
Real-Time Height Map Fusion using Differentiable Rendering

Jacek Zienkiewicz, Andrew Davison and Stefan Leutenegger
Imperial College London, UK

Abstract— We present a robust real-time method which
performs dense reconstruction of high quality height maps
from monocular video. By representing the height map as a
triangular mesh, and using efficient differentiable rendering
approach, our method enables rigorous incremental probabilis-
tic fusion of standard locally estimated depth and colour into
an immediately usable dense model. We present results for
the application of free space and obstacle mapping by a low-
cost robot, showing that detailed maps suitable for autonomous
navigation can be obtained using only a single forward-looking
camera.

I. INTRODUCTION

Advancing commodity processing power, particularly
from GPUs, has enabled various recent demonstrations of
real-time dense reconstruction from monocular video. Usu-
ally the approach has been to concentrate on high quality
multi-view depth map reconstruction, and then fusion into
a generic 3D representation such as a TSDF, surfel cloud
or mesh. Some of the systems presented in this vein have
been impressive, but we note that there are few examples
of moving beyond showing real-time dense reconstruction
towards using it, in-the-loop, in applications. The live recon-
structions are often in a form which needs substantial further
processing before they could be useful for any in-the-loop
use such as path planning or scene labelling.

In this paper, we argue that real-time dense reconstruc-
tion can be made much more useful by adopting a more
restrictive, task-oriented model and performing incremental
fusion directing in this form. In particular, our own interest
is low-cost robotics. There are strong economic, power and
design reasons which would make it advantageous for a
platform such as a small cleaning robot to have a full
navigation solution based on monocular vision. While there
are now practical robots such as the Dyson 360 Eye which
perform localisation using sparse visual SLAM, free-space
finding and obstacle avoidance on this and other similar
robots is achieved using additional specialised sensors. The
default view going forward is that depth cameras or stereo
systems will be needed for high quality local perception. To
challenge this view, in this paper we show that a generative
approach to height mapping can be used in real-time to build
dense surface reconstructions suitable for online robot path
planning. The only input we use is monocular video from a
front-facing RGB camera looking down at an angle towards
the floor.

Research presented in this paper has been supported by Dyson Technol-
ogy Ltd.

Fig. 1: Left: an example input monocular RGB image and
motion stereo depth map which are inputs to our fusion
algorithm. Right: output RGB and depth image from dif-
ferentiable renderer.

Our core representation for reconstruction is a coloured
height map defined as a triangular mesh on a regular grid.
At each new video frame, we first estimate a depth map using
a simple multi-view stereo algorithm. Next, given a current
estimate of the surface parameters, we perform a predictive
colour and depth rendering and compared it with observed
image and depth map. The errors between the observations
and predictions together with the gradients calculated using
differentiable rendering are used for iterative optimisation
of the parameters of each observed surface cell. After the
optimisation terminates, we fuse the current measurement
by updating the per-triangle quadratic cost functions, our
representation of uncertainty and priors that summarise the
information contained in the previous images.

Because our reconstruction is already in the height map
representation which is directly relevant to ground robotics,
simple thresholding of the mean height is sufficient to gener-
ate usable quantities such as the drivable free-space area or a
classification of walls, furniture and small obstacles based on
colour and height. To prove that this is a genuinely practical
way to use real-time dense mapping, we present results from
a mobile robot platform which moves through and maps a
variety of typical indoor environments. We also present a
comparison against a generic 3D mapping technique that
relies on high quality depth maps.

II. RELATED WORK

Real-time dense tracking and mapping, using parallel
computation from GPUs, is an increasingly practical tech-
nique since the publication of KinectFusion [18], but this
and the majority of other methods, e.g. [13], [26], have
required depth camera input. Monocular RGB methods like
DTAM [19] have generally not been nearly as robust. Depth
reconstruction from RGB requires dense multi-view stereo
matching, which is computationally demanding and has
accuracy which varies widely depending on lighting levels
and the amount of texture in a scene. For this reason,
the most usable monocular SLAM systems are still those
which performance sparse or semi-dense reconstruction only,
e.g. [5], [17]. Some demonstrations have been made of
the use of dense monocular vision for in-the-loop robotic
control [7], but so far in simplified or artificially highly
textured settings.

To address the challenges of efficiency and robustness,
it is often advantages to take a more application-directed
approach to the representation and fusion, and use e.g. height
maps. There exists significant prior work on height map
estimation both in the field of robotics [10], [14] as well as
computer vision [2]. Height maps were successfully applied
to terrain mapping and mobile robot navigation using laser
scanners [21], [27], as well as stereo and depth cameras [8],
[9], [28]. However, typically height map fusion approaches
are data-driven and rely on heuristics to solve the data asso-
ciation problem, e.g. in [6] only the highest measurement per
height cell is fused into the height map, whereas remaining
values are discarded. Furthermore, in order to make the
fusion computationally tractable the dependencies between
the individual elements of the map are often ignored.

Very relevant to our approach is the early work of
Cernuschi-Frias et al. [3], as well as the approach by
Chesseman et al. [4] and the results on Bayesian shape
recovery from NASA [12], [23], [24]. The key characteristic
of these methods is that the estimation is not performed in
images domain (e.g. in stereo matching search is performed
along epipolar lines) but directly in parameters space of
the model. The surface reconstruction is formulated as an
inverse problem: given a set of images infer the most
probably surface that could have generated them. Surface
is typically modelled using parametrised shapes or on a
discrete uniform grid, and Bayes theorem is used to derive
a formal solution to this problem. Hung et al. [11] extended
the framework and derived a sequential Bayesian estimator
for a parametrised surface model. Similar to our algorithm,
information extracted from previous images is summarised
in a quadratic form. However, compared to the described
approaches which infer the surface properties directly from
RGB images, we estimate the surface more robustly by
rendering and fusing the depth maps.

Our method is also inspired by OpenDR [15], where Loper
and Black demonstrated how the standard computer graphics
rendering pipeline can be use to obtain generative models
suitable for solving various computer vision problems.

Fig. 2: An overview of our system. Given a sequence
of images from a single moving camera we continuously
estimate the camera motion and use it for a depth estimation.
Using differentiable rendering, the calculated depth maps are
fused into a height map represented by a triangular mesh.

III. METHOD

Given a sequence of images from a camera moving over
a scene, our goal is to recursively estimate the camera
trajectory and a surface model defined as a fixed-topology
triangular mesh above a regular grid. To simplify the prob-
lem, we apply the common separation of camera tracking and
mapping: in a first step, only the camera motion is estimated,
which is subsequently treated as a fixed quantity. We track
camera frame-to-frame motion precisely using dense image
alignment [19] in a similar fashion to [30]. Subsequently
we perform straightforward depth map estimation using a
small subset (5-10) of most recent frames and a multi-view
stereo algorithm based on a plane sweep and cost volume
filtering [22]. The depth maps are feed into our incremental
mapping module in a loosely-coupled approach. Rather than
spending the effort on improving and denoising the depth
maps, our system allocates computational resources to the
fusion process. Note that our fusion approach is more general
and can be used in conjunction with any camera tracking (e.g.
ORB-SLAM [17]) and depth estimation method (e.g. stereo
or Kinect camera).

Incremental reconstruction is formulated as a recursive
nonlinear optimisation problem, where as each new frame
arrives we compare it with a generative rendering of our
current surface estimate and make an appropriate Bayesian
update. In this respect, we formulate nonlinear residuals
as the difference between the (inverse) depths as measured
in the current frame and the (inverse) depth predictions
generated by the rendered model; at the same time, we
compare predicted colours and rendered colours. In order to
obtain a recursive formulation that allows us to keep all past
measurements, we linearise these error terms and keep them
as priors that are jointly minimised with the residuals of the
current frame. Fig. 2 shows an overview of our method.

An important element of our method which enables highly
efficient operation is a differentiable renderer implemented
within the standard OpenGL computer graphics pipeline.

Given a current surface model and a camera pose it can
render a predicted image and depth for each pixel together
with the derivatives of these quantities with respect to the
model parameters at almost no extra computational cost.

The key strengths of our method are as follows:
• Probabilistic interpretation and a generative model. We

perform incremental Bayesian fusion using a per trian-
gle information filter. The approach is optimal up to
linearisation errors and discards no information, while
the computational complexity is bounded.

• Scalability both in terms of image resolution and scene
representation. Using current GPUs, rendering can be
done extremely efficiently, and calculating derivatives
comes at almost negligible cost.

• Robustness and efficiency comes from working directly
in the state space of interest for applications such as
mobile robotics.

In the following we formalise our fusion method.

A. The Generative Model

Our approach is inspired by the probabilistic model of the
image formation and rendering process illustrated in Fig. 3. A
surface is parametrised by its geometry G and its appearance
A. Given a camera with an associated pose T in the scene,
we can render a predicted image I and an inverse depth
map D. In our method we do not model lighting and surface
properties (such as normals) explicitly, but assume ambient
light and Lambertian surfaces.

I D

G A T

Fig. 3: A graphical model of the image formation and
rendering process used to derive our fusion approach.

The joint distribution that models the image formation
process in Fig. 3 is given by:

P (I,D, G, A, T) = P (I|G, A, T)P (D|G, T)P (G)P (A)P (T) .
(1)

The relation between image observations and surface esti-
mation can be expressed using Bayes rule:

P (G, A, T|I,D) ∝ P (I,D|G, A, T)P (G)P (A)P (T) , (2)

which allows us to derive a maximum a posteriori (MAP)
estimate of the camera pose and surface:

arg max
G,A,T

P (I,D|G, A, T)P (G)P (A)P (T) . (3)

The term P (I,D|G, A, T) is a likelihood function which we
will be able to evaluate and differentiate using our renderer.
The terms P (G), P (A), P (T) represent prior knowledge that
we might have about the geometry, appearance and trajectory.

To simplify the problem, we treat the camera poses as
given by a tracking module. Furthermore, since in our
loosely-coupled fusion, we use the colour images to generate
a depth map that determines the height field, we ignore the
dependency of the colour image on the height values. Note
that this is a conservative assumption letting us treat the
colours and height fields independently:

arg max
G
P (D|G)P (G) , (4a)

arg max
A
P (I|A)P (A) . (4b)

In essence, we alternate between height (Eq. 4a) and colour
fusion (Eq. 4b), first estimating the geometry using the
observed inverse depth map and subsequently we fuse the
colour image into the height fields while keeping the ge-
ometry fixed. In the following we focus on the depth map
fusion, but the derivation can be extended to the colour
estimation in a straightforward manner. Currently, the colour
information is mainly used for meaningful display, however
we plan to use it to perform camera tracking with respect to
the estimated model in order to reduce the tracking drift.

B. Reconstruction as a Nonlinear Least Squares Problem

The geometry of a height field is fully parametrised by the
vector of height z ∈ Rn, which is the quantity we want to
estimate. We represent the priors P (G) using a multivariate
Gaussian probability distribution N−1 (η, Λ) in a canonical
form parametrised by the information vector η and matrix
Λ. By taking the negative logarithm of Eq. 4a we obtain the
following minimisation problem:

arg min
z
F (z) , (5)

where:
F (z) = Fd(z) + Fp(z) . (6)

The cost function thus consists of two terms, the data term
Fd(z) and the prior term Fp(z):

Fd(z) = ‖d̄−D(z)‖2Σd̄ , (7a)

Fp(z) =
1

2
z>Λz− η>z + c , (7b)

where d̄ ∈ Rm is a column vector that represents the
observed inverse depth map with associated measurement
uncertainties modelled by (diagonal) covariance matrix Σd̄,
and D(z) is a nonlinear (rendering) operator, D : Rn → Rm

that predicts a vector of depths using the current estimate
of z. The prior term (Eq. 7b) is a standard quadratic
form associated with the Gaussian probability distribution
N−1 (η, Λ).

The cost function term Fd(z) related to the measurements
can be expressed as a sum of individual per-pixel inverse
depth error terms:

ei(z) = d̄i − di(z), (8)

between a measured d̄i and a predicted inverse depth di:

Fd(z) =

m∑
i=1

1

σ2
di

(d̄i − di(z))2 =

m∑
i=1

1

σ2
di

ei(z)2 . (9)

The minimisation problem in Eq. 5 is a nonlinear least
squares problem, that is typically solved using iterative ap-
proaches. Commonly used method for solving such problems
is the Gauss-Newton algorithm, that starts with an initial
estimate z0 and solves a series of linear approximations
of the original nonlinear problem. At each iteration, it is
required to form a normal equation and solve it e.g. by means
of Cholesky factorisation. However, due to the size of our
problem using direct methods that form an approximation
for the Hessian explicitly and rely on matrix factorisation
is prohibitively expensive. Instead, we rely on the conjugate
gradient algorithm which is an indirect, matrix-free approach
that only requires access to the gradient of the objective
function. Conjugate gradient descent has been successfully
applied to many computer vision problems before, e.g. in
large scale bundle adjustment [1].

The gradient of the objective function F (z) as defined in
Eq. 5 is given by:

∇F (z) = ∇Fd(z) + ∇Fp(z) . (10)

The gradient of the term associated with the surface priors
is straightforward to compute:

∇Fp(z) = Λz− η , (11)

whereas the gradient of the data term is given by:

∇Fd(z) = 2D′(z)>Σ−1
d̄

(d̄−D(z)) , (12)

where D′(z) is the derivative of the rendering operator D and
is called the Jacobian matrix Jd(z). Although the number of
measurements (m) and size of the state space (n) are high,
the Jacobian Jd(z) ∈ Rm×n linking them is sparse. Since we
assume that each depth value depends only on 3 vertices, the
Jd has only 3 non-zero entries per row.

Instead of explicitly forming the Jacobian matrix and
performing matrix vector multiplication, we can calculate
the gradient vector by summing the contributions from the
individual, per-pixel error terms. The gradient of Fd(z) is
therefore given by:

∇Fd(z) = 2

m∑
i=1

1

σ2
di

Ei(z)ei(z) , (13)

where Ei(z) = ∇ei(z
j) is the derivative (Jacobian) of the

per-pixel error term. Since each error term depends on three
values in z, we only need to calculate derivative of the
rendered depth with respect to vertices of the associated
triangle, and can assemble the gradient of the function Fd

from this individual per depth Jacobians Ei. In the following
subsection we will describe our strategy to obtain the Ei.

C. Differentiable Rendering

In our rendering we explicitly model the ray/triangle
intersection and perform analytical differentiation of this
operation. Furthermore we assume that each pixel ”observes”
only a single triangle. There exist alternative and more
sophisticated approaches, e.g. Smelyanskiy et al. [23] care-
fully models the rendering process taking into consideration

surface normals and contributions from multiple triangles
into pixel colour, whereas Loper and Black [15] proposed
an approximate way for calculation of the derivative.

Let r(t) be a ray, parametrised by its starting point p ∈ R3

and direction vector d ∈ R3, r(t) = p+ td, with t ≥ 0. For
each pixel in the image we can calculate a ray using camera
intrinsics and the center of camera frame of reference as the
origin. Let 4 be a triangle in R3 parametrised by 3 vertices,
v0, v1, v2. To identify the triangle a ray is intersecting, we
rely on the standard OpenGL rendering pipeline.

Ray/triangle intersection can be easily found using e.g.
the classical algorithm of Möller and Trumbore [16], which,
when the ray intersects the triangle, yields a vector (t, u, v)>,
where t is the distance to the plane in which the triangle
lies and u, v are the barycentric coordinates of the ray
intersection point with respect to the triangle 4. The t, u,
and v are the essential elements required to render a depth
and colour for a particular pixel: t is directly related to
the depth, where as the barycentric coordinates are used to
interpolate the colour c based on the RGB colour triangle
vertices (c0, c1, c2) in the following way:

c = (1− u− v)c0 + uc1 + vc2 . (14)

Fig. 4 depicts this ray-triangle intersection problem.

1/dic2,v2

r

p

c0,v0

c1,v1

z0

z1

z2

ci

Fig. 4: The essential geometry of ray/triangle intersection.

The rendered inverse depth di of pixel i depends only
on the geometry of the triangle that a ray is intersecting
(and camera pose that is assumed fixed). As we model the
surface using a height map, each vertex has only one degree
of freedom, its height z. Assuming that the ray intersects the
triangle j specified by heights z0, z1, z2, at distance 1/di, we
can express the derivative as follows:

Ei =
∂di
∂zj

=

[
∂di
∂z0

∂di
∂z1

∂di
∂z2

]
. (15)

The individual partial derivatives can be derived easily using
chain and product rule, and we omit it due to space limita-
tion.

D. Nonlinear Conjugate Gradient

The objective function (Eq. 5) is optimised using the
Fletcher and Reeves variant of the conjugate gradient
method [20]. The Alg. 1 outlines the overall structure of
this algorithm.

Algorithm 1 Nonlinear conjugate gradient, Fletcher and
Reeves version.

1: Given z0

2: Evaluate F0 = F (z0) and g0 = ∇F (z0)> . Render
3: Set p0 := −g0 and k := 0
4: while gk 6= 0 do
5: Do line search to determine step size αk . Render
6: zk+1 = zk + αkpk

7: Calculate gradient gk+1 = ∇F (zk+1)> . Render
8: βk+1 :=

g>
k+1gk+1

g>
k gk

9: pk+1 := −gk+1 + βk+1pk

10: k := k + 1
11: end while

The . Render in lines 2, 5 and 7 in the Alg. 1 highlights the
execution of the differentiable rendering. At each iteration
of the conjugate gradient method it is required to perform a
line search that determines the step size αk in the descent
direction. This can lead to several evaluations of the cost
function. Since when evaluating the cost function within
the same parallelised rendering code we can instantaneously
access its gradient, we do not search for the optimal step
size, but accept any αk that leads to a decrease in the cost.
The method typically required several iterations to converge
and the key to the efficiency of our method is the very fast
differentiable rendering.

E. Height Field Fusion Through Linearisation

Our fusion method is both simple and principled. We
accumulate all previous observations in the form of the
prior term Fp(z) as a quadratic cost function that serves as
constraints on the vertices during the optimisation described
in Sec. III-B.

After optimisation converges we linearise the objective
function Fd(z) associated with the data term at the estimated
solution ẑ:

Fd(z) ≈ F l
d(z) = ‖d̄−

(
d̂ + Ĵd · (ẑ− z)

)
‖2 , (16)

where d̂ = d(ẑ)|z=ẑ and Ĵd = Jd(z)|z=ẑ. Note that we omit
here the measurement covariance matrix Σd̄ for the brevity of
the derivation. The quadratic approximation of the objective
function is therefore given by:

F l
d(z) = ‖

r︷ ︸︸ ︷(
d̄− d̂− Ĵdẑ

)
+Ĵdz)‖2 = ‖r + Ĵdz‖2 (17a)

= r>r + 2r>Ĵdz + z>Ĵ>d Ĵdz (17b)

To fuse the depth measurement vector d̄ into the height
field, we simply augment the prior term in Eq. 7b using

the quadratic model F l
d(z) derived above:

Λ+ = Λ + Ĵ>d Ĵd , (18a)

η+ = η + 2r>Ĵd , (18b)

c+ = c+ r>r . (18c)

This operation is equivalent to the measurement update step
in the Extended Information Filter [25]. Note that we do not
have to keep the value of linearisation point, nor the previous
depth measurements.

In practices, we do not perform the steps in Eq. 18
explicitly (which would require forming the matrix Ĵ>d Ĵd),
but again revert to the per-pixel inverse depth error terms
as defined in Eq. 7a and accumulate the per-pixel quadratic
costs, on a per-triangle basis. This means that for each
triangle j we keep a quadratic function of the form:

fj(z) = z>Λjz + η>j z + cj . (19)

Recall the individual per-pixel error term as in Eq. 8. As
already explained, after the optimisation has converged,
we approximate this error term linearly around the current
estimate ẑ as:

ei ≈ eli = ēi + Eiδz = ēi −Eiẑ + Eiz . (20)

Fusion of a depth measurement d̄i into the height map thus
consists of a simple addition of the linearised error (Eq. 20)
to the corresponding triangle’s cost function (Eq. 19):

f+
j = fj +

(eli)
2

σ2
di

. (21)

Multiplying this out and rearranging provides us with the
updated coefficients (c+, ξ+ and Λ+) of the per-triangle
quadratic cost:

Λ+
j = Λj +

E>i Ei

σ2
di

, ξ+
j = ξj +

2

σ2
di

(ēi −Eiẑ)Ei ,

c+j = cj +
(ēi −Eiẑ)2

σ2
di

.

(22)

The prior cost (Eq. 7b) concerning the height map can
be assembled from the individual per-triangle error terms
(Eq. 19), and therefore the overall cost function (Eq. 5) we
have to minimise amounts to:

F (z) =
∑
j

fj(z) +
∑
i

1

σ2
di

(ei(z))2 (23)

Note that, consequently, the number of linear cost terms
is bounded by the number of triangles in the height field,
whereas the number of nonlinear (inverse) depth error terms
is bounded by the number of pixels in the camera. This is
of course an important property for real-time operation.

IV. IMPLEMENTATION

The core of the algorithm, including derivative compu-
tation is implemented using a standard OpenGL rendering
pipeline, and does not rely on vendor-specific frameworks
like Nvidia CUDA. Only the operations required by the con-
jugate gradient, e.g. dot product are implemented in CUDA.

Run time GTX 980 GT 650M
Tracking [ms] 2.18 14.5
Depth Estimation [ms] 5.40 24.7
Fusion [ms] 3.41 26.9
Total run time [ms] 10.99 66.9
Total frame rate [fps] 91.0 15.1

TABLE I: Timings for the algorithms on two different GPUs.

Thanks to the regular, grid structure of the height map,
rendering can be performed very efficiently and robustly:
depending on height field and image resolution, we can
achieve rendering rates of about 6000 frames per seconds on
a high-level GPU (GTX980). For a typical scene, there are
usually about 50000-100000 triangles visible in the camera
frustum.

Table I shows runtime measurements for the whole algo-
rithm and its individual components on two different GPUs,
Nvidia GTX980 and Nvidia GT650M. The latter is a mid-
level mobile GPU, comparable in performance with the
latest Nvidia embedded board Jetson TX11. We achieve real-
time performance on both platforms. Note that the effective
frame rate can be even higher, as in our system the Depth
Estimation and Fusion do not have to be executed for each
video frame — these are performed only when there is
sufficient baseline due to camera motion.

V. EXPERIMENTS AND RESULTS

We experimentally evaluated our height map fusion using
both synthetic data and mobile robot moving in indoor en-
vironments. In the robot experiments, we have used a single
Point Grey BlackFly3 Camera, with approximately 80◦ field
of view, capturing RGB images at 640×480 resolution and
30Hz frame-rate. Our robot platform is a Pioneer 3 DX with
an adjustable rigid camera mount. The camera was mounted
at a height of about 30 cm above the ground, pointing
downwards and looking ahead about 1 metre. The extrinsics
of the camera on the robot were determined using calibration
from [29]. In most of the experiments we used the cells of
the size of 10 mm.

Fig. 5 shows a few examples of the colour images that
are inputs to our system, and the depth maps we initially
derive from these using fast cost volume filtering. The overall
quality of the depth maps is relatively low: this is due to
the very fast but unsophisticated stereo algorithm that we
apply to obtain the depth, as well as drift in the motion
tracking. Whereas most monocular dense algorithms allocate
a lot of resources and use sophisticated methods to obtain
high quality depth maps, our method focuses on fusion into
a model and is capable of dealing with partially corrupted
and missing data.

A. Synthetic data

We first evaluate our height fusion algorithm using syn-
thetic moon data (Fig. 6) and compare it with a simple height

1http://www.nvidia.com/object/jetson-tx1-module.
html. Jetson TX1 has a credit-card footprint and power consumption of
about 15W.

Fig. 5: Examples of input RGB and depth images that are
fused into a height map.

Fig. 6: Evaluation of the fusion algorithm on the synthetic
data: (left) ground truth, (middle) reconstruction using pro-
posed method, (right) reconstruction using Fankhauser et al.
method [6]. In general, both methods are able to accurately
reconstruct the surface from just a few depth maps. However,
our method better deals with situations where the resolution
of the height map is higher compared to density of measure-
ments (e.g. due to oblique viewing angle).

map fusion algorithm that treats all height cells in the map
as independent (as for example in [6]). Both methods are
capable of accurately reconstructing the surface, however, as
our approach models the connectivity between vertices of the
height map and can incorporate smoothness priors, it better
handles situations that arise when the camera is looking at
the scene from a very oblique angle. There, for the points
that are far from the camera, the resolution of the height map
is often higher than the density of the depth measurements;
this leads to reconstruction artefacts when the height vertices
are assumed to be independent.

B. Comparison against a generic 3D reconstruction with a
depth camera

We qualitatively compare our monocular height map es-
timation to more generic 3D reconstruction method which
uses a depth camera. The system of Whelan et al. [26]
takes a high quality depth-maps obtained by a Kinect camera
using a hand-guided camera trajectory and is capable of

http://www.nvidia.com/object/jetson-tx1-module.html
http://www.nvidia.com/object/jetson-tx1-module.html

Fig. 7: A visualisation of a height map reconstructed with our method.

creating globally consistent 3D models. Our method, like any
incremental, open-loop system is a subject to drift and is not
designed to directly compete the ElasticFusion in terms of a
global accuracy. However, as shown in Fig. 8 our approach
is capable of creating maps of the ground with similar
local accuracy. The visualisation in Fig. 7 demonstrates that
we were able to reconstruct the essential geometry of the
environment as well as the very small objects on the floor,
like cables or pliers.

Fig. 8: A comparison of the reconstruction from our height
fusion (left) with high quality reconstruction obtained using
ElasticFusion (right). ElasticFusion [26] uses depth maps
from a Kinect-like depth sensor and is capable of creating
globally consistent models, whereas our method is open-loop
and based on monocular depth estimation. This comparison
demonstrates that our system was capable of estimating the
essential geometry of the room, and still reconstructs details
on the floor.

C. Free space detection

A desirable property of a height map is that it can be
directly used for robot navigation and obstacles avoidance.
One can determine the drivable area by simply thresholding

the height values. Fig. 9 illustrates results of applying this
approach to our reconstruction. There, for each pixel in an
image, we check the height of associated grid cell and label
it as a free space based on a fixed, 1 cm threshold. The
created free space mask is subsequently overlaid onto the
observed image. Despite the fact that a height map cannot
correctly model overhangs, our approach exhibits desirable
behaviour even in these scenarios. The method in its current
implementation is robust, especially for the task of free space
detection. We attribute this to the smoothing behaviour of the
height map representation that we use in our method. More
sophisticated approaches could evaluate the gradient of the
height field to determine roughness of the terrain and the
traversability.

VI. CONCLUSIONS

We have demonstrated a promising route to truly usable
real-time monocular dense reconstruction which is based on
a y chosen height map model, differentiable rendering and
rigorous incremental probabilistic fusion.

In our particular application area of low-cost robotics this
method offers great promise for simple monocular sensing
which can efficiently and robustly capture comprehensive
information about free space and obstacles, with the ability
to accurately map the small obstacles which are invisible to
many other sensors and a potential hazard to small robots.

There is great scope for the expansion of this method-
ology in both this and other application areas of real-time
reconstruction. Our probabilistic framework allows us to
model and express many aspects of the image formation
process, such as camera intrinsics, radial distortions, rolling
shutter, blur, camera gain — and improve accuracy by jointly
estimating these quantities.

We are particularly interested to investigate the promising
scalability of our method — to the very high resolution
fusion that high resolution video would enable (could make
height maps with the millimetre precision enabling tiny

Fig. 9: Free space detected (green overlay) by simple thresh-
olding of the reconstructed elevation map.

objects like pins to be mapped?); but also to the very efficient
implementation which should be possible at lower resolution,
perhaps for extreme resource-limited platforms. Research on
multi-resolution methods might unify these two ends of the
scale.

REFERENCES

[1] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle
Adjustment in the Large. In Proceedings of the European Conference
on Computer Vision (ECCV), 2010. 4

[2] R. Cabezas, O. Freifeld, G. Rosman, and J. W. Fisher III. Aerial
Reconstructions via Probabilistic Data Fusion. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014. 2

[3] B. Cernuschi-Frias, D. B. Cooper, Y.-P. Hung, and P. N. Belhumeur.
Toward a model-based Bayesian theory for estimating and recognizing
parameterized 3-D objects using two or more images taken from
different positions. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 11(10):1028–1052, 1989. 2

[4] P. Cheeseman, B. Kanefsky, R. Kraft, J. Stutz, and R. Hanson. Super-
Resolved Surface Reconstruction from Multiple Images. In Maximum
Entropy and Bayesian Methods, volume 62, pages 293–308. 1996. 2

[5] J. Engel, T. Schoeps, and D. Cremers. LSD-SLAM: Large-scale direct
monocular SLAM. In Proceedings of the European Conference on
Computer Vision (ECCV), 2014. 2

[6] P. Fankhauser, M. Bloesch, C. Gehring, M. Hutter, and R. Siegwart.
Robot-Centric Elevation Mapping with Uncertainty Estimates. In
Proceedings of the International Conference on Climbing and Walking
Robots (CLAWAR), 2014. 2, 6

[7] C. Forster, M. Fässler, F. Fontana, M. Werlberger, and D. Scaramuzza.
Continuous on-board monocular-vision-based elevation mapping ap-
plied to autonomous landing of micro aerial vehicles. In Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), 2014. 2

[8] D. Gallup, J.-M. Frahm, M. Pollefeys, and E. Zuerich. A Heightmap
Model for Efficient 3D Reconstruction from Street-Level Video. In
Proceedings of the International Symposium on 3D Data Processing,
Visualization and Transmission (3DPVT), 2010. 2

[9] C. Häne, C. Zach, J. Lim, A. Ranganathan, and M. Pollefeys. Stereo
depth map fusion for robot navigation. In Proceedings of the IEEE/RSJ
Conference on Intelligent Robots and Systems (IROS), 2011. 2

[10] M. Herbert, C. Caillas, E. Krotkov, I. Kweon, and T. Kanade. Terrain
mapping for a roving planetary explorer. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 1989.
2

[11] Y.-P. Hung, D. B. Cooper, and B. Cernuschi-Frias. Asymptotic
Bayesian surface estimation using an image sequence. IJCV, 6(2):105–
132, June 1991. 2

[12] A. Jalobeanu, F. O. Kuehnel, and J. C. Stutz. Modeling Images
of Natural 3D Surfaces: Overview and Potential Applications. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshop (CVPRW), 2004. 2

[13] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb.
Real-time 3D Reconstruction in Dynamic Scenes using Point-based
Fusion. In Proc. of Joint 3DIM/3DPVT Conference (3DV), 2013. 2

[14] I.-S. Kweon and T. Kanade. High-resolution terrain map from multiple
sensor data. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 14(2):278–292, 1992. 2

[15] M. Loper and M. J. Black. OpenDR: An Approximate Differentiable
Renderer. In Proceedings of the European Conference on Computer
Vision (ECCV), 2014. 2, 4

[16] T. Möller and B. Trumbore. Fast , Minimum Storage Ray / Triangle
Intersection. Journal of Graphics Tools, 2(1):21–28, 1997. 4

[17] R. Mur-Artal and J. D. Tardós. ORB-SLAM: Tracking and Mapping
Recognizable Features. In Workshop on Multi View Geometry in
Robotics (MVIGRO) - RSS 2014, 2014. 2

[18] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon.
KinectFusion: Real-Time Dense Surface Mapping and Tracking. In
Proceedings of the International Symposium on Mixed and Augmented
Reality (ISMAR), 2011. 2

[19] R. A. Newcombe, S. Lovegrove, and A. J. Davison. DTAM: Dense
Tracking and Mapping in Real-Time. In Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), 2011. 2

[20] J. Nocedal and S. Wright. Numerical Optimization. Springer, second
edition, 2006. 5

[21] P. Pfaff, R. Triebel, and W. Burgard. An Efcient Extension to Elevation
Maps for Outdoor Terrain Mapping and Loop Closing. International
Journal of Robotics Research (IJRR), 26(2):217–230, 2007. 2

[22] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz.
Fast cost-volume filtering for visual correspondence and beyond. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011. 2

[23] V. Smelyanskiy, P. Cheeseman, D. A. Maluf, and R. D. Morris.
Bayesian super-resolved surface reconstruction from images. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2000. 2, 4

[24] V. Smelyanskiy, R. Morris, F. Kuehnel, D. A. Maluf, and P. Cheese-
man. Dramatic Improvements to Feature Based Stereo. In Proceedings
of the European Conference on Computer Vision (ECCV), 2002. 2

[25] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte. Simultaneous Localization and Mapping with Sparse Extended
Information Filters. International Journal of Robotics Research
(IJRR), 23(7-8):693–716, 2004. 5

[26] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J.
Davison. ElasticFusion: Dense SLAM without a pose graph. In
Proceedings of Robotics: Science and Systems (RSS), 2015. 2, 6,
7

[27] C. Ye and J. Borenstein. A method for mobile robot navigation on
rough terrain. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2004. 2

[28] E. Zheng, E. Dunn, R. Raguram, and J.-M. Frahm. Efficient and
Scalable Depthmap Fusion. In Proceedings of the British Machine
Vision Conference (BMVC), 2012. 2

[29] J. Zienkiewicz and A. J. Davison. Extrinsics Autocalibration for Dense
Planar Visual Odometry. Journal of Field Robotics (JFR), 32(5):803–
825, 2015. 6

[30] J. Zienkiewicz, R. Lukierski, and A. J. Davison. Dense, Auto-
Calibrating Visual Odometry from a Downward-Looking Camera. In
Proceedings of the British Machine Vision Conference (BMVC), 2013.
2

