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Abstract— While dense visual SLAM methods are capable
of estimating dense reconstructions of the environment, they
suffer from a lack of robustness in their tracking step, especially
when the optimisation is poorly initialised. Sparse visual SLAM
systems have attained high levels of accuracy and robustness
through the inclusion of inertial measurements in a tightly-
coupled fusion. Inspired by this performance, we propose the
first tightly-coupled dense RGB-D-inertial SLAM system.

Our system has real-time capability while running on a GPU.
It jointly optimises for the camera pose, velocity, IMU biases
and gravity direction while building up a globally consistent,
fully dense surfel-based 3D reconstruction of the environment.
Through a series of experiments on both synthetic and real
world datasets, we show that our dense visual-inertial SLAM
system is more robust to fast motions and periods of low texture
and low geometric variation than a related RGB-D-only SLAM
system.

I. INTRODUCTION

Visual Simultaneous Localisation and Mapping (SLAM)
has achieved a level of maturity that allows for integration
into mobile robots. We can split respective algorithms into
two broad categories: sparse landmark-based systems and
dense or semi-dense systems. While sparse methods may not
directly produce a map that is useful for robot navigation,
pose estimation quality and robustness of state-of-the-art
systems, such as [1] and [2], are typically very high. Even
higher accuracy and robustness may be attained by the in-
clusion of inertial measurements in a tightly-coupled fusion.
Inertial Measurement Units (IMUs) have become very cheap
and are abundant in today’s consumer electronic devices,
therefore their use in visual SLAM has been widely adopted.
Approaches are formulated either as filters e.g. [3]–[6] or
as methods employing iterative minimisation, typically in a
sliding window manner, such as [7]–[10]. Loosely-coupled
approaches to visual-inertial fusion, such as [11]–[13] that
separate out either the visual or inertial estimation part have
also been proposed. These methods are popular due to their
modularity, but disregard correlations in the state estimates,
typically leading to lower accuracy and/or robustness.

Other research has focused on producing denser maps,
a development enabled by ever more computational power
and specifically the emergence of Graphics Processing Units
(GPUs), as well as by novel sensors in the form of depth
cameras (RGB-D cameras). Such systems typically employ
direct photometric alignment of the image and/or Iterative
Closest Point (ICP) alignment of the depth image to the
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Fig. 1: Tightly integrating IMU measurements into a dense
RGB-D SLAM system leads to more accurate and robust
tracking and 3D reconstruction compared with using visual
information alone. The above surface reconstruction was cap-
tured despite periods of low texture and geometric variation.

map in a tracking step; in a separate mapping step, new
information is fused into the dense map representation. Ex-
amples using solely monocular cameras range from the fully
dense DTAM [14] to LSD-SLAM [15], which reconstructs
a semi-dense representation. RGB-D SLAM approaches that
make use of depth cameras include KinectFusion [16] and
other methods employing signed distance function-based vol-
umetric mapping, such as [17]–[19]. Surfel-based mapping
presents itself as an alternative enabling easier scalability in
space and time: ElasticFusion [20], which our proposed work
is based on, focuses on global map consistency by applying
elastic map deformations upon loop closure.

Dense maps offer much more potential for safe robot
navigation which we envisage to evolve into very general
spatial perception with semantic understanding and tracking
of dynamic objects in the future. As of now, however, vision-
only SLAM, and dense SLAM using direct image alignment
in particular, suffers from a lack of robustness in the tracking
step when initialised too far from the “true” solution; in
fact, the tracking optimisation may not converge at all in
absence of sufficient texture and/or geometric variation in the
depth channel. To address these shortcomings, inspired by
the success of sparse visual-inertial systems, we advocate the
integration of acceleration and rotation rate measurements
into the tracking of a dense SLAM system. In principle, the
tight integration of these complementary sensing modalities



should provide robustness in rapid motion, low texture and
flat walls. Furthermore, the inclusion of an IMU renders
the gravity direction observable, which not only improves
map accuracy due to bounded absolute inclination error, but
may also be of paramount importance for robot control, most
prominently drones.

There have been a few recent examples of dense visual-
inertial systems: both [21] and [22] present loosely-coupled
approaches, with the former using the integrated IMU data
as a prediction step in a filter to estimate the transformation
between image pairs, and the latter fusing relative poses
generated by inertial and stereo camera measurements in a
manner similar to a pose graph. A tightly-coupled semi-dense
monocular visual-inertial odometry system is presented in
[23]. Unlike other pure monocular odometry systems, it is
able to use the inertial data to remove scale ambiguity. Their
system uses a semi-dense approach for tracking and, in a
separate thread, estimates a fully dense map below frame rate
using a piecewise planar prior. Another example of a semi-
dense visual-inertial odometry system is described in [24].
This system is implemented within the stereo LSD-SLAM
framework [25]. Through a series of experiments, they
demonstrate that their tightly-coupled approach outperforms
both vision-only and loosely-coupled approaches. While the
system is closely related to ours, we propose a more map-
centric, fully dense approach that additionally considers a
depth channel and performs map optimisation compliant with
gravity alignment.

In this paper, we extend the RGB-D SLAM system Elas-
ticFusion [20] with tightly-coupled IMU integration, which
is capable of more accurate and robust fully dense mapping.
Please see Figure 1 for an example map output. More
specifically, we make the following contributions:
• In the tracking step, we simultaneously estimate the

camera pose, velocity, IMU biases and gravity direction
from an RGB-D camera and IMU by minimising a joint
photometric, geometric, and inertial energy functional.

• Concerning the mapping, we propose a system that con-
structs a globally consistent, fully dense surfel-based 3D
reconstruction of the environment. The map is optimised
not through a pose graph, but by applying non-rigid
space deformations using a sparse deformation graph.
We propose an addition to the deformation energy
that ensures consistency with the observable gravity
direction.

• Through experiments on both synthetic and real world
datasets, we demonstrate the benefits of our approach.
It performs well under aggressive motion, fast rotations,
and under low texture and geometric variation. We
demonstrate trajectory and map reconstruction accuracy
higher or on-par with an RGB-D-only ElasticFusion.

• We emphasise that the system maintains real-time ca-
pability while running on a GPU. Unlike [23] and [24],
which achieve real-time performance on a CPU, our
system constructs a fully dense map at frame rate.

• To the best of our knowledge, we hereby present the first
tightly-coupled dense RGB-D-inertial SLAM system.
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Fig. 2: Tracking optimisation in RGB-D-only vs. RGB-
D-inertial ElasticFusion: inertial measurements necessitate
the augmentation of the state with speed, IMU biases, and
gravity alignment; furthermore, the temporal nature of IMU
measurements requires us to marginalise old states, resulting
in a linear prior.

We furthermore plan to release our software framework.
The remainder of this paper is organised as follows: we

start with an overview of notation employed in Section II and
of the approach as such in III. We then describe the method
concerning tracking in IV and mapping in V followed by
extensive results in VI.

II. NOTATION

Throughout this work we will employ the following no-
tation: a reference frame A is denoted F−→A, with vectors
expressed in it denoted as Ap. The position vector from
the origin of F−→A to the origin of F−→B , represented in F−→A

is written ArB and the velocity of the origin of F−→C as
observed by F−→B and expressed in F−→A is denoted AvBC .
The homogeneous transformation matrix that transforms
homogeneous points from F−→B to F−→A is written as TAB .
The corresponding rotation is represented by a Hamiltonian
unit quaternion, qAB . In order to refer to the homogeneous
coordinates of a coordinate vector p we will use the italic
notation p.

Four different coordinate frames will be used in this work:
• F−→W , the world frame in which the global model

is expressed. This frame corresponds with the initial
camera frame.

• F−→I , the inertial frame that is aligned with gravity and
shares an origin with F−→W .

• F−→C , the camera frame in which the RGB-D data is
observed.

• F−→S , the sensor frame in which the IMU data is ob-
served.

III. SYSTEM OVERVIEW

Our system directly builds upon the vision-only dense
RGB-D tracking and mapping approach of ElasticFusion
[20]. Like ElasticFusion, our approach performs the tracking
and mapping in separate steps. In the tracking step, a joint
photometric, geometric and inertial energy functional is con-
structed. Please see Figure 2 for a comparison of the factor-
graph representation of the underlying tracking optimisation
problem in RGB-D-only and RGB-D-inertial ElasticFusion.
Whereas ElasticFusion combined the photometric and geo-
metric terms based on a tuning parameter λ, we combine
the terms based on the covariances associated with the



measurement noise. A nonlinear optimisation formulation
is then used to simultaneously estimate the camera pose,
velocity, IMU biases and gravity direction. Unlike the orig-
inal ElasticFusion which only estimated the current camera
pose, our system estimates the states associated with both the
current and previous camera frames. After the optimisation
the states related to the previous frame are marginalised and
the remaining current state is used as a prior for the next
time step.

In the mapping step, a fully dense surfel-based surface
representation is constructed from the camera data and
estimated poses obtained from the tracking step. The map is
kept globally consistent by applying non-rigid space defor-
mations through a sparse deformation graph. We extend the
deformation energy formulation proposed by ElasticFusion
to ensure consistency with the observable gravity direction.

IV. TRACKING
A. States & Local Parameterisation

At the arrival of each new camera frame, we estimate the
current state, x1, while simultaneously refining the previous
state, x0. The system state is comprised of the camera
position in the world frame W rC , the camera orientation
qWC , the velocity of the IMU in the inertial frame IvIS ,
the biases of the gyroscopes bg and accelerometers ba, and
the orientation of the world frame in the inertial frame qIW .
Therefore the system state x for a specific time instance is
given by:

x :=
[
W rTC ,q

T
WC , IvTIS ,b

T
g ,b

T
a ,q

T
IW

]T
(1)

∈ R3 × S3 × R9 × S3.

While only two degrees of freedom are required to express
the gravity direction in the world frame, for simplicity, we
use a 3D implementation with gauge freedom. We did not
observe any issues related to this formulation.

The system state exists on a manifold and so is updated
by a local perturbation δx in the tangent space through the �
operator, such that x = x̄�δx around a reference x̄. For W rC ,
IvIS , bg and ba, the � operator is equivalent to standard
vector addition. For qWC and qIW , a combination of the
group operator (quaternion multiplication) and exponential
map is used (q � δα = exp(δα) ⊗ q). This results in the
following minimal local coordinate representation:

δx =
[
δrT , δαT , δvT , δbT

g , δbT
a , δgT

]T
∈ R18. (2)

Similarly, a � operator can be introduced to compute the
difference between two systems states. For regular vector
space quantities this corresponds to standard subtraction. For
orientations an inverse of the above � can be constructed
(p � q = exp−1(p⊗ q−1)).

Please refer to [26], [27] for further details.

B. Dense Photometric & Geometric Alignment

The RGB-D subsystem of our approach combines dense
per-pixel photometric alignment with ICP point-to-plane ge-
ometric alignment. The photometric alignment error, eRGB,u

for pixel u in the current image is the intensity difference
between the transformed previous and current images:

eRGB,u = I0

(
π
(

KT−1WC0
TWC1

ρ(u, d)
))
− I1(u), (3)

where I∗(·) is a scalar function that returns the intensity value
of a given pixel, π(·) is the projection and dehomogenisation
function that maps a 3D point onto the image plane, and
ρ(u, d) is the back-projection function that returns a homo-
geneous 3D point for pixel u with a depth d. K is the camera
intrinsics matrix, containing the focal lengths and principal
point of the camera.

The geometric alignment error uses a point-to-plane ICP
technique and computes the signed distance between a point
pk projected from the depth measurement k as viewed from
the current camera pose and a corresponding point in the
global model:

eICP,k = WnT
k

[
TWC1 C1

pk −Wpk
]
1:3
. (4)

C. Inertial Integration

For the formulation of the IMU measurement error term
we adopt the approach of [9], extending it to include the
preintegration technique described by [10]. The IMU mea-
surements are integrated numerically between the previous
and current camera frames. The final IMU error term is given
by:

eIMU = x̂1(x0) � x1, (5)

where x̂1 is the prediction of the current state by integrating
the IMU measurements onto the previous state.

D. Optimisation

The RGB-D-inertial tracking problem is solved using a
joint cost function ctrack that contains the weighted photo-
metric alignment, geometric alignment and inertial terms:

ctrack(x0, x1) =
∑

u

eRGB,uWRGBeRGB,u (6)

+
∑
k

eICP,kWICP,keICP,k + eTIMUWIMUeIMU

+
(

x0 � x̄0 −H∗−1b∗
)T

H∗
(

x0 � x̄0 −H∗−1b∗
)
,

where WRGB, WICP,k, and WIMU are the inverse covari-
ance (matrices) associated with the respective measurement
uncertainties, and H∗ and b∗ are priors obtained through the
marginalisation step.

The cost function is minimised using a Gauss-Newton
iterative method with a three level coarse-to-fine pyramid
scheme. We omit the Jacobians for readability and space
constraints. After each iteration, the current and previous
states are updated using the � operator.

E. Partial Marginalisation & Fixation of Variables

The equations for the Gauss-Newton system are con-
structed from the Jacobians, error terms and information
relating to the current and previous states, taking the form:[

H00 H01

H10 H11

] [
δx0

δx1

]
=

[
b0

b1

]
. (7)



After the current and previous states are updated,
we marginalise out the previous state using the Schur-
Complement:

H∗11 = H11 −H10H−100 H01, (8a)

b∗1 = b1 −H10H−100 b0. (8b)

The resulting H∗ and b∗ information is used as a prior in
the next optimisation step. This partial marginalisation fixes
the linearisation point, but with each iteration in the subse-
quent optimisation scheme, the linearisation point changes.
Instead of relinearising at each step, we apply a first-order
correction, ∆x, based on the difference between the new and
old linearisation points as is commonly done in the literature
[9] [24]:

H∗
′

11 = H∗11, (9a)

b∗
′

1 = b∗1 + H∗11∆x. (9b)

V. MAPPING
Like the original ElasticFusion, the map in our formulation

is split into active and inactive areas [20]. The active map
is the area most recently observed and is where the tracking
and fusing takes place. If a segment of the active map is not
observed for a period of time, δt, it becomes inactive. We
keep the map globally consistent by attempting to match the
currently observed portion of the active map with the inactive
map. If a match is detected, the loop is closed by applying
non-rigid space deformations through a sparse deformation
graph. A deformation graph is a set of nodes, Gl, that are
embedded in the global model, each with a position, Glg, and
a set of neighboring nodes, Gn ∈ N (Gl). Each deformation
node stores a Euclidean transformation as a rotation, GlR, and
a translation, Glt , that is used to elastically deform surfels in
the map from a source position Qs to a destination position
Qd through a deformation function, φ(·), defined in [20].
This affine transformation is determined by minimising a
cost function. In the original ElasticFusion, the cost function
consists of five terms. The first encourages rigidity in the
deformation:

Erot =
∑
l

∥∥∥GlRT
GlR − I

∥∥∥2
F
. (10)

The second encourages smoothness in the deformation:

Ereg =∑
l

∑
n∈N (Gl

)

∥∥∥GlR(Gng − G
l
g) + Glg + Glt − (Gng + Gnt )

∥∥∥2
2
.

(11)

The third minimises the distance of each point from the
desired deformation:

Econ =
∑
p

‖φ(Qp
s)−Qp

d‖
2

2 . (12)

The fourth constrains the inactive areas of the map such that
the active map is being deformed into the inactive map:

Epin =
∑
p

‖φ(Qp
d)−Qp

d‖
2

2 . (13)

The fifth term is only applied to global deformations, and is
used to prevent previous registrations, R, from being pulled
apart by future global loop closures:

Erel =
∑
p

‖φ(Rp
s)− φ(Rp

d)‖22 . (14)

As matches between the active and inactive areas of the
map are determined only by the RGB-D subsystem, we
include a sixth cost term in our formulation to constrain the
graph from deforming the map out of alignment with gravity:

Eimu =
∑
l

∥∥∥GlRWg−Wg.
∥∥∥2
2
, (15)

where W g denotes the acceleration due to gravity represented
in vision-world frame F−→W .

Keeping the parameter choices the same as ElasticFusion,
the total cost function for local loop closures is given by:

Eloc = ωfErot+ωrEreg +ωc(Econ+Epin)+ωiEimu, (16)

and the total cost for the global loop closures is given by:

Eglo = ωfErot+ωrEreg+ωc(Econ+Epin+Erel)+ωiEimu,
(17)

with ωf = 1, ωr = 10, and ωc = ωi = 100.

VI. RESULTS

We evaluate our system in terms of trajectory estimation
and reconstruction accuracy on both synthetic and real world
datasets. We adapt the living room sequences of the ICL-
NUIM dataset [28] for the experiments on synthetic data. For
the real world experiments, we recorded our own datasets
along with ground truth poses from a Vicon motion cap-
ture system. The synthetic dataset consists of slow, smooth
trajectories usually required for dense visual SLAM. The
real world dataset contains a mixture of slow trajectories,
aggressive motions and sequences with low texture and
geometric information where vision-only systems tend to
struggle.

We consider two metrics when examining the performance
of the system: the absolute trajectory (ATE) root-mean-
square error (RMSE) described in [29], and for recon-
struction error, the mean distance from each point in the
reconstruction to the nearest surface in the aligned ground
truth model. The ATE RMSE is calculated for all sequences,
but the reconstruction error is only available for the synthetic
dataset. As the behavior of the loop closure mechanism is
non-deterministic, we ran each test 10 times and took the
average result. Tests where either system had lost tracking
are denoted by brackets in the tables.

Through these experiments, we show that our dense RGB-
D-inertial SLAM system performs at least as well as the
RGB-D-only system on “easier” trajectories where the prob-
lem is well constrained by the visual data alone, but is much
more robust when facing sequences with fast motions or little
photometric and geometric variation.



TABLE I: System Parameters

Noise Parameter Synthetic
Dataset

Real World
Dataset Units

Gyr. saturation 7.8 7.8 rad s-1

Acc. saturation 176.0 176.0 m s-2

Gyr. noise density 12.0e-4 12.0e-4 rad s-1 Hz-0.5

Acc. noise density 8.0e-3 8.0e-2 m s-2 Hz-0.5

Gyr. bias Prior 0.03 0.03 rad s-1

Acc. bias Prior 0.1 1 m s-2

Gyr. drift noise density 4.0e-6 4.0e-6 rad s-2 Hz-0.5

Acc. drift noise density 2.0e-5 2.0e-5 m s-3 Hz-0.5

Acc. due to gravity 9.81 9.81 m s-2

IMU rate 200 200 Hz

Static acc. bias [0, 0, 0]
[0.060,
0.258,
0.126]

m s-2

Image intensity noise 4.0 1.0 -

Image disparitiy noise 5.5 5.5 pixels

A. Synthetic Data

We evaluate both the trajectory estimation and surface
reconstruction accuracy of our system on a modified version
of the living room sequences in the ICL-NUIM dataset.
The ICL-NUIM dataset is a benchmark that provides ground
truth poses as well as a 3D model with which to evaluate
reconstructions of RGB-D SLAM systems. The dataset does
not come with inertial data, however, so in a manner similar
to [30], we fit splines to the ground truth poses to simulate
continuous trajectories. IMU measurements are then gener-
ated along these trajectories using the model described in
[31] and the noise parameters given in Table I. However,
due to the non-smooth trajectories of the dataset, we needed
to sample every 10th frame of the ground truth trajectories
when fitting the splines. This resulted in the new ground
truth poses being close to but not exactly the same as those
in the original dataset. Therefore, we rendered the images at
these new poses using POV-Ray and applied the same noise
models to the images as those in the original dataset.

Since the entire ground truth states are known for the syn-
thetic dataset, we are able to demonstrate that our system can
accurately track the velocity and IMU biases. For example,
the error in the velocity and bias estimates for Sequence LR0,
provided in Fig. 3, quickly converges to zero.

We compared the performance of the RGB-D-inertial and
RGB-D-only versions of our system on each of the four
living room sequences of the modified ICL-NUIM dataset.
The results for the ATE RMSE are given in Table II and for
the reconstruction error in Table III.

Although slow, some of the sequences in the modified
ICL-NUIM dataset are still difficult for dense SLAM systems
to follow, particularly the last sequence. In this sequence,
the camera moves slowly along a wall providing little pho-
tometric or geometric variation. The results of the original
ElasticFusion were not obtained using the same set of inter-

Fig. 3: Error in the velocity and bias estimates when com-
pared to the ground truth values in synthetic dataset LR0. Our
system is able to converge to and track the correct values.

TABLE II: ATE RMSE on the synthetic datasets (brackets
indicate a tracking failure)

Sequence RGB-D-Only RGB-D-Inertial

LR0 0.032 0.009
LR1 0.009 0.012
LR2 0.009 0.009
LR3 (0.906) 0.019

TABLE III: Surface reconstruction accuracy on the synthetic
datasets (brackets indicate a tracking failure)

Sequence RGB-D-Only RGB-D-Inertial

LR0 0.014 0.008
LR1 0.007 0.009
LR2 0.010 0.011
LR3 (0.118) 0.010

nal parameters for each sequence in the ICL-NUIM dataset.
However, in this work, to showcase the robustness of our
system and to avoid overfitting to a particular sequence, the
default set of parameters was used across all datasets. As a
result, the RGB-D-only version of ElasticFusion now fails on
this sequence. The RGB-D-inertial system, however, is able
to use the inertial data to get through the difficult section
of the sequence and successfully reconstructs the scene. The
RGB-D-inertial system performs approximately as well as
the RGB-D-only system on the three easier sequences.

B. Real World Data

While the synthetic data showed that the RGB-D-inertial
system is capable of performing at least as well as the RGB-
D-only system on slow, smooth trajectories, the real strength
of visual-inertial systems is their robustness to aggressive
motions and sequences with little photometric or geometric
information. To test this, a new dataset of 21 sequences



TABLE IV: Comparison of ATE RMSE on the real world
datasets (brackets indicate a tracking failure)

Trajectory Type Sequence RGB-D-Only RGB-D-Inertial

slow
1 0.227 0.066
2 0.110 0.065
3 0.225 0.088

slow, loop closure
4 0.089 0.050
5 0.106 0.048
6 0.091 0.051

medium
7 0.156 0.077
8 0.166 0.069
9 0.118 0.124

fast
10 0.098 0.061
11 0.438 0.354
12 0.267 0.156

quick rotation
13 0.231 0.110
14 0.057 0.063
15 0.220 0.064

low texture
16 (54.238) 0.682
17 (26.306) 0.498
18 (6.536) (2.141)

long
19 0.373 0.560
20 0.359 0.216
21 0.417 0.202

was collected using the Intel RealSense ZR300 visual-inertial
sensor. This sensor captures aligned RGB and depth images
as well as inertial measurements. The camera intrinsics, as
well as the transformation between the camera and IMU,
TCS , was obtained using the Kalibr calibration system [32].

To see how our system would perform under different
scenarios, a number of different types of datasets were
captured. Sequences 1-3 are slow, smooth trajectories that
typical RGB-D SLAM systems could handle. Sequences 4-
6 are also slow and smooth, but with a large loop closure.
Sequences 7-9 have slightly faster trajectories, and sequences
10-12 have very aggressive trajectories but continue to map
the same area, allowing the SLAM system to keep tracking
against a previously built up map. Sequences 13-15 are
also aggressive trajectories, but include a quick rotation into
an unmapped area of the scene. Sequences 16-18 are slow
trajectories, but pass close to a white wall such that the RGB-
D data provides little photometric or geometric information.
Sequences 19-21 are slow, smooth trajectories, but much
longer than the other sequences, on the order of 15-20m.

For each sequence, a ground truth trajectory was captured
using the Vicon motion capture system. As explained in
[29], these ground truth poses cannot be used to create
a reliable ground truth scene reconstruction through depth
image projection, as very small errors in the pose can result
in very large errors in the reconstruction. For this reason, we
do not calculate the reconstruction error for these sequences,
only the ATE RMSE.

1) RGB-D-Only vs. RGB-D-Inertial: For each of the 21
sequences we compared the performance of the RGB-D-
inertial system with the RGB-D-only system. The results
of these experiments are presented in Table IV. In all but
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Fig. 4: Top view of the estimated trajectories for Sequence
21. Integrating the IMU data improves the tracking capabil-
ities of the framework. In particular, it increases robustness
against visually degenerate situations which pose a signifi-
cant problem to the RGBD-only framework. Such an event,
where the majority of the camera’s field of view was filled
with a white wall, is highlighted in the above trajectories.

3 of the sequences the RGB-D-inertial system outperformed
the RGB-D-only system, often decisively. In particular, the
RGB-D-only system was not capable of tracking the se-
quences where the camera moves across a white wall. The
RGB-D-inertial system is able to rely on the IMU measure-
ments to continue tracking despite the lack of photometric
or geometric information, but in the final sequence of that
group, the camera moves across the wall for too long and
even the RGB-D-inertial system fails. Another example of
this occurs in Sequence 21, where halfway through the
trajectory the RGB-D-only system struggles when the camera
goes across a blank wall. This is visualized in Fig. 4.

Qualitatively, we generally achieve a higher degree of map
consistency in the RGB-D-inertial system compared with
the RGB-D-only system. For example, Fig. 5 shows map
reconstructions when the system is run on Sequence 7, a
moderately difficult sequence in the real world dataset. The
top level views show how the inclusion of inertial terms
in tracking significantly reduces the amount of drift, as the
map is much better aligned for the RGB-D-inertial system.
Keeping the map aligned helps ElasticFusion find potential
loop closures, but this will still sometimes fail as shown in
the pair of images second from the bottom.

We encourage the reader to view our supplementary video
for a better visualisation of our results.

2) Odometry vs. SLAM: To confirm that our formulation
of a globally consistent map is improving our trajectory
estimation, we examine the performance of our system with
an open loop version where the system is restricted to only
tracking and fusing against the active map (deformations
are not allowed). We compared this on a sample sequence



vision-only visual-inertial

Fig. 5: Qualitative comparison of map reconstructions in
RGB-D-only (left) and RGB-D-inertial (right) ElasticFusion:
we generally achieve higher degree of map consistency
through the inclusion of inertial measurements in the track-
ing. While loop closure was enabled, the first zoom-in (row
second from the bottom) shows that ElasticFusion failed to
detect and apply a larger loop closure (in both cases); but it
also shows smaller drift as a starting point before potential
loop closures. The second zoom-in (bottom row) highlights
in more detail the generally higher map consistency with
inertial integration.

from five of the different categories (we excluded the quick
rotation and low texture scenes due to their difficulty). The
results of these tests are shown in Table V. In all cases, the
closed loop version performs at least as well as the open
loop version.

3) Drift Analysis: In order to examine the relative con-
tributions of the gyroscopes and accelerometers, we test the
system on a number of sequences where the accelerometer
related residuals are ignored. Fig. 6 shows the position error
as a function of the distance traveled for Sequence 20,
comparing RGB-D-only to RGB-D-and-gyroscopes-only to
the full RGB-D-inertial system. As this figure shows, most
of the gain in accuracy comes from the gyroscopes. This
is confirmed by the results for the long sequences in Table
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Fig. 6: Relation between accumulated position error and trav-
eled distance for three different setups: no IMU, gyroscope
only, and full IMU (gyroscope + accelerometer) for Sequence
20. We observe that most of the accuracy is gained from the
integration of the gyroscopes. While the accelerometers do
not significantly improve the accuracy of the system, their
integration can contribute to the reliability of the system.

TABLE V: Comparison of ATE RMSE between open loop
odometry and SLAM on the real world datasets

Trajectory Type Sequence Odometry SLAM

slow 1 0.102 0.066
slow with loop closure 4 0.051 0.050
medium 7 0.078 0.077
fast 10 0.062 0.061
long 19 0.541 0.525

TABLE VI: Comparison of ATE RMSE between RGB-D-
inertial and RGB-D with only gyroscopes on the real world
datasets

Trajectory Type Sequence Gyro Only Full IMU

long
19 0.296 0.560
20 0.223 0.216
21 0.203 0.202

low texture
16 (7.548) 0.682
17 (3.916) 0.498
18 (0.917) (2.141)

VI. Over such a long sequence, the gyroscopes-only setup
can outperform the full IMU due to the high noise levels
of the accelerometers. The necessity of the accelerometers,
however, is shown by the low texture sequences in Table VI.
As the camera passes over the white wall, the gyroscope-
only system fails because without visual input the relative
position is no longer constrained.



VII. CONCLUSION

We have presented what is, to the best of our knowl-
edge, the first real-time tightly-coupled dense RGB-D-inertial
SLAM system. In the tracking step, it minimises a com-
bined photometric, geometric and inertial energy functional
to simultaneously estimate the camera pose, velocity, IMU
biases and gravity direction. In the mapping step, our system
constructs a fully dense 3D reconstruction of the environment
which is not only globally consistent, but gravity aligned due
to the addition of an inertial deformation energy applied to
the deformation graph.

We show through a series of experiments on both synthetic
and real world datasets that our RGB-D-inertial system
performs at least as well as the RGB-D-only version of
our system on slow, smooth trajectories, but is much more
robust to aggressive motions and a lack of photometric and
geometric variation.
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