Meta-Interpretive Learning: achievements and challenges

Stephen H. Muggleton

Imperial College London, UK

Abstract. This invited talk provides an overview of ongoing work in a new subarea of Inductive Logic Programming known as Meta-Interpretive Learning.

1 Introduction

Meta-Interpretive Learning (MIL) [12] is a recent Inductive Logic Programming [7, 13, 14] technique aimed at supporting learning of recursive definitions. A powerful and novel aspect of MIL is that when learning a predicate definition it automatically introduces sub-definitions, allowing decomposition into a hierarchy of reuseable parts. MIL is based on an adapted version of a Prolog meta-interpreter. Normally such a metainterpreter derives a proof by repeatedly fetching first-order Prolog clauses whose heads unify with a given goal. By contrast, a meta-interpretive learner additionally fetches higher-order meta-rules whose heads unify with the goal, and saves the resulting metasubstitutions to form a program. This talk will overview theoretical and implementational advances in this new area including the ability to learn Turing computabale functions within a constrained subset of logic programs, the use of probabilistic representations within Bayesian meta-interpretive and techniques for minimising the number of meta-rules employed. The talk will also summarise applications of MIL including the learning of regular and context-free grammars, [11], learning from visual representions [3] with repeated patterns, learning string transformations for spreadsheet applications, [6], learning and optimising recursive robot strategies [1] and learning tactics for proving correctness of programs [5]. The paper concludes by pointing to challenges which remain to be addressed within this new area.

2 Simple worked example

Suppose we machine learn a set of kinship relations such as those in Figure 1. If examples of the ancestor relation are provided and the background contains only father and mother facts, then a system must not only be able to learn ancestor as a recursive definition but also simultaneously *invent* parent to learn these definitions.

Although the topic of Predicate Invention was investigated in early Inductive Logic Programming (ILP) research [8, 18] it is still seen as hard and under-explored [14]. ILP systems such as ALEPH [17] and FOIL [15] have no predicate invention and limited recursion learning and therefore cannot learn recursive grammars from example sequences. By contrast, in [11] definite clause grammars were learned with predicate

First-order	Metalogical substitutions
Examples	
$ancestor(jake, bob) \leftarrow$	N/A
$ancestor(alice, jane) \leftarrow$	
Background Knowledge	
$father(jake, alice) \leftarrow$	N/A
$mother(alice, ted) \leftarrow$	
Instantiated Hypothesis	
$father(ted, bob) \leftarrow$	metasub(instance, [father, ted, bob])
$father(ted, jane) \leftarrow$	metasub(instance, [father, ted, jane])
$p1(X,Y) \leftarrow father(X,Y)$	metasub(base, [p1, father])
$p1(X,Y) \leftarrow mother(X,Y)$	metasub(base, [p1, mother])
$ancestor(X, Y) \leftarrow p1(X, Y)$	metasub(base, [ancestor, p1])
$ancestor(X, Y) \leftarrow p1(X, Z),$	metasub(tailrec, [ancestor, p1, ancestor])
ancestor(Z, Y)	

Fig. 1: Kinship example. p1 invented, representing parent.

invention using Meta-Interpretive Learning (MIL). MIL [9, 10, 6] is a technique which supports efficient predicate invention and learning of recursive logic programs built as a set of metalogical substitutions by a modified Prolog meta-interpreter (see Figure 2) which acts as the central part of the ILP learning engine. The meta-interpreter is provided by the user with *meta-rules* (see Figure 3) which are higher-order expressions describing the forms of clauses permitted in hypothesised programs. As shown in Figure 3 each meta-rule has an associated Order constraint, which is designed to ensure termination of the proof. The meta-interpreter attempts to prove the examples and, for any successful proof, saves the substitutions for existentially quantified variables found in the associated meta-rules. When these substitutions are applied to the meta-rules they result in a first-order definite program which is an inductive generalisation of the examples. For instance, the two examples shown in the upper part of Figure 1 could be proved by the meta-interpreter in Figure 2 from the Background Knowledge BK by generating the Hypothesis H using the Prolog goal

 \leftarrow prove([ancestor, jake, bob], [ancestor, alice, jane], BK, H).

Generalised meta-interpreter
prove([], Prog, Prog).
prove([Atom As], Prog1, Prog2): -
metarule(Name, MetaSub, (Atom :- Body), Order),
Order,
$save_subst(metasub(Name, MetaSub), Prog1, Prog3),$
prove(Body, Prog3, Prog4),
prove(As, Prog4, Prog2).

Fig. 2: Prolog code for the generalised meta-interpreter. The interpreter recursively proves a series of atomic goals by matching them against the heads of meta-rules. After testing the Order constraint *save_subst* checks whether the meta-substitution is already in the program and otherwise adds it to form an augmented program. On completion the returned program, by construction, derives all the examples.

Name	Meta-Rule	Order
Instance	$P(X,Y) \leftarrow$	True
Base	$P(x,y) \leftarrow Q(x,y)$	$P \succ Q$
Chain	$P(x,y) \leftarrow Q(x,z), R(z,y)$	$P \succ Q, P \succ R$
TailRec	$P(x,y) \leftarrow Q(x,z), P(z,y)$	$P \succ Q,$
		$x\succ z\succ y$

Fig. 3: Examples of dyadic meta-rules with associated Herbrand ordering constraints. \succ is a predefined ordering over symbols in the signature.

H is constructed by applying the metalogical substitutions in Figure 1 to the corresponding meta-rules found in Figure 3. Note that p1 is an invented predicate corresponding to *parent*.

Completeness of SLD resolution ensures that *all* hypotheses consistent with the examples can be constructed. Moreover, unlike many ILP systems, *only* hypotheses consistent with all examples are considered. Owing to the efficiency of Prolog backtracking MIL implementations have been demonstrated to search the hypothesis space 100-1000 times faster than state-of-the-art ILP systems [11] in the task of learning recursive grammars¹.

3 Vision applications

Figure 4 illustrates two applications in which MIL has been used to analyse images. The staircase learning in Figure 4a was based on data from Claude Sammut's group [4]. However, the original author's approach, using ALEPH was not entirely general since it does not involve recursion. Using MIL it was possible to learn a general recursive definition of a staircase using predicate invention. A staircase is represented as a set of ordered planes, where the background predicates *vertical* and *horizontal* describe

 $^{^1}$ $\mathrm{Metagol}_R$ and $\mathrm{Metagol}_{CF}$ learn Regular and Context-Free grammars respectively.

			4		▼					
	۰	۲			٠	٠	۲	۲	٠	۲
	-									٠
Statutes a		•	1		١		•			
a) Staircase			t) Re	gular	poly	hedr	a		

Fig. 4: MIL vision applications: a) learning a recursion definition of a staircase from a single image [11] and b) learning definition relating regular polygons [3].

stair(X,Y) := a(X,Y).
stair(X,Y) := a(X,Z), stair(Z,Y).
a(X,Y) :- vertical(X,Z), horizontal(Z,Y).

Fig. 5: Definition of stiarcase learned in 0.08s on a laptop from single image. Note Predicate invention and recursion.

adjacent planes. The resulting hypothesis is shown in Figure 5, where a is an invented predicate corresponding to *step*. Due to its recursive form, this definition has shorter description length than those found by ALEPH. It is also general in its applicability and easily understood.

4 Challenges

A number of open challenges exist for Meta-Interpretive Learning. These include the following.

- **Generalise beyond Dyadic logic.** The dyadic fragment of Prolog has provided an efficient approach to selecting a compact and efficient universal set of metarules [2] for MIL. However, many Prolog programs are more natural to represent when represented with more than two arguments.
- **Deal with classification noise.** Most data sources for machine learning contain both classification and attribute noise. We are presently developing variants of the Metagol system which act robustly in the faace of such noise.
- Active learning. Most forms of machine learning are *passive* in the sense that they take a given training data set and generate a model. Active learning involves proposing and testing instances which are classified either by a user of by carrying out experiments in the real world. We are developing probabilistic variants of Meta-Interpretive Learning [10] which could be adapted for efficient Active Learning.
- **Efficient problem decomposition.** Finding efficient ways of decemposing the definitions in MIL is one of the hardest open problems in the field.
- **Meaningful hypotheses.** In ongoing work [16] we are investigating the issues which are most important for improving the understandability of learned programs.

References

- Cropper, A., Muggleton, S.: Learning efficient logical robot strategies involving composable objects. In: Proceedings of the 24th International Joint Conference Artificial Intelligence (IJCAI 2015). pp. 3423–3429. IJCAI (2015), http://www.doc.ic.ac.uk/shm/Papers/metagolo.pdf
- Cropper, A., Muggleton, S.: Logical minimisation of meta-rules within meta-interpretive learning. In: Proceedings of the 24th International Conference on Inductive Logic Programming. pp. 65–78. Springer-Verlag (2015), http://www.doc.ic.ac.uk/šhm/Papers/minmeta.pdf, INAI 9046
- Dai, W.Z., Muggleton, S., Zhou, Z.H.: Logical Vision: Meta-interpretive learning for simple geometrical concepts. In: Late Breaking Paper Proceedings of the 25th International Conference on Inductive Logic Programming. pp. 1–16. CEUR (2015), http://ceur-ws.org/Vol-1636
- Farid, R., Sammut, C.: Plane-based object categorization using relational learning. ILP2012 MLJ special issue (2012)
- Farquhar, C., Cropper, G.G.A., Muggleton, S., Bundy, A.: Typed meta-interpretive learning for proof strategies. In: Short Paper Proceedings of the 25th International Conference on Inductive Logic Programming. National Institute of Informatics, Tokyo (2015), http://www.doc.ic.ac.uk/Shm/Papers/typemilproof.pdf
- Lin, D., Dechter, E., Ellis, K., Tenenbaum, J., Muggleton, S.: Bias reformulation for one-shot function induction. In: Proceedings of the 23rd European Conference on Artificial Intelligence (ECAI 2014). pp. 525–530. IOS Press, Amsterdam (2014), http://www.doc.ic.ac.uk/shm/Papers/metabias.pdf
- Muggleton, S.: Inductive Logic Programming. New Generation Computing 8(4), 295–318 (1991), http://www.doc.ic.ac.uk/šhm/Papers/ilp.pdf
- Muggleton, S., Buntine, W.: Machine invention of first-order predicates by inverting resolution. In: Proceedings of the 5th International Conference on Machine Learning. pp. 339–352. Kaufmann (1988), http://www.doc.ic.ac.uk/šhm/Papers/cigol.pdf
- Muggleton, S., Lin, D.: Meta-interpretive learning of higher-order dyadic datalog: Predicate invention revisited. In: Proceedings of the 23rd International Joint Conference Artificial Intelligence (IJCAI 2013). pp. 1551–1557 (2013), http://www.doc.ic.ac.uk/šhm/Papers/metagold.pdf
- Muggleton, S., Lin, D., Chen, J., Tamaddoni-Nezhad, A.: Metabayes: Bayesian metainterpretative learning using higher-order stochastic refinement. In: Zaverucha, G., Costa, V.S., Paes, A.M. (eds.) Proceedings of the 23rd International Conference on Inductive Logic Programming (ILP 2013). pp. 1–17. Springer-Verlag, Berlin (2014), http://www.doc.ic.ac.uk/shm/Papers/metabayeslong07.pdf, INAI 8812
- Muggleton, S., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive learning: application to grammatical inference. Machine Learning 94, 25–49 (2014), http://www.doc.ic.ac.uk/shm/Papers/metagolgram.pdf
- Muggleton, S., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order dyadic datalog: Predicate invention revisited. Machine Learning 100(1), 49–73 (2015), http://www.doc.ic.ac.uk/šhm/Papers/metagolDMLJ.pdf
- Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods. Journal of Logic Programming 19,20, 629–679 (1994), http://www.doc.ic.ac.uk/šhm/Papers/lpj.pdf
- Muggleton, S., Raedt, L.D., Poole, D., Bratko, I., Flach, P., Inoue, K.: ILP turns 20: biography and future challenges. Machine Learning 86(1), 3–23 (2011), http://www.doc.ic.ac.uk/šhm/Papers/ILPturns20.pdf
- 15. Quinlan, J.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)

- Schmid, U., Zeller, C., Besold, T., Tamaddoni-Nezhad, A., Muggleton, S.: How does predicate invention affect human comprehensibility? In: Russo, A., Cussens, J. (eds.) Proceedings of the 26th International Conference on Inductive Logic Programming (ILP 2016). Springer-Verlag, Berlin (2016), http://www.doc.ic.ac.uk/šhm/Papers/compinv.pdf, in Press
- 17. Srinivasan, A.: The ALEPH manual. Machine Learning at the Computing Laboratory, Oxford University (2001)
- Stahl, I.: Constructive induction in inductive logic programming: an overview. Tech. rep., Fakultat Informatik, Universitat Stuttgart (1992)