dale and D. Michie. Pop-1: an on-line language.
1968.

[7] D. Davies. The Bombe a remarkable logic machine.

Cryptologia, 23(2):108–138, 1999.

[8] J.E. Doran. Planning and robots. In B. Meltzer and
D. Michie, editors, Machine Intelligence 5, pages 519–

532. Edinburgh University Press, 1969.

[9] E.W. Elcock and D. Michie. Achieving several goals
simultaneously. In E.W. Elcock and D. Michie, editors,
Machine Intelligence 8, pages 94–136. Ellis Horwood,

Edinburgh, 1977.

[10] E.A. Feigenbaum. Themes and case studies of knowl-
edge engineering. In D. Michie, editor, Expert Systems

in the Micro-electronic Age, pages 3–25. Edinburgh
University Press, Edinburgh, 1979.

[11] R. Fikes and N. Nilsson. Strips: a new approach to
the application of theorem proving to problem solving.
Artificial Intelligence, 2:189–208, 1971.

[12] L Getoor and B. Taskar, editors. Introduction to Sta-

tistical Relational Learning. MIT Press, Cambridge,

Massachusetts, 2007.

[13] K. Gödel. Über formal unentscheidbare Sätze der Prin-
cipia Mathematica und verwandter System I. Monats.

Math. Phys., 32:173–198, 1931.

8 S. Muggleton / Turing and the development of AI

[14] I.J. Good. Analysis of the machine chess game. In
B. Meltzer and D. Michie, editors, Machine Intelli-

gence 4, pages 267–270. Edinburgh University Press,

1969.

[15] J. Good, D. Michie, and T. Geoffrey. General re-
port on Tunny: with emphasis on statistical methods.
Bletchley Park Report HW 25/4, HW 25/5, UK Public
Records Office, London, 1945.

[16] A. Hodges. The enigma of intelligence. Unwin Paper-
backs, Hemel Hempstead, 1985.

[17] K. Konolige. A first-order formalisation of knowledge
and action for a multi-agent planning system. In J.E.

Hayes, D. Michie, and Y-H Pao, editors, Machine In-

telligence 10, pages 41–72. Ellis Horwood, Chichester,
UK, 1982.

[18] R.A. Kowalski. Logic for Problem Solving. North Hol-

land, 1980.

[19] L.G.Roberts. Machine Perception of Three-

Dimensional Solids. Garland Publishing, New York,
1963.

[20] D. Luckham. The resolution principle in theorem-

proving. In N.L. Collins and D. Michie, editors, Ma-

chine Intelligence 1, pages 47–61. Oliver and Boyd,
Edinburgh, 1967.

[21] J. McCarthy. Recursive functions of symbolic ex-

pressions and their computation by machine, part i.

CACM, 3(4):184–195, 1960.

[22] R.S. Michalski. A theory and methodology of in-
ductive learning. In R. Michalski, J. Carbonnel, and

T. Mitchell, editors, Machine Learning: An Artificial

Intelligence Approach, pages 83–134. Tioga, Palo Alto,
CA, 1983.

[23] R.S Michalski and R.L. Chilausky. Learning by being

told and learning from examples: an experimental com-

parison of the two methods of knowledge acquisition
in the context of developing an expert system for soy-
bean disease diagnosis. International Journal of Pol-

icy Analysis and Information Systems, 4(2):125–161,
1980.

[24] D. Michie. Strategy-building with the graph traverser.
In N.L. Collins and D. Michie, editors, Machine Intel-

ligence 1, pages 135–152. Oliver and Boyd, Edinburgh,
1967.

[25] S.H. Muggleton. Inductive Logic Programming. New

Generation Computing, 8(4):295–318, 1991.

[26] S.H. Muggleton, editor. Inductive Logic Programming.

Academic Press, 1992.

[27] S.H. Muggleton, D. Lin, D. Pahlavi, and
A. Tamaddoni-Nezhad. Meta-interpretive learning:
application to grammatical inference. In Proceedings

of the 22nd International Conference on Inductive

Logic Programming, 2012. To appear.

[28] S.H. Muggleton and L. De Raedt. Inductive logic pro-
gramming: Theory and methods. Journal of Logic Pro-

gramming, 19,20:629–679, 1994.

[29] S.H. Muggleton, L. De Raedt, D. Poole, I. Bratko,
P. Flach, and K. Inoue. ILP turns 20: biography and
future challenges. Machine Learning, 86(1):3–23, 2011.

[30] A. Newell, J.C Shaw, and H.A. Simon. Report on a
general problem-solving program. In Proceedings of the

International Conference on Information Processing,

pages 256–264, 1959.

[31] N.J. Nilsson. Shakey the robot. Technical Note 323,
SRI International, 1984.

[32] G.D. Plotkin. Automatic Methods of Inductive Infer-

ence. PhD thesis, Edinburgh University, August 1971.

[33] L. De Raedt, P. Frasconi, K. Kersting, and S.H. Mug-
gleton, editors. Probabilistic Inductive Logic Program-

ming. Springer-Verlag, Berlin, 2008. LNAI 4911.

[34] J.A. Robinson. A machine-oriented logic based on

the resolution principle. JACM, 12(1):23–41, January
1965.

[35] Isard S. and Longuet-Higgins H.C. Question-answering
in english. In B. Meltzer and D. Michie, editors, Ma-

chine Intelligence 6, pages 243–254. Edinburgh Uni-
versity Press, 1971.

[36] E. Sandewall. Representing natural language informa-
tion in predicate calculus. In B. Meltzer and D. Michie,
editors, Machine Intelligence 6, pages 255–280. Edin-

burgh University Press, 1971.

[37] R.C. Schank and G. Dejong. Purposive understanding.
In J.E. Hayes, D. Michie, and L.I. Mikulich, editors,
Machine Intelligence 9, pages 459–465. Ellis Horwood,

1979.

[38] J.J. Scott. A chess-playing program. In B. Meltzer and
D. Michie, editors, Machine Intelligence 4, pages 255–
266. Edinburgh University Press, Edinburgh, 1969.

[39] C.E. Shannon. A mathematical theory of communica-
tion. Bell System Technical Journal, 27:379–423, 1948.

[40] E.Y. Shapiro. Algorithmic program debugging. MIT
Press, 1983.

[41] E.H. Shortliffe and B. Buchanan. A model of inex-

act reasoning in medicine. Mathematical Biosciences,
23:351–379, 1975.

[42] A. Turing. Computing machinery and intelligence.
Mind, 59(236):435–460, 1950.

[43] A.M. Turing. On computable numbers, with an ap-

plication to the entscheidungsproblem. Proceedings of

the London Mathematical Society, 42:230–265, 1936.

[44] A.M. Turing. Intelligent machinery. In B. Meltzer
and D. Michie, editors, Machine Intelligence 5, pages

3–23. Edinburgh University Press, Edinburgh, 1969.
Written in September 1947 and submitted in 1948 to
the National Physical Laboratory.

[45] L.G. Valiant. A theory of the learnable. Communica-

tions of the ACM, 27:1134–1142, 1984.

[46] D.H.D Warren, L.M. Pereira, and F. Pereira. Prolog
- the language and its implementation compared with
lisp. ACM SIGART Bulletin, 64:109–115, 1977.

