
KO-Fusion: Dense Visual SLAM with Tightly-Coupled Kinematic and
Odometric Tracking

Charlie Houseago, Michael Bloesch, Stefan Leutenegger
Dyson Robotics Lab at Imperial College, Department of Computing, Imperial College London

email: c.houseago16@imperial.ac.uk

Abstract— Dense visual SLAM methods are able to estimate
the 3D structure of an environment and locate the observer
within them. They estimate the motion of a camera by matching
visual information between consecutive frames, and are thus
prone to failure under extreme motion conditions or when
observing texture-poor regions. The integration of additional
sensor modalities has shown great promise in improving the
robustness and accuracy of such SLAM systems. In contrast to
the popular use of inertial measurements, which may cause
strong global drift due to noise and biases, we propose to
tightly-couple a dense RGB-D SLAM system with kinematic
and odometry measurements from a wheeled robot equipped
with a manipulator. The system has real-time capability while
running on GPU. It optimizes the camera pose by considering
the geometric alignment of the map as well as kinematic and
odometric data from the robot. Through experimentation in
the real-world, we show that the system is more robust to
challenging trajectories featuring fast and loopy motion than
the equivalent system without the additional kinematic and
odometric knowledge, whilst retaining comparable performance
to the equivalent RGB-D only system on easy trajectories.

I. INTRODUCTION

The integration of Simultaneous Localization and Map-
ping (SLAM) algorithms into real-world agents is a sig-
nificant challenge in the future of mobile robotics. Can-
didate algorithms can be broadly categorized into sparse
feature-based systems and dense or semi-dense systems.
Sparse systems have numerous computational advantages,
and display state-of-the-art performance in pose estimation
and robustness [1] [2]. Success has been found in further
improving the performance of sparse SLAM methods by
tightly coupling the visual data to an inertial measurement
unit [3], [4], [5].

In contrast, Dense SLAM methods provide a more effec-
tive means to understand the 3D structure of an environment.
Mapping is achieved by merging incoming measurements
into a representation of its constituent surfaces. Dense maps
offer much greater potential for problem solving and safe
navigation for robotics, and a robust Dense SLAM system
running aboard a mobile robot is an essential precursor to the
idea of a general domestic robotic platform. In Dense SLAM,
the environment is mapped using a detailed geometric model,
against which the position of an observing camera or other
sensor is tracked. Whilst early methods used 2D occupancy
maps [6] due to computational constraints, the widespread
presence of GPU computing and depth sensing technology
has led to algorithms which maintain full 3D maps with

Fig. 1: Tightly integrating pose predictions from the on-board
kinematics of a robot arm into RGB-D dense SLAM improves
tracking and robustness on challenging trajectories. The above
surface reconstruction was captured in challenging conditions with
a fast moving robot under conditions where state-of-the-art dense
SLAM methods lose tracking.

high-dimensional state spaces. One of the first of these was
DTAM: Dense Tracking and Mapping [7], which demon-
strated the additional usefulness of a dense map for real-
time scene interaction. DTAM is however limited to small
scenes and quickly loses tracking under fast motion. One
of the most influential works using GPU computing and a
depth sensing camera is Kinect Fusion [8], which uses a
Truncated Signed Distance Field (TSDF) [9] to construct a
map, and the Iterative Closest Point algorithm for alignment
[10]. With real-time tracking Kinect Fusion is capable of pro-
ducing photorealistic reconstructions, but has large memory
requirements for mapping. Kinect Fusion forms the basis for
the bulk of modern SLAM systems, with some approaches
attempting to increase the efficiency of the map storage [11],
[12], or to correct for misalignment and drift by deforming
the underlying structure of the map representation as in
ElasticFusion [13]. To enable this deformation, ElasticFusion
makes use of an unordered list of surfels [14] as its map
representation, constructing visually consistent maps which
do not comprise of continuously connected surfaces.

There are several examples of systems which aim to
improve tracking robustness in Dense SLAM by including
acceleration and rotation rate measurements from an Inertial
Measurement Unit (IMU). These systems can be categorised
by the methods which they use to integrate the IMU data,
with tightly-coupled systems which incorporate data directly
into the tracking and mapping optimisation and loosely-
coupled approaches which determine an inertial pose which



is then used to refine the predicted pose from camera
tracking. The work in [15] is loosely-coupled and uses an
IMU-driven Extended Kalman Filter to aid estimating the
transformation between image pairs. In [16] a pose-graph
like approach is used, where poses predicted both from the
inertial measurements and stereo camera measurements are
fused together.

A number of systems tightly-couple inertial data into a
semi-dense SLAM system. For example the work in [17]
presents a monocular visual-inertial system with semi-dense
tracking and uses a planar prior to build a dense map below
frame rate. The tightly-coupled system in [5] is based on
LSD-SLAM [18] and outperforms vision only systems and
loosely-coupled approaches.

One of the first tightly coupled fully Dense Visual-Inertial
SLAM system is the work of Laidlow et al. [19] which per-
formed tight-coupling of inertial data into ElasticFusion [13].
They extend the frame-to-frame tracking by constructing
a combined geometric, photometric and inertial alignment
error, which is then minimised. Approaches such as this
based on IMU data suffer from increased drift and divergence
which can be due to the dependence on accelerometer
measurements and the need for IMU bias estimation. A
particularly interesting approach to reducing the drift in
Inertial Methods is found in GravityFusion [20]. They extend
ElasticFusion [13] by attaching a gravity measurement to
each surfel, and then use mesh deformation to enforce this
gravity direction across all the surfels in the map, effectively
removing two degrees of freedom from the drift in the map.

Whilst a vision-only or visual-inertial system is applicable
across more morphologies, a mobile robotics platform almost
always has odometry available, and commonly manipulator
kinematics for systems designed for environmental interac-
tion. It is therefore convenient to exploit these in a tightly-
coupled manner to improve navigation. Therefore we advo-
cate the addition of a direct kinematic error dependent on
the forward kinematics of its manipulator pose and a relative
odometric pose error. Much like a visual-inertial system, a
system which combines predictions from a robot manipulator
and odometric base similarly affords a robustness improve-
ment on challenging trajectories.

The inclusion of an error term from absolute pose actuators
on a robotic agent in our work is closely related to that of
Klingensmith et al. [21]. Like ARM-SLAM, we treat the
forward kinematics as a strong pose measurement between
base and camera while optimising a cost function at each
frame to localize the camera. However, their system fea-
tures a volumetric map and sparse, feature-based tracking,
as opposed to the dense map and full geometric tracking
employed in the work at hand. Additionally, our inclusion
of an odometric error allows us to move the mobile base.

Another closely related work is [22] which extends Elas-
ticFusion [13] with kinematic and inertial data from a
humanoid robot. They demonstrate that the addition of this
information allows their system to be robust to a variety
of challenging situations such as low visual information,
fast motion and continuous scene dynamics. Their system

operates in a semi-dense manner on stereo camera images
at 12Hz and sends pose corrections to the kinematic-inertial
tracking. Our system operates at a higher framerate and with
more rapid and complex rotations, due to the mounting of
the camera at the end of a manipulator rather than on the
head of a humanoid robot.

Our use of vision to improve the localisation of an
omnidirectional vehicle is related to a number of previous
works [23] [24] [17], but to our knowledge, ours is the only
system which implements a full Dense SLAM system on a
mobile agent with omnidirectional motion capability where
the transform between the camera frame and the agent body
frame is allowed to change.

In summary, we extend the RGB-D SLAM system Elas-
ticFusion [13] by incorporating tightly coupled kinematic
information from the robot actuators and odometric infor-
mation from the moving base. This system is capable of
real-time tracking and dense mapping running on a GPU
at 30Hz. It can run on any platform which is capable of
providing incremental 6-DOF pose measurements of its base
as well as relative pose measurements between base and
camera. An example map output is shown in figure 1. We
demonstrate greater robustness in the face of challenging
loopy trajectories, and handling of large surfaces of similar
texture by maintaining a consistent trajectory and globally
consistent map in cases where visual tracking alone cannot
be relied upon.

II. PRELIMINARIES

A. Notation

The following notation conventions will be used through-
out this report:

• A reference frame A will be denoted as FA

• The translation vector from the origin of FB to the
origin of FC as expressed in FA is written ArBC .

• The transformation matrix TAB ∈ R4×4 is used to
represent the transformation of homogeneous coordi-
nates of a point in FB to FA. The SO(3) rotation
corresponding with the transformation TAB can be
represented as a rotation matrix, CAB . Therefore, the
transformation can be composed as:

TAB =

[
CAB ArAB
0T 1

]
∈ SE(3).

• The rotation of FB with respect to FA can also be
expressed as a quaternion, qAB , with a left-hand side
operator []+, and a right-hand side operator, []⊕.

• A tilde above a variable, such as ũ, indicates that the
value was obtained from one or more sensor measure-
ments.

B. Hardware and Calibration

Our system is deployable on any platform which can
provide a 6-DOF forward kinematics estimate and 6-DOF
incremental odometry updates. The real-world research plat-
form used in this work is a KUKA Robotics YouBot [25].
It consists of a 5-DOF robot arm which we have fitted with



an ASUS Xtion Pro camera mounted on the final link close
to the end effector.

The arm is mounted on an omnidirectional base, allowing
the entirety of the robot to move in an arbitrary direction on
a surface of fairly constant elevation. A full description of
computing the predicted odometric pose is omitted here as
it is fairly involved. A good analysis of the motions of the
Mecanum wheels used is given in [26].

To calibrate the camera extrinsic transform with respect to
the robot’s end effector TCE , we developed a custom calibra-
tion package based on detecting AprilTags [27]. A standard
bundle adjustment algorithm implemented in Google Ceres
was used to minimise the re-projection error of detected
corner points by jointly optimising the camera extrinsics and
the relative poses of the tags in the world frame.

III. APPROACH OVERVIEW

The core architecture of our system is based on that
described by Whelan et al. [13]. Their approach alternates
between tracking the pose of an RGB-D camera against a
dense 3D map of an environment, and refining this map with
new observations. In this work, we refine the tracking module
with the addition of error terms based on measurements from
the actuators of a real-world robot with a moving base and
a manipulator with 5 degrees of freedom.

Specifically, in the approach described in [13] the tracking
step consists of a combined photometric and geometric cost
which is minimized at each frame to obtain an estimation
of the camera pose. Our system replaces this with a joint
optimisation over the pose of the robot base and the held
camera. We remove the photometric cost and impose addi-
tional constraints based on the kinematic and odometric in-
formation obtained from the robot. The odometric constraint
relates to both the current and previous base pose, so we
build a sliding-window optimisation problem and solve at
each iteration for the current and previous state. Figure 2
shows the state graph which is solved at each tracking state.
The linear prior is obtained by marginalisation of previous
states and related error terms.

We detect loop closures in the same manner as [13] and
transform the linear prior and previous state to maintain a
consistent world frame between the state graph and the map,
whilst smoothly deforming the map to maintain geometric
consistency.

IV. TRACKING

At the arrival of each new camera frame, we estimate
the current state xi by refining the prediction obtained
from odometry and forward kinematics. The system state
is comprised of the camera pose in the world frame with
translation WrWC and orientation qWC , as well as the base
pose in the world frame comprised of translation WrWB and
orientation qWB :

xi = (WrWBi , qWBi
, WrWCi , qWCi

) ∈ R6 × SO(3)2,
(1)

where index i ∈ {0, 1} indicates previous or current state.

Linear Prior

TWC
TWC

TWB TWB

Previous State Current StateError Terms

Ekin

Eicp

Eodom

Fig. 2: Our system jointly optimises the current and previous robot
state using error terms determined from the current frame and a
linear prior obtained from marginalisation of states and errors from
previous time iterations.

System states exist on a 12 dimensional manifold, and
state refinement is performed by a local perturbation δx in
the tangent space using the � operator, such that x = x�δx.
This operation is equivalent to standard vector operation for
the translations. For orientation a combination of quaternion
multiplication ⊗ and the exponential map is used: q� δα =
exp(δα) ⊗ q. This results in the following minimal local
coordinate representation:

δxi = [δrTWBi
δαTWBi

δrTWCi
δαTWCi

]T ∈ R12. (2)

A � operator can also be defined to compute the difference
between two system states. Similar to the update operator,
this corresponds to standard subtraction for regular vector
quantities. For the orientation, the form of this operator can
be constructed by finding the inverse of the � operator: p�
q = exp−1(p⊗ q−1).

Please refer to [28] or [29] for further details.
At each iteration, we compute a minimal state update to

the combined current and previous camera pose by minimis-
ing a combined cost ctrack computed from a linear prior,
geometric tracking, and the robot’s kinematics and odometry.
This cost has the following form:

ctrack =
1

2
eTprioreprior +

1

2

∑
k

eTicp,kWicp,keicp,k+

1

2
eTkinW kinekin +

1

2
eTodomW odomeodom.

(3)

A. State Propagation

To promote convergence of the tracking optimisation,
rather than following the usual dense tracking convention of
initializing with the previous camera state, we initialise the
current state using the robot kinematics and odometry. We
use the relative transform, measured by odometry T̃B1B0

between the robots previous and current base frame, to
initialise the base pose as T̄WB1 = T̄WB0 T̃

−1

B1B0
. And

similarly, initialise the arm pose as T̄WC1 = T̄WB1 T̃B1C1

with the measured forward kinematics T̃B1C1 .



B. Geometric Alignment

The geometric alignment error is based on the point-
to-plane iterative closest point (ICP) algorithm. We aim
to find the state update that minimises the point-to-plane
error between 3D back-projected points as viewed from the
current camera pose, and corresponding points in the global
model. The cost function for a single depth measurement k
is formulated as the difference between the back-projected
point, Cvk, as viewed from the current camera pose, and a
corresponding point in the global model Wvk:

eicp,k = Wnk · (Wvk − TWCCvk). (4)

This geometric alignment error is projected along the surface
normal, Wnk, and weighted according to the inverse covari-
ance Wicp associated with the measurement uncertainty.

C. Kinematic Error Term

The kinematic constraint acts on both TWC and TWB . It
constrains the relative transformation between them TBC =
T−1
WBTWC to be close to T̃BC measured from the robot

kinematics. It has the following form:

ekin =

[
B r̃BC −B rBC

2
[
q̃BC ⊗ q−1

BC

]
1:3

]
. (5)

The Information Matrix W kin we used for the robot
manipulator measurements was:

W kin =

[
σ−2
kin,rI3 03

03 σ−2
kin,αI3

]
, (6)

where we used σkin,r = 0.001 m and σkin,α = 0.003 rad.
The manipulator pose measurement is not platform spe-

cific, allowing our system to run on any platform capable of
providing a 6-DOF forward kinematics estimate. The infor-
mation matrix should be updated according to the platform.

D. Odometric Error Term

The odometric error acts on both TWB0
and TWB1

.
It constrains the relative transformation between them
TB0B1 = T−1

WB0
TWB1 to be close to T̃B0B1 measured from

the robot odometry. It has the following form:

eodom =

[
B0
r̃B0B1

−B0
rB0B1

2
[
q̃B0B1

⊗ q−1
B0B1

]
1:3

]
. (7)

The Information Matrix W odom we used for the robot
odometry measurements was:

W odom =

[
σ−2
odom,rI3 03

03 σ−2
odom,αI3

]
, (8)

where we used σodom,r = 0.005 m and σodom,α = 0.003 m.
The transformation measurement is not platform specific,

allowing our system to run on any platform capable of
providing a 6-DOF incremental pose measurement. The
information matrix should be updated according to the plat-
form.

E. Optimisation

To solve for the minimal cost ctrack at each iteration we
calculate the least-square solution

argmin
δx

‖Jδx+ b‖22 . (9)

Blocks of the Jacobian J and residual b for the geometric
alignment are populated and solved with a highly parallel
tree reduction in CUDA; the Jacobians and residuals for
the kinematic and odometric constraints are computed an-
alytically, the Jacobian and residual for the linear prior are
obtained either from marginalisation of previous states (in
normal operation), or by initialisation at the first frame or
following a loop closure.

The 24 x 24 system of normal equations is then solved on
CPU using a Gauss-Newton Iterative method with a three
level coarse-to-fine pyramid to compute the minimal state
update [δxT0 δxT1 ]T which is then applied using the �
operator.

F. Partial Marginalisation and Linearisation

Rather than solving the full historical state graph at each
time iteration, after solving for the current state and previous
state, we marginalise out the errors and previous state into
the linear prior for the next iteration. The equations for the
Gauss-Newton system are constructed from the combined
Jacobians, error terms and the previous and current states.
The system of equations takes the following form:[

JT0 J0 JT0 J1

JT1 J0 JT1 J1

] [
δx0

δx1

]
=

[
JT0 b0
JT1 b1

]
. (10)

After updating the current and previous states, we con-
struct the linear prior for the next iteration H∗

11 by marginal-
ising out the previous state using the Schur-Complement:

H∗
11 = JT1 J1 − JT1 J0(JT0 J0)−1JT0 J1 (11)

b∗1 = JT1 b1 − J
T
1 J0(JT0 J0)−1JT0 b0. (12)

The computed H∗
11 and b∗1 are then used as the linear

prior for the next instance of the optimisation problem upon
arrival of a new frame. This partial marginalisation fixes the
linearisation point, but each subsequent iteration will cause
this point to change. We thus need to apply a first order
correction based on the difference ∆x between the new and
old linearisation points [3],[5]:

H∗′

11 = H∗
11

b∗
′

1 = b∗1 +H∗
11∆x.

(13)

G. Initialisation

The state graph solved at each iteration requires a linear
prior and a previous state. For the first frame we initialise
the system with an arbitrary body pose and a camera pose
predicted directly from the forward kinematics. The linear
prior is then constructed as a deviation from the desired
initial state:



eprior =


W r̃WB −W rWB

2
[
q̃WB ⊗ q−1

WB

]
1:3

W r̃WC −W rWC

2
[
q̃WC ⊗ q−1

WC

]
1:3

 . (14)

H. Loop Closure

When the mapping module detects a loop closure, it
computes a new camera pose TWC′ to bring the camera
back into alignment with the map. Since only the base suffers
from drift, we first make the assumption TB′C′ = TBC ,
and then compute TWB′ = TWC′T−1

B′C′ . For the next
iteration after loop closure, we set the previous state to
x0 = (WrWB′ , qWB′ , WrWC′ , qWC′) and use a linear
prior of the same form as in the initialisation (equation 14).

V. MAPPING

Like the original ElasticFusion, our map is divided into
active and inactive regions. Tracking and fusing of new
points is done against the active region of the map which
is more recently observed. Patches of the active map which
have not been observed for a set period of time become
inactive. We maintain global consistency by matching cur-
rently observed portions of the active map with the inactive
map and then applying non-rigid spatial deformations with
a sparse deformation graph. We make no changes to the
mapping module in ElasticFusion so the full details are
omitted here. Please see [13] for further details.

VI. RESULTS

We evaluate our system on real-world data across two
criteria: quantitative tracking accuracy against ground truth
and qualitative reconstruction consistency. Our ground truth
trajectory data was collected using Vicon motion capture
system with 10 Bonita cameras. This ground truth pose data
is not suitable to construct a reliable ground truth scene
reconstruction [30], as very small pose errors can lead to
very large errors in reconstruction after depth projection. We
therefore restrict our reconstruction analysis to qualitative
statements. The computational hardware used consists of
an Nvidia GeForce 1080 CPU with an Intel Core i7 CPU
running at 3.60GHz. The system ran at 30FPS with an Asus
Xtion Pro at a resolution of 640x480 pixels.

Since we require robot kinematic data in addition to
camera frames, it is not possible to evaluate our system on
existing synthetic datasets. We evaluate on ten real-world
trajectories representing different types of motion. The first
four trajectories feature a cross section of the types of
behaviour we are interested in, featuring three scenarios that
commonly cause Dense SLAM systems to lose tracking, as
well as one easy trajectory. Sequence 1 features slow and
smooth motion with plenty of geometry to aid tracking.
This is typical of the type of sequence that dense visual
SLAM systems perform well on. Sequence 2 features fast
motion, including rapid rotation, but does not loop back on
itself and retains plenty of interesting geometry. Sequence
3 features long stretches of low texture visual information
with the robot looking either at carpeted floor or a tiled

Type ID ElasticFusion KO-Fusion Length

Slow 1 0.063293 0.085115 4.7621m

Fast Rotation 2 0.835225 0.142547 10.9872m

Low Texture 3 0.958348 0.350196 6.7732m

Loopy 4 0.956216 0.235642 20.7392m

Slow 5 0.062735 0.048303 3.9627m

Low Texture,
Fast Rotation

6 0.113347 0.055187 5.1444m

Slow 7 0.151327 0.128612 7.8781m

Slow, High
Geometry

8 0.009310 0.015374 2.6699m

Continuous
Rotation

9 1.167166 0.244728 7.1256m

Disconnected
Regions

10 0.746062 0.071342 10.8354m

TABLE I: Comparison of ElasticFusion and KO-Fusion on 10 real-
world trajectories. The table shows the absolute trajectory error in
metres of the predicted trajectory as compared to Ground Truth.
The Length is computed along the Ground Truth.

ceiling. Sequence 4 is very challenging, featuring loopy,
erratic and fast motion. The remaining six trajectories cover a
cross section of different types of behaviour, featuring some
standard trajectories and some additional peculiar behaviour
commonly encountered during robotic motion. Sequences 1,
4, 6, 9 and 10 feature at least one Loop Closure.

Through our experiments, we show that our dense RGB-
D-KO system outperforms the equivalent RGB-D system
on challenging trajectories typical of robot motion and is
more robust in scenarios with fast motions or with little
geometric variation. Elastic Fusion does show marginally
better performance on two of the trajectories which could
be due to a number of effects such as calibration or slippage
in the odometry.

A. Absolute Trajectory Error

We use the absolute trajectory error (ATE) described in
[30] to evaluate the predicted camera trajectories. Table
I shows the root mean-squared error (RMSE) in metres
for ElasticFusion and KO-Fusion against ground truth. Our
system displays comparable performance on the slow tra-
jectories, whilst proving much more capable on the more
challenging trajectories where the RGB-D only system loses
tracking.

Figure 3 shows the trajectory estimations for sequence
2 which features sections of fast rotation across previously
unseen parts of the world. ElasticFusion struggles to maintain
an accurate trajectory across the fast rotation where the
visual information does not provide a good constraint on
the system. In constrast, KO-Fusion is able to fall back on
the robot’s onboard measurements to help it navigate in these
conditions.

B. Qualitative Map Comparison

Figure 4 shows a qualitative mapping comparison between
ElasticFusion and KO-Fusion on sequence 2 - the fast



-4 -3 -2 -1 0

x position (m)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
y
 p

o
s
it
io

n
 (

m
)

Top View (Sequence 2)

Ground Truth

KO-Fusion

ElasticFusion

Fig. 3: Top view of the estimated poses from ElasticFusion and KO-
Fusion on sequence 2. ElasticFusion loses tracking on the sections
of fast rotation, whereas KO-Fusion is able to retain an accurate
pose estimation.

trajectory with quick rotations. We achieve a higher degree
of map consistency on this challenging trajectory. The top
row displays the greater global consistency of our system.
The robot first explores one section of the room and then
does a fast camera sweep on its way around the corner to
another section, during this motion visual tracking is lost,
and ElasticFusion completely loses global alignment, such
that the section of the room round the corner is mapped
almost perpendicular to the ground plane of the first section.
KO-Fusion maintains ground plane consistency through the
turn, and the second section of the room is aligned correctly
in the map.

The lower row shows local consistency in an object ob-
served during the turn. The chair by the doorway is observed
multiple times during the rotation, and our system is able
to more accurately position subsequent observations of the
object, causing better local consistency in the map.

C. Kinematic Drift

To demonstrate that our system is robust to drift in the
odometric data, we show in figure 5 a visualisation of the
accumulated error. The two wireframes show the predicted
position of the system according to the raw kinematic and
odometric data and according to our system. At the first
frame of operation, the two wireframes are in alignment,
but the visual tracking in the system allows it to account for
the drift by maintaining alignment with the map.

VII. CONCLUSIONS

We have demonstrated what we believe to be the first
Dense SLAM system to feature tight coupling of kinematic
and odometric data from a mobile robot. Our system runs
in real-time on any platform which provides incremental 6-
DOF pose measurements of the robot base as well as pose
measurements between this base and the camera. Our system
jointly optimises a cost function incorporating the scene

Fig. 4: Qualitative map comparison between KO-Fusion (left) and
ElasticFusion (right). The top two images highlight the improve-
ment in global coordinate consistency, whereas the bottom row
shows consistency in observing a single object (highlighted in red)
before and after a fast rotation.

Fig. 5: Visualisation of the difference between predicted pose (pink)
and raw kinematic and odometric data (red) about 30s into the
simple trajectory.

geometry and robot actuator data to estimate the pose of both
the robot base and a camera mounted on the end effector. It
supports a real-time fully dense 3D reconstruction supporting
loop closure.

We show through experiments on real-world data that our
system performs comparably to the RGB-D only version on
simple trajectories whilst being substantially more robust
to challenging motion and visual data including fast and
erratic motion with rapid rotation, and a lack of significant
photometric and geometric variation.

VIII. ACKNOWLEDGEMENTS

Research presented in this paper has been supported by
Dyson Technology Ltd. and the Engineering and Physical
Science Research Council [EPSRC] as part of the High
Performance Embedded and Distributed Systems Centre for
Doctoral Training [HIPEDS].



REFERENCES

[1] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source
SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE
Transactions on Robotics (T-RO), vol. 33, no. 5, pp. 1255–1262, 2017.

[2] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast Semi-Direct
Monocular Visual Odometry,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2014.

[3] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual-inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314–334, 2014.

[4] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “Imu preinte-
gration on manifold for efficient visual-inertial maximum-a-posteriori
estimation,” in Proceedings of Robotics: Science and Systems (RSS),
2015.

[5] V. Usenko, J. Engel, J. Stückler, and D. Cremers, “Direct visual-
inertial odometry with stereo cameras,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2016.

[6] A. I. Eliazar and R. Parr, “Dp-slam 2.0,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2004.

[7] R. A. Newcombe, S. Lovegrove, and A. J. Davison, “DTAM: Dense
Tracking and Mapping in Real-Time,” in Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), 2011.

[8] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. A. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. J. Davison, and
A. Fitzgibbon, “KinectFusion: Real-Time 3D Reconstruction and
Interaction Using a Moving Depth Camera,” in Proceedings of ACM
Symposium on User Interface Software and Technolog (UIST), 2011.

[9] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proceedings of SIGGRAPH, 1996.

[10] P. Besl and N. McKay, “A method for Registration of 3D Shapes.”
IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), vol. 14, no. 2, pp. 239–256, 1992.

[11] T. Whelan, J. B. McDonald, M. Kaess, M. Fallon, H. Johannsson,
and J. J. Leonard, “Kintinuous: Spatially Extended KinectFusion,” in
Workshop on RGB-D: Advanced Reasoning with Depth Cameras, in
conjunction with Robotics: Science and Systems, 2012.

[12] M. Klingensmith, I. Dryanovski, S. Srinivasa, and J. Xiao, “Chisel:
Real time large scale 3d reconstruction onboard a mobile device,”
Pittsburgh, PA, July 2015.

[13] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, “ElasticFusion: Real-time dense SLAM and light
source estimation,” International Journal of Robotics Research (IJRR),
vol. 35, no. 14, pp. 1697–1716, 2016.

[14] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb,
“Real-time 3D Reconstruction in Dynamic Scenes using Point-based
Fusion,” in Proc. of Joint 3DIM/3DPVT Conference (3DV), 2013.

[15] S. Omari, M. Bloesch, P. Gohl, and R. Siegwart, “Dense visual-inertial
navigation system for mobile robots,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2015.

[16] L. Ma, J. M. Falquez, S. McGuire, and G. Sibley, “Large scale dense
visual inertial SLAM,” in Proceedings of the International Symposium
on Experimental Robotics (ISER), 2015.

[17] A. Concha, G. Loianna, V. Kumar, and J. Civera, “Visual-inertial
direct SLAM,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2016.

[18] J. Engel, T. Schoeps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2014.

[19] T. Laidlow, M. Bloesch, W. Li, and S. Leutenegger, “Dense RGB-
D-Inertial SLAM with map deformations,” in Proceedings of the
IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), 2017.

[20] P. Puri, D. Jia, and M. Kaess, “Gravityfusion: Real-time dense
mapping without pose graph using deformation and orientation,” in
Proceedings of the IEEE/RSJ Conference on Intelligent Robots and
Systems (IROS), September 2017.

[21] M. Klingensmith, S. Srinivasa, and M. Kaess, “Articulated robot
motion for simultaneous localization and mapping (arm-slam),” Pro-
ceedings of the IEEE International Conference on Robotics and
Automation (ICRA), January 2016.

[22] R. Scona, S. Nobili, Y. R. Petillot, and M. Fallon, “Direct visual SLAM
fusing proprioception for a humanoid robot,” IEEE International
Conference on Intelligent Robots and Systems, vol. 2017-Septe, no.
Figure 1, pp. 1419–1426, 2017.

[23] K. Nagatani, S. Tachibana, M. Sofue, and Y. Tanaka, “Improvement
of Odometry for Omnidirectional Vehicle using Optical Flow Infor-
mation,” Tech. Rep., 2000.

[24] J. Inthiam and C. Deelertpaiboon, “Self-localization and
navigation of holonomic mobile robot using omni-directional
wheel odometry,” in TENCON 2014 - 2014 IEEE Region 10
Conference. IEEE, oct 2014, pp. 1–5. [Online]. Available:
http://ieeexplore.ieee.org/document/7022281/

[25] “Kuka YouBot.” [Online]. Available: http://www.youbot-store.com/
[26] A. Gfrerrer, “Geometry and kinematics of the Mecanum wheel,”

Computer Aided Geometric Design, vol. 25, no. 9, pp. 784–791, dec
2008.

[27] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). IEEE, May 2011, pp. 3400–3407.

[28] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder,
“Integrating generic sensor fusion algorithms with sound state
representations through encapsulation of manifolds,” Information
Fusion, vol. 14, no. 1, pp. 57–77, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1566253511000571

[29] M. Bloesch, H. Sommer, T. Laidlow, M. Burri, G. Nützi,
P. Fankhauser, D. Bellicoso, C. Gehring, S. Leutenegger, M. Hutter,
and R. Siegwart, “A Primer on the Differential Calculus of 3D
Orientations,” CoRR, vol. abs/1606.0, 2016. [Online]. Available:
http://arxiv.org/abs/1606.05285

[30] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A Benchmark for the Evaluation of RGB-D SLAM Systems,” in
Proceedings of the IEEE/RSJ Conference on Intelligent Robots and
Systems (IROS), 2012.


