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Abstract— We present a dense volumetric SLAM framework
that uses an octree representation for efficient fusion and
rendering of either a truncated signed distance field (TSDF)
or occupancy map. The primary aim of this work is to use
one single representation of the environment that can be used
not only for robot pose tracking, and high-resolution mapping,
but seamlessly for planning. We show that our highly efficient
octree representation of space fits SLAM and planning purposes
in a real-time control loop. In a comprehensive evaluation, we
demonstrate dense SLAM accuracy and runtime performance
on-par with flat hashing approaches when using TSDF-based
maps, and considerable speed-ups when using occupancy map-
ping compared to standard occupancy maps frameworks. Our
SLAM system can run at 10-40 Hz on a modern quadcore CPU,
without the need for massive parallelisation on a GPU. We
furthermore demonstrate a probabilistic occupancy mapping
as an alternative to TSDF mapping in dense SLAM and show
its direct applicability to online motion planning, using the
example of Informed RRT*.

I. INTRODUCTION

In the past few years, SLAM research has progressed
at an unprecedented speed. The widespread availability of
commodity depth sensors fuelled a true paradigm shift from
sparse systems, in which typically the maps consisted of
sparse landmarks, to fully dense methods where essentially
the full scene geometry can be reconstructed. Among the
various dense SLAM systems, volumetric methods such as
KinectFusion [24] rapidly became popular given the high-
quality results achievable in real-time, comparable to what
is attainable with more complex, inherently offline recon-
struction methods such as [8][37]. At the same time, slightly
different map formulations have been proposed. While occu-
pancy mapping has been the de-facto standard in robotics to
plan motion, recent work in high-quality dense reconstruction
has recently proposed its adoption [21], reconciling the
reconstruction capabilities of signed distance functions with
the probabilistic rigour of occupancy grid mapping. From the
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Fig. 1: Example trajectory (green) for a multicopter Micro
Aerial Vehicle (MAV) computed with the Informed RRT*
planning algorithm (with smoothing) depicted on a fine-
grained occupancy map obtained by our SLAM system.

point of view of efficiency, volumetric maps scale poorly as
the resolution and area covered increases, implying that they
could not cope with environments larger than a modest size
office. A key observation is that large parts of the mapped
space are actually empty, hence most voxels do not hold any
significant geometric information. In this perspective, sparse
representations have been introduced to considerably reduce
the amount of voxels to be stored and processed. In the
literature we can distinguish two predominant approaches:
hierarchical data-structures, such as octrees [36] or N3 trees
[7], and flat hash-tables [26]. Although enormous speed-
ups have been demonstrated with hash-tables, performance
of tree based data-structures has not been very satisfac-
tory. However, hierarchical data-structures might be desirable
in different scenarios as they naturally allow for storing
information at different level of details and consequently
compress maps where values are constant. With this work
we aim at bridging this performance gap by providing an
efficient and generic fusion pipeline based on octrees. We
show that the inherent overhead that the rich hierarchical
structure implies is not prohibitive, while still providing a
complete spatial index of the mapped scene, which is useful
in many robotics applications, most prominently, planning.
In summary, our contributions consist of the following ele-
ments:

1) A dense volumetric SLAM framework with Iterative-
Closest-Point (ICP) tracking and fusion into an octree-
based map implementation based on Morton numbers.

2) We present an alternative to traditional TSDF-based
mapping that uses fully probabilistic occupancy map-
ping, which explicitly represents free space, for seam-



less integration with robotic planning.
3) We provide comprehensive evaluation on real-world

and synthetic datasets. We demonstrate accuracy on-
par with state-of-the-art volumetric SLAM pipelines
and runtime efficiency on-par with InfiniTAM [16]
when using TSDF maps, while showing substantial
speed-ups compared to de-facto standard frameworks
in occupancy mapping such as Octomap [15].

4) We show a prototype integration of our occupancy map
with Informed RRT* path planning demonstrating the
versatility of our framework in the robotic context.

The paper is organised as it follows. In Section II we
overview the most relevant related work on spatial indexing
for dense volumetric maps. Section III describes our opti-
mised octree data-structure. In Section IV we describe our
dense SLAM pipelines based on TSDF and occupancy maps.
The evaluation in Section V contains quantitative results
in terms of accuracy, timing and memory consumption,
including an example application to motion planning.

II. RELATED WORK

Real-time tracking and mapping algorithms play a central
role in many robotics and vision applications and hence have
been subject of extensive studies over the past three decades.
In this work, we focus on dense volumetric SLAM methods,
as they offer superior mapping capabilities compared to
sparse [18][22] or semi-dense methodologies [11]. The base
of our work is the seminal KinectFusion [24] algorithm,
where the mapped space is represented with a discrete trun-
cated signed distance field (TSDF) [10]. Although capable of
achieving impressive reconstruction results, methods based
on discrete voxel grids suffer of scalability issues as the
required memory and computation time grows cubically with
the resolution or space covered.

To overcome such limitations different solutions have been
proposed. In [34] and [29], a fixed size volume is shifted
in space as the camera moves and mapped areas that fall
outside the new covered area are converted to a compact
mesh representation. Another line of research focused on ex-
ploiting the inherent sparsity of the reconstructed geometry.
Spatial decomposition data-structures, such as octrees, N3

trees or kd-trees have been widely investigated and exploited
to accelerate computation in a variety of fields, ranging from
graphics [9], physics [4] or computational science [3]. In
the context of RGB-D volumetric SLAM, their first usage
dates back to [36], where a GPU-based octree is used to
store non-empty voxels. However, the speed-ups attained are
not particularly significant compared to KinectFusion and
furthermore the ray-casting strategy proposed is prone to
drift. Similarly, Steinbrucker et al. [31] fuse each depth frame
on a multi-scale octree optimised for CPU but rely on an
external SLAM system for camera tracking. Chen et al. [7]
propose a dynamic, GPU-based, N3 tree-structure, where N
is the branching factor for a node in the tree. Interestingly,
each level of the tree may have a different branching factor
and they empirically demonstrate that such strategy can bring
better performance compared to rigid space subdivision.

Internal Node

Root

Leaf Node

Blocks array

Fig. 2: Octree structure overview.

Nießner et al. [26] introduced a hashing-based algorithm
in which non-empty voxels are organised in spatially con-
tiguous macro-blocks and indexed via a flat hash table. This
approach is taken even further with InfiniTAM [16], where
speed-ups of an order of magnitude compared to previous
implementations are achieved. Hashing, however, could be
limiting when an explicit distinction between empty but seen
space and unseen space is required. This is not a problem in
case of truncated signed distance maps, as such distinction
does not arise, but in case of occupancy grids, where the map
is used for path planning purposes, keeping the distinction
explicit is required.

Occupancy maps are commonly used in robotic contexts
for path planning purposes. Frameworks as Octomap [15]
use hierarchical octrees to store and update occupancy prob-
abilities. However, as we discuss in Section IV-D, occupancy
maps cannot capture the exact surface boundaries and fur-
thermore there has not been enough focus on computational
performance, making the existing solution unsuitable for
real-time, incremental mapping. In a recent contribution by
Oleynikova et al. [27], path planning is performed on an
Euclidean Signed Distance Field (ESDF) incrementally built
from a TSDF representation. This is complementary to the
work presented in this paper, as we aim at providing a
flexible hierarchical framework which can work with any
map representations which supports the notion of empty
space as required in a robotics setting, without compromising
on flexibility or performance.

III. DATA STRUCTURE

In this section we describe the core architecture of our
octree data-structure on top of which we have built the
SLAM pipelines and the path-planning application described
in Section IV and V-C.

A. Core components

Our framework relies on the octree hierarchy shown in
Figure 2. Similarly to [26] and [16] we aggregate voxels at
the finest resolution into aggregated contiguous blocks of
parametric size, by default 83 voxels. This is in contrast
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Fig. 3: Morton codes and traversal ordering for a 2D grid.

to previous work on octrees [36], where the deepest level
stores individual voxels. In this perspective, the map simply
becomes a collection of unordered sparsely allocated voxel
blocks and the tree a spatial index of the scene that allows
the correct piece of data to be retrieved given its integer
coordinates. Optionally, internal nodes can carry data them-
selves, allowing for a space representation at multiple level of
details. In contrast to previous works, we do not assume any
particular fixed data-type, such as a signed distance function
or occupancy cells. Instead we provide a flexible type traits
mechanism to give full control to the application developer
over the field encoded in the octree. For maximum efficiency
we allocate internal nodes and aggregated voxel blocks on
a memory pool which ensure thread safe lock-free batch
allocations. We will discuss our allocation strategy in great
details in Section III-C.

B. Information access

Efficient tree traversal is achieved via Morton coding. A
Morton number can be thought of as a linear unrolling of a
n-dimensional coordinate. More specifically, given a cell in a
n-dimensional grid with integer coordinates (x1, x2, . . . , xn)
its associated Morton code is obtained interleaving the bits
from each coordinate into a single number. Figure 3 shows
an illustrative example of this concept on a two-dimensional
four-by-four grid. As we can see, interleaved bits from the
x and y coordinate form a unique code for each cell. A
crucial property of these numbers is that they not only
uniquely identify voxels in a regular grid, but that the higher
bits recursively represent the location of parent voxels in
a coarser grid, effectively specifying a full traversal of the
correspondent tree and implicitly defining its structure. As
an example, if we consider cell (x, y) = (2, 1) with its
associated code 0110, starting from the root we would first
descend to the top-right sub-grid (code 01) and then select
the child with code 10, i.e. our target pixel with code 0110.

C. Voxel blocks allocation

Our library targets real-time mapping applications, hence it
assumes a continuously growing mapped space. This implies
that the allocation of new voxel blocks in the hierarchy
must be performed extremely fast and with the lowest
overhead possible. Parallel tree allocation strategies have
been widely explored in the computer graphics domain as

hierarchical data-structures are common accelerators for ray-
tracing and collision detection algorithms [20], [13]. To
maximise parallelism in the tree construction, we adopt a
technique based on Morton numbers inspired by [13] and
[1]. We use a breadth-first top-to-bottom allocation which
takes full advantage of this numbering property. First, each
voxel to be allocated is associated with its Morton number
and the resulting list of keys is sorted. For each level
in the tree, we filter the key list by masking each code
with the appropriate bit-mask for the current level. The
bit-mask for a given level sets the bits corresponding to
finer subgrids to 0. This procedure will generate duplicate
keys which we eliminate with a compaction operation, as
illustrated in Figure 4. This, together with the fact that by
construction the structure to reach a given node would have
been allocated at a previous step, allows us to allocate all
the nodes in parallel without requiring any synchronisation
between threads. This technique still requires a lock-step
execution from one level to the next. However we found
its performance satisfactory, since the actual bottleneck is
the volumetric information update. More complex algorithms
that avoid the synchronisation step are found in the literature,
e.g. [17], if a faster allocation step is needed. Notice that,
after a transient initial phase, the number of voxel blocks
to be allocated per frame decreases considerably as new
blocks will most likely be required at the frame border or in
previously occluded regions.

D. Field interpolation

Iso-surface extraction algorithms, such as ray-casting and
marching cubes, rely heavily on repeated field sampling,
hence it is crucial to have efficient ways of querying the
underlying representation. To this purpose, our framework
provides optimised nearest neighbour and tri-linear interpo-
lation functions. Tri-linear interpolations requires the eight
discrete voxels surrounding the sampling points to be col-
lected. In a sparsely allocated grid this could be expensive
as several tree traversals are required to gather the desired
points. We limit such performance penalty by observing that
there is a finite number of access patterns which can occur.
First, if the point to be interpolated falls in the middle of
a voxel block, then all eight points will be local to that
block and hence only one tree traversal is required. The
other extreme case is when the point falls exactly on the
corner of a voxel block, in which case eight tree traversals
will be needed. There are six remaining configurations which
correspond to the case in which the sampling point is on
a voxel block edge along one or two dimension. In this
case the query order is particularly important as we should
insure as much locality as possible, since a bad ordering
might imply more tree traversals than actually needed. In
[16] this issue is addressed by caching the lastly accessed
block, but this still does not help if the gathering order jumps
from one block to another invalidating the cached block.
Instead, we precompute statically a traversal order for all
the possible configurations and at run-time we simply select
the optimal for the requested sampling point position. In this
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Fig. 4: Bit-masking the key-set at each allocation level, coloured boxes indicate duplicate codes.

way we guarantee the optimal reuse of tree traversals without
any caching and furthermore we eliminate the unnecessary
conditionals which a caching strategy implies.

IV. DENSE TRACKING AND MAPPING

We contribute with two dense volumentric SLAM
pipelines implemented with our octree library presented in
the previous sections. The first is the standard KinectFu-
sion [25] pipeline, where the world map is encoded in a
implicit truncated signed distance function (TSDF). Our
second pipeline instead is based on the occupancy mapping
framework introduced in [21], which we extend and refine
in order to make it suitable for incremental tracking and
mapping. In fact, we adopt the formulation of log-odds
widely used in traditional robotic occupancy mapping. While
the two mapping methods differ semantically, they both
implicitly represent surfaces as zero-crossings. Therefore,
the reconstruction pipelines share the same structure: i) a
tracking stage to perform frame-to-model alignment and
recover the camera pose, which includes ray-casting to
extract a synthetic point-cloud from the model; ii) a fusion
stage to integrate the new sensor data into the map.

A. Notation

We denote the camera pose relating the camera coordinate
frame C to the World coordinate frame W as TWC ∈ SE3,
short T and further indicate the respective time step k with
Tk. Rk, Vk and Nk denote the input raw depth, vertex
and normal maps, respectively. Three dimensional points
p = [px, py, pz, 1]T are generally expressed in their homo-
geneous coordinates. To ease the notation, we introduce the
function π(·) which performs dehomogenisation, perspective
projection and application of the intrinsics matrix. π−1(·)
denotes its inverse using the depth map. Finally, we use
u ∈ R2 to describe pixels in image frame.

B. Surface prediction and tracking

Different approaches are possible to track the camera
movement. KinectFusion adopts a variant of the well known
iterative closest point (ICP) [2] algorithm with point-to-
plane metric. Others, such as [6] and [5], have proposed
to align the new camera frame directly to the TSDF map,
demonstrating levels of accuracy on par with the current
state-of-the-art. While such techniques could be implemented
in our framework, in this work we opt for ICP alignment,
as it can be easily shared between the mapping approaches

discussed in Sections IV-C and IV-D. Hence, we minimise
the following energy function via Gauss-Newton:

Ek =
∑
u∈Ωk

‖(TkVk(u)−WV̂k−1(û))TWN̂k−1(û)‖2, (1)

where Ωk is the set of all pixels in image frame. û is the
pixel in the previous image corresponding to u in the current
image,

û = π(T−1
k−1Tkπ

−1(u)). (2)

WV̂k−1 and WN̂k−1 are the vertex and normal maps rep-
resented in the world frame rendered into the previous
camera. We extract both of them directly from the volumetric
representation via ray-casting. For each pixel in image frame,
we cast a ray and find the closest zero-crossing along the ray.
To speed-up this step, we exploit our octree data-structure to
prune the ray-casting range. We use a modified version of
the hierarchical algorithm described in [20] which allows us
to march a ray starting from the tree root and navigating the
branches till we reach the first intersected leaf node. We then
continue the ray marching performing tri-linear interpolation
only when field values are sufficiently close to the zero-
crossing. Once an intersection has been found, we compute
the surface gradient via central difference directly on the
volumetric representation.

C. Signed-distance function mapping

Before proceeding with the actual map update, it must
be assured that the portion of the volume affected by it
is allocated. So the first step is to infer from the current
depth frame which voxel blocks will be effectively updated.
A key observation is that TSDF fields encode significant
information only within the truncation region ±µ. In the
literature, different techniques have been proposed. [36] and
[7] sweep over the hierarchical grid projecting voxels from
coarse to fine grain resolution, marking which voxels fall
within truncation region of the current frame. A similar ap-
proach, proposed in [19], is to allocate all the blocks that fall
within the camera view-frustum bounding box. However this
technique significantly over-allocates and requires garbage
collection to deallocate voxels that fall outside the truncation
region. Instead, we choose to follow the ray-casting method
proposed in [26], [7]. For each pixel in the image frame, we
march a ray along the line of sight within the user specified µ
bandwidth enclosing the corresponding depth measurement.

Once the new parts of the scene have been allocated,
the measurement integration is done in the same fashion



as in [24]. Each voxel at position p is projected into the
current depth image Rk with known pose Tk and its TSDF
value Fk(p) from the corresponding depth measurement is
computed. Mathematically:

η = Rk(π(T−1
k p))− pz,

Fk(p) = min(1,
η

µ
) iff η ≥ −µ, (3)

The computed TSDF sample Fk(p) is then integrated in the
global TSDF by means of block averaging.

D. Occupancy mapping

TSDF mapping works extremely well for surface recon-
struction but, compared to occupancy grid mapping, it does
not come with a probabilistic interpretation and it cannot
properly capture information about mapped, yet empty space.
On the other hand, classic occupancy grid mapping is not
able to properly express the map geometry as the surface
boundaries are not well defined. Loop et al. [21] bridge this
gap by introducing a new occupancy mapping framework
in which the surface geometry is well defined and hence it
could be used for 3D reconstruction retaining at the same
time all the semantic information of an occupancy grid.
This is achieved by setting the surface boundary where the
occupancy probability transitions from less than 1

2 to greater
than 1

2 . The consistency of such estimate is guaranteed
by a b-spline noise model which allows to overcome both
theoretical and technical difficulties arising from standard
Gaussian noise. We refer to the original paper for further
discussion on its theoretical aspect.

While the proposed approach works well for static scenes
and a static multi-camera configuration, it is not well fit for
SLAM applications. One of the reasons is that the quadratic
b-spline noise model has finite support, implying that a single
outlier measurement would cause erroneous holes that could
never be recovered. This means that the formulation cannot
be used for SLAM, where incremental fusion into a persistent
map is desired and outliers will occur sooner or later. More-
over, dynamically changing environments cannot be properly
handled for the same reason. Given the above discussion, we
alter the formulation proposed in [21] to make it suitable for
SLAM and dynamically changing environments.

We start with the model for the true depth mr given a
noisy measurement zr adopted from [21], in the form of a
quadratic b-spline, defined as:

p(mr|zr) = q(s) =


1
16 (3 + s)2, if − 3 ≤ s ≤ −1,
1
8 (3− s2), if − 1 ≤ s ≤ 1,
1
16 (3− s)2, if 1 ≤ s ≤ 3,

0, otherwise.

(4)

where s := (mr − zr)/σr denotes the distance from the
camera centred around the true distance and normalised with
the standard deviation σr of the measurement. Importantly,
we can now set σr to be proportional to r2 corresponding to
more realistic triangulation-based depth camera noise model
than assuming it constant.

Fig. 5: Example occupancy probabilities along a ray using
the analytic formulation [21] (with a slightly unrealistically
large depth uncertainty for visualisation purposes).

We can proceed to derive the occupancy probabilities
P (Sr = 1|zr) along the ray as

P (Sr = 1|zr) =

∫ ∞
mr=0

P (Sr = 1|mr)p(mr|zr)dmr. (5)

Here, P (Sr = 1|mr) is modelled as zero in front of the
true surface, 1 from the true surface to 3σr behind, and then
followed by 0.5.

Conveniently, the above integral has an analytic solution

P (Sr = 1|zr) = h(s) = qcdf(s)−
1

2
qcdf(s− 3), (6)

with

qcdf(s) =



0, if s < −3,
1
48 (3 + s)3, if − 3 ≤ s ≤ −1,
1
2 + 1

24s(3 + s)(3− s), if − 1 < s < 1,

1− 1
48 (3− s)3, if 1 ≤ s ≤ 3,

1, if 3 < s.
(7)

We visualise an example of this per-ray occupancy “mea-
surement” function in Figure 5.

We can now use occupancy measurements ok(p) associ-
ated with the above values h(s) along every ray observing
depth for fusion into our octree-based map volume storing
occupancy values O(p) at each position p. We assume a
uniform prior of O0 = 1

2 . But rather than the multiplicative
update following direct application of Bayes’ theorem (as
used in [21]), we adopt the log-odds space, which is mathe-
matically equivalent, i.e. using the measurement log-odds lk
to update the values Lk−1 in the volume:

lk(p) = log
ok(p)

1− ok(p)
, (8)

Lk(p) = Lk−1(p) + lk(p), (9)

where L0 = log 0.5
1−0.5 = 0. A surface in log-odd space is

thus defined by the zero-crossing equivalently to the TSDF
formulation.

Since h(s) contains values of 0, which is neither desir-
able, since related outliers won’t be recovered, nor feasible



in the log-odds formulation, we clamp h to the interval
[Pmin, Pmax]. In our experiments, we choose the admissible
interval as [0.03, 0.97].

Our second contribution to the Bayesian fusion model is a
windowed update step which introduces uncertainty propor-
tionally to the time difference between subsequent updates,
in order to accommodate for otherwise unmodelled effects,
most importantly dynamic scene content and uncertainty of
the tracking. Specifically, we apply a moving average before
each measurement is fused into the map. Thus, our final
update rule is defined as:

L+
k−1 = Lk−1(p)

1

1 + ∆t
τ

, (10)

Lk(p) = L+
k−1(p) + lk(p), (11)

where ∆t is the time difference since the last update for
the current cell and τ is a time constant. In our experiments
we chose τ = 5sec. Note that this also acts as a forgetting
feature: when ∆t → ∞, O+

k−1(p) → 0.5. In other words,
we assume that if we have not updated a specific cell for a
long period of time, we don’t know its occupancy state.

V. EXPERIMENTAL EVALUATION

In this section we will detail our experimental results.
All our tests have been performed within the SLAMBench
framework [23] on a Skylake i7-6700HQ CPU with 16GB
of memory, Ubuntu 16.10 and frequency scaling disabled.
All the software has been compiled with GCC 5.4.1. All
the systems used in this evaluation have been configured
with 1cm voxel resolution at the finest level and with depth
only tracking – to ensure a fair comparison both in terms of
accuracy and computational performance.

A. Tracking accuracy TUM/ICL-NUIM

We evaluate the accuracy of our pipelines across two
widely used datasets, i.e. TUM RGB-D [32] and the ICL-
NUIM [14]. The former provides RGB-D sequences with tra-
jectory ground truth, estimated via a high frequency motion
capture system. Likewise, the latter provides synthetic RGB
and depth data, together with ground truth poses. The metric
chosen is the root mean square error (RMSE) of the absolute
trajectory error (ATE), using Euclidean distances between

ATE (m)
Dataset TSDF OFusion InfiniTAM
ICL LR 0 0.0113 0.0305 0.3052
ICL LR 1 0.0117 0.0207 0.0214
ICL LR 2 0.0040 0.0050 0.1725
ICL LR 3 0.7582 0.0786 0.4858
TUM fr1 xyz 0.0295 0.0293 0.0273
TUM fr1 floor × × ×
TUM fr1 plant × × ×
TUM fr1 desk 0.1030 0.0995 0.0647
TUM fr2 desk 0.0641 0.0902 0.0598
TUM fr3 office 0.0686 0.0604 0.0996

TABLE I: Absolute trajectory error (ATE) comparison be-
tween our TSDF fusion, occupancy mapping and InfiniTAM.
Crosses indicate tracking failure.

liv_traj_0 liv_traj_1 liv_traj_2 liv_traj_3
0

20

40

60

80

100

tim
e 

[m
s]

OFusion Fusion
OFusion Raycast
OFusion Remaining

TSDF Fusion
TSDF Raycast
TSDF Remaining

ITM Fusion
ITM Raycast
ITM Remaining

fr1_xyz fr1_desk fr2_desk fr3_desk
0

20

40

60

80

100

Fig. 6: Per-frame performance evaluation of InfiniTAM
(ITM), octree-based TSDF fusion (TSDF) and full octree-
based occupancy mapping (OFusion).

the ground truth positions and the corresponding estimated
positions [32]. For a fair comparison, we use the same
parameters throughout. For our occupancy mapping, we use
depth uncertainties proportional to the square of the distance
(σr = 4 cm at 2 m). Table I reports our experimental results.
We compare the two volumetric pipelines described in this
paper, denoted as TSDF and OFusion respectively, and com-
pare to the state-of-the-art volumetric pipeline InfiniTAM
[16]. This has been tested using the default tracker with depth
only tracking to ensure a fair comparison with our solution.
As we can see, our two pipelines obtain accuracy levels on
par with the state-of-the-art. Interestingly, our occupancy-
based fusion outperforms both TSDF and InfiniTAM in the
long ICL LR 3 and TUM fr3 office sequences. On some
sequences, all systems lose track completely, and on others,
at least some systems fail partly. Note that the extension to
use combined geometric and photometric tracking would be
straightforward, and we consider this as future work.

B. Runtime performance

Figure 6 reports the runtime performance of each pipeline
benchmarked in the previous section. For each implemen-
tation, we provide timings for the depth fusion and ray-
casting stage, plus an aggregated time for the rest of the
pipeline which accounts for preprocessing and tracking. It
is worth stressing that we are comparing fully engineered

Dataset TSDF OFusion
LR 0 7.67% 11.15%
LR 1 8.45% 13.68%
LR 2 13.77% 22.52%
LR 3 13.33% 17.68%

Dataset TSDF OFusion
fr1 xyz 1.95% 3.01%
fr1 desk 7.70% 8.81%
fr2 desk 10.15% 17.70%
fr3 office 12.50% 17.95%

TABLE II: Relative memory consumption compared to a pre-
allocated grid covering the same area at the same resolution.



pipelines which have very different code-bases, hence part
of the differences in runtime performance are attributable to
different implementation choices.

First, we want to highlight how our octree-based TSDF
mapping offers performance comparable or even superior to
the state-of-the-art InfiniTAM’s voxel hashing implementa-
tion. Note that apart from the voxel allocation and retrieval,
the two pipelines are in fact very similar in principle. Clearly,
the traversal and interpolation strategies described in Sections
III-B and III-D allow us to amortise the overall cost of
querying the tree. Admittedly, the occupancy grid mapping
formulation is more expensive. This is inherent to the method
itself as the b-spline sampling and the log-odd update is
more expensive than the simple weighted average performed
by the TSDF method. Furthermore, occupancy mapping has
to process a larger amount of information as empty-seen
space is explicitly stored and updated. Additionally, finding
the zero-crossing in ray-casting is more efficient in TSDF
compared to occupancy mapping, since the distance encoding
allows for efficient sampling step size selection.

We also benchmarked Octomap on the test sequences used
in this experiment set, configured with 5cm voxel size, but
we omitted these results from Figure 6 for visualisation
purposes. Mapping times per frame range between 338ms
(fr1 desk) to over 1500ms (fr2 desk). The large performance
gap compared to our pipeline is attributable to the slower
algorithm Octomap employs, i.e. ray-cast based measurement
integration, and a lack of a proper parallelisation strategy.
Oleynikova et al. [27] propose various optimisations for ray-
cast based map update and demonstrate interesting speed-
ups, but still requiring at least 60ms per scan at 5cm voxel
resolution. Notice that for use cases in which a coarser map
is suitable, other approaches are possible. Saarinen et al.
[30] demonstrate how using normal distribution transform
occupancy maps (NDT-OM) they are able to achieve com-
parable results to Octomap while using an 8 times coarser
grid, achieving 20 times faster measurement integration.

In Table II we show memory usage of our TSDF and
occupancy fusion maps relative to a statically allocated
grid, as used in the standard KinectFusion algorithm. As
expected, the sparse data-structure allows for considerable
savings in terms of memory consumption, even in case of
full occupancy mapping.

C. Path planning

As a use case, we have analysed the mapping framework in
a path planning application for a multicopter Micro Aerial
Vehicle (MAV), with the same 1cm finest map resolution.
We used THE OPEN MOTION PLANNING LIBRARY (OMPL)
[33] to generate collision-free paths in our occupancy-based
environment. We used Informed RRT* [12] for the straight-
line segment planning. Furthermore, we compared our Octree
implementation with the OCTOMAP LIBRARY [35]. The
times needed to find the first feasible path for an obstructed
2.83 m start-goal distance can be seen in Table III. They
were obtained on an Intel Core i7-6600U CPU at 2.60GHz,

time std dev min max
OFusion 12.6ms 14.6ms 4.29ms 109.6ms
Octomap 17.7ms 11.4ms 5.16ms 113.2ms

TABLE III: Timings for straight-line planning for a start-goal
distance of 2.83 metres averaged over 10,000 executions.

time std dev min max
OFusion 1.57ms 0.59ms 0.43ms 3.47ms
OctoMap 2.06ms 0.78ms 0.32ms 4.17ms

TABLE IV: Timings for the linear trajectory optimisation
averaged over 1,000 executions.

compiled on GCC version 5.4.0, averaged over 10,000 exe-
cutions.

Furthermore, we calculated a smooth trajectory from the
initial RRT* plans based on polynomial planning as de-
scribed in [28]. We fixed the start and goal position in both
mapping implementations and recorded the time needed to
linearly optimize a collision-free polynomial trajectory. The
timings averaged over 1,000 executions are listed in Table IV.
It can be seen in the recorded timings in Table III and
Table IV that the straight-line planning and the linear poly-
nomial trajectory optimisation is faster with our implemented
method.

For illustration, we have plotted an example trajectory into
a map rendering in Figure 1. These results confirm that our
octree-based occupancy map is at least as fast at handling
spatial queries as [35], the de-facto standard used in research
for robotic planning.

VI. CONCLUSION

In this paper we have presented an efficient octree-based
dense SLAM system. Apart from supporting TSDF mapping,
we contribute an extension of fully probabilistic fine-grained
occupancy mapping: the occupancy map is not only used
for camera tracking, but enables real-time, in-the-loop path
planning on the very same representation. We experimentally
evaluate our formulation in a variety of sequences, demon-
strating state-of-the-art accuracy and performance results,
including a comparison. We furthermore demonstrated the
capabilities for planning using a probabilistic planner and
trajectory smoothing. Importantly, efficient spatial queries
as needed for planning are intrinsically not supported by
flat hashing architectures as employed by competing SLAM
systems. We thus believe this work will help to further bridge
the gap between SLAM and down-stream operations and
increase related efficiency by sharing a map representation
of wider usefulness.

In future work, we will extend our framework in two di-
rections. First, we will explore more aggressive optimisations
to reach better run-time performance in case of occupancy
mapping. Second, we will integrate our solution on drone
platforms to performing fast, but safe navigation in cluttered
environments.
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[26] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3d reconstruction at scale using voxel hashing,” ACM Transactions on
Graphics (TOG), 2013.

[27] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto,
“Voxblox: Incremental 3d euclidean signed distance fields for on-board
mav planning,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017.

[28] C. Richter, A. Bry, and N. Roy, Polynomial Trajectory Planning for
Aggressive Quadrotor Flight in Dense Indoor Environments. Springer
International Publishing, 2016, pp. 649–666.

[29] H. Roth and M. Vona, “Moving volume kinectfusion,” in Proceedings
of the British Machine Vision Conference. BMVA Press, 2012, pp.
112.1–112.11.

[30] J. P. Saarinen, H. Andreasson, T. Stoyanov, and A. J.
Lilienthal, “3d normal distributions transform occupancy
maps: An efficient representation for mapping in dynamic
environments,” The International Journal of Robotics Research,
vol. 32, no. 14, pp. 1627–1644, 2013. [Online]. Available:
https://doi.org/10.1177/0278364913499415

[31] F. Steinbrucker, J. Sturm, and D. Cremers, “Volumetric 3d mapping in
real-time on a cpu,” in Robotics and Automation (ICRA), 2014 IEEE
International Conference on, May 2014, pp. 2021–2028.

[32] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in Proc. of the
International Conference on Intelligent Robot Systems (IROS), Oct.
2012.
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