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Abstract— Ever more robust, accurate and detailed mapping
using visual sensing has proven to be an enabling factor for
mobile robots across a wide variety of applications. For the next
level of robot intelligence and intuitive user interaction, maps
need to extend beyond geometry and appearance — they need
to contain semantics. We address this challenge by combining
Convolutional Neural Networks (CNNs) and a state-of-the-art
dense Simultaneous Localisation and Mapping (SLAM) system,
ElasticFusion, which provides long-term dense correspondences
between frames of indoor RGB-D video even during loopy
scanning trajectories. These correspondences allow the CNN’s
semantic predictions from multiple view points to be proba-
bilistically fused into a map. This not only produces a useful
semantic 3D map, but we also show on the NYUv2 dataset that
fusing multiple predictions leads to an improvement even in the
2D semantic labelling over baseline single frame predictions. We
also show that for a smaller reconstruction dataset with larger
variation in prediction viewpoint, the improvement over single
frame segmentation increases. Our system is efficient enough
to allow real-time interactive use at frame-rates of ≈25Hz.

I. INTRODUCTION

The inclusion of rich semantic information within a dense
map enables a much greater range of functionality than
geometry alone. For instance, in domestic robotics, a simple
fetching task requires knowledge of both what something
is, as well as where it is located. As a specific example,
a user communicating with a robot with a shared spatial
and semantic understanding may issue commands such as
‘fetch the coffee mug from the nearest table on your right.’
Similarly, the ability to query semantic information within
a map is useful for humans directly, providing a database
for answering spoken queries about the semantics of a
previously made map; ‘How many chairs do we have in
the conference room? What is the distance between the
lectern and its nearest chair?’ In this work, we combine
the geometric information from a state-of-the-art SLAM
system ElasticFusion [26] with recent advances in semantic
segmentation using Convolutional Neural Networks (CNNs).

Our approach is to use the SLAM system to provide
correspondences from the 2D frame into a globally consistent
3D map. This allows the CNN’s semantic predictions from
multiple viewpoints to be probabilistically fused into a dense
semantically annotated map, as shown in Figure 1. Elas-
ticFusion is particularly suitable for fusing semantic labels
because its surfel-based surface representation is automati-
cally deformed to remain consistent after the small and large
loop closures which would frequently occur during typical
interactive use by an agent (whether human or robot). As the
surface representation is deformed and corrected, individual

Fig. 1: The output of our system: On the left, a dense surfel
based reconstruction from a video sequence in the NYUv2
test set. On the right the same map, semantically annotated
with the classes given in the legend below.

surfels remain persistently associated with real-world entities
and this enables long-term fusion of per-frame semantic
predictions over wide changes in viewpoint. The geometry
of the map itself can also provide useful information which
can be used to regularise the final predictions.

Our pipeline is designed to work online, and although
we have not focused on performance, the efficiency of each
component leads to a real-time capable (≈ 25Hz) interactive
system. The resulting map could also be used as a basis for
more expensive offline processing to further improve both
the geometry and the semantics; however that has not been
explored in the current work.

We evaluate the accuracy of our system on the NYUv2
dataset, and show that by using information from the un-
labelled raw video footage we can improve upon baseline
approaches performing segmentation using only a single
frame. This suggests the inclusion of SLAM not only pro-
vides an immediately useful semantic 3D map, but also that
many state-of-the art 2D single frame semantic segmentation
approaches may see a boost in performance when combined
with SLAM.

The NYUv2 dataset was not taken with full room recon-
struction in mind, and often does not provide significant vari-
ations in viewpoints for a given scene. To explore the benefits
of SemanticFusion within a more thorough reconstruction,
we developed a small dataset of a reconstructed office
room, annotated with the NYUv2 semantic classes. Within
this dataset we witness a more significant improvement in
segmentation accuracy over single frame 2D segmentation.
This indicates that the system is particularly well suited to
longer duration scans with wide viewpoint variation aiding
to disambiguate the single-view 2D semantics.



II. RELATED WORK

The works most closely related are Stückler et al. [23] and
Hermans et al. [7]; both aim towards a dense semantically
annotated 3D map of indoor scenes. They both obtain per-
pixel label predictions for incoming frames using Random
Decision Forests, whereas ours exploits recent advances in
Convolutional Neural Networks that provide state-of-the-art
accuracy with a real-time capable run-time performance.
They both fuse predictions from different viewpoints in a
classic Bayesian framework. Stückler et al. [23] used a
Multi-Resolution Surfel Map-based SLAM system capable
of operating at 12.8Hz, however unlike our system they
do not maintain a single global semantic map as local key
frames store aggregated semantic information and these are
subject to graph optimisation in each frame. Hermans et
al. [7] did not use the capability of a full SLAM system with
explicit loop closure: they registered the predictions in the
reference frames using only camera tracking. Their run-time
performance was 4.6Hz, which would prohibit processing a
live video feed, whereas our system is capable of operating
online and interactively. As here, they explore regularising
their predictions using Krähenbühl and Koltun’s [12] fully-
connected CRF inference scheme to obtain a final semantic
map.

Previous work by Salas-Moreno et al. aimed to create a
fully capable SLAM system, SLAM++ [19], which maps
indoor scenes at the level of semantically defined objects.
However, their method is limited to mapping objects that are
present in a pre-defined database. It also does not provide the
dense labelling of entire scenes that we aim for in this work,
which also includes walls, floors, doors, and windows which
are equally important to describe the extent of the room.
Additionally, the features they use to match template models
are hand-crafted unlike our CNN features that are learned in
an end-to-end fashion with large training datasets.

The majority of other approaches to indoor semantic la-
belling either focuses on offline batch mapping methods [24],
[11] or on single-frame 2D segmentations which do not
aim to produce a semantically annotated 3D map [3], [20],
[15], [22]. Valentin et al. [24] used a CRF and a per-
pixel labelling from a variant of TextonBoost to reconstruct
semantic maps of both indoor and outdoor scenes. This
produces a globally consistent 3D map, however inference is
performed on the whole mesh once instead of incrementally
fusing the predictions online. Koppula et al. [11] also tackle
the problem on a completed 3D map, forming segments
of the map into nodes of a graphical model and using
hand-crafted geometric and visual features as edge potentials
to infer the final semantic labelling. In outdoor semantic
labelling, Vineet et al. [25] produced an incremental 3D
reconstruction from stereo pairs and used a Random Forest
with a CRF for semantic labelling. However they also did
not have a full SLAM system capable of loop closure while
maintaining a globally consistent map structure.

Our semantic mapping pipeline is inspired by the re-
cent success of Convolution Neural Networks in semantic

Fig. 2: An overview of our pipeline: Input images are used
to produce a SLAM map, and a set of probability prediction
maps (here only four are shown). These maps are fused into
the final dense semantic map via Bayesian updates.

labelling and segmentation tasks [13], [16], [17]. CNNs
have proven capable of both state-of-the-art accuracy and
efficient test-time performance. They have have exhibited
these capabilities on numerous datasets and a variety of data
modalities, in particular RGB [17], [16], Depth [1], [6] and
Normals [2], [4], [5]. In this work we build on the CNN
model proposed by Noh et. al. [17], but we modify it to take
advantage of the directly available depth data in a manner
that does not require significant additional pre-processing.

III. METHOD
Our SemanticFusion pipeline is composed of three sepa-

rate units; a real-time SLAM system ElasticFusion, a Con-
volutional Neural Network, and a Bayesian update scheme,
as illustrated in Figure 2. The role of the SLAM system is
to provide correspondences between frames, and a globally
consistent map of fused surfels. Separately, the CNN receives
a 2D image (for our architecture this is RGB or RGBD, for
Eigen et al. [2] it also includes normals), and returns a set
of per-pixel class probabilities. Finally, a Bayesian update
scheme keeps track of the class probability distribution for
each surfel, and uses the correspondences provided by the
SLAM system to update those probabilities based on the
CNN’s predictions. Finally, we also experiment with a CRF
regularisation scheme to use the geometry of the map itself
to improve the semantic predictions [7], [12]. The following
section outlines each of these components in more detail.

A. SLAM Mapping

We choose ElasticFusion as our SLAM system.1 For each
arriving frame, k, ElasticFusion tracks the camera pose

1Available on https://github.com/mp3guy/ElasticFusion
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Fig. 3: CNN Architecture: RGB-CNN of Noh et al. [17] used in our experiments. “conv3” denotes an 3×3 kernel size,
with unit border padding. BN denotes batch normalisation. For RGBD experiments, the input actually has 4 channels.

via a combined ICP and RGB alignment, to yield a new
pose TWC , where W denotes the World frame and C the
camera frame. New surfels are added into our map using this
camera pose, and existing surfel information is combined
with new evidence to refine their positions, normals, and
colour information. Additional checks for a loop closure
event run in parallel and the map is optimised immediately
upon a loop closure detection.

The deformation graph and surfel based representation of
ElasticFusion lend themselves naturally to the task at hand,
allow probability distributions to be ‘carried along’ with
the surfels during loop closure, and also fusing new depth
readings to update the surfel’s depth and normal information,
without destroying the surfel, or its underlying probability
distribution. It operates at real-time frame-rates at VGA
resolution and so can be used both interactively by a human
or in robotic applications. We maintained many of the the
default parameters in the public implementation, The depth
cutoff was extended from 3m to 8m to allow reconstruction
on sequences with geometry outside of the 3m range, and
we disabled the RGB component of tracking on the NYUv2
dataset due to a white border produced from preprocessing.

B. CNN Architecture

Our CNN is implemented in caffe [10] and adopts the
Deconvolutional Semantic Segmentation network architec-
ture proposed by Noh et. al. [17], depicted in Figure 3.
Their architecture is itself based on the VGG 16-layer
network [21], but with the addition of max unpooling and
deconvolutional layers which are trained to output a dense
pixel-wise semantic probability map. This CNN was origi-
nally trained for RGB input, and in the following sections
when using a network with this setup we describe it RGB-
CNN.

Given the availability of depth data, we modified the
original network architecture to accept depth information as
a fourth channel. Unfortunately, the depth modality lacks
the large scale training datasets of its RGB counterpart. The
NYUv2 dataset only consists of 795 labelled training images.
To effectively use depth, we initialized the depth filters with

the average intensity of the other three inputs, which had
already been trained on a large dataset, and converted it
from the 0–255 colour range to the 0–8m depth range by
increasing the weights by a factor of ≈ 32×.

We rescale incoming images to the native 224×224 reso-
lution for our CNNs, using bilinear interpolation for RGB,
and nearest neighbour for depth. In our experiments with
the Eigen et. al. implementation we rescale the inputs in
the same manner to 320×240 resolution. We upsample the
network output probabilites to full 640×480 image resolution
using nearest neighbour when applying the update to surfels,
described in the section below.

C. Incremental Semantic Label Fusion

In addition to normal and location information, each surfel
(index s) in our map, M, stores a discrete probability
distribution, P (Ls = li) over the set of class labels, li ∈ L.
Each newly generated surfel is initialised with a uniform
distribution over the semantic classes, as we begin with no
a priori evidence as to its latent classification.

After a prespecified number of frames, we perform a
forward pass of the CNN with the image Ik coming directly
from the camera. Depending on the CNN architecture, this
image can include any combination of RGB, depth, or
normals. Given the data Ik of the kth image, the output of
the CNN is interpreted in a simplified manner as a per-pixel
independent probability distribution over the class labels
P (Ou = li|Ik), with u denoting pixel coordinates.

Using the tracked camera pose TWC , we associate every
surfel at a given 3D location Wx(s) in the map, with
pixel coordinates u via the camera projection u(s, k) =
π(TCW (k)Wx(s)), employing the homogeneous transfor-
mation matrix TCW (k) = T−1

WC(k) and using homogeneous
3D coordinates. This enables us to update all the surfels in
the visible set Vk ⊆ M with the corresponding probability
distribution by means of a recursive Bayesian update

P (li|I1,...,k) =
1

Z
P (li|I1,...,k−1)P (Ou(s,k) = li|Ik), (1)



which is applied to all label probabilities per surfel, finally
normalising with constant Z to yield a proper distribution.

It is the SLAM correspondences that allow us to accurately
associate label hypotheses from multiple images and com-
bine evidence in a Bayesian way. The following section dis-
cusses how the naı̈ve independence approximation employed
so far can be mitigated, allowing semantic information to be
propagated spatially when semantics are fused from different
viewpoints.

D. Map Regularisation

We explore the benefits of using map geometry to regu-
larise predictions by applying a fully-connected CRF with
Gaussian edge potentials to surfels in the 3D world frame,
as in the work of Hermans et al. [7], [12]. We do not use the
CRF to arrive at a final prediction for each surfel, but instead
use it incrementally to update the probability distributions.
In our work, we treat each surfel as a node in the graph. The
algorithm uses the mean-field approximation and a message
passing scheme to efficiently infer the latent variables that
approximately minimise the Gibbs energy E of a labelling,
x, in a fully-connected graph, where xs ∈ {li} denotes a
given labelling for the surfel with index s.

The energy E(x) consists of two parts, the unary data term
ψu(xs) is a function of a given label, and is parameterised by
the internal probability distribution of the surfel from fusing
multiple CNN predictions as described above. The pairwise
smoothness term, ψp(xs, xs′) is a function of the labelling
of two connected surfels in the graph, and is parameterised
by the geometry of the map:

E(x) =
∑
s

ψu(xs) +
∑
s<s′

ψp(xs, xs′). (2)

For the data term we simply use the negative logarithm of
the chosen labelling’s probability for a given surfel,

ψu(xs) = −log(P (Ls = xs|I1,...,k)). (3)

In the scheme proposed by Krähenbühl and Koltun [12]
the smoothness term is constrained to be a linear combination
of K Gaussian edge potential kernels, where fs denotes some
feature vector for surfel, s, and in our case µ(xs, xs′) is given
by the Potts model, µ(xs, xs′) = [xs 6= xs′ ]:

ψp(xs, xs′) = µ(xs, xs′)

(
K∑
m=1

w(m)k(m)(fs, fs′)

)
. (4)

Following previous work [7] we use two pairwise poten-
tials; a bilateral appearance potential seeking to closely tie
together surfels with both a similar position and appearance,
and a spatial smoothing potential which enforces smooth
predictions in areas with similar surface normals:

k1(fs, fs′) = exp

(
−|ps − ps′ |2

2θ2α
− |cs − cs′ |2

2θ2β

)
, (5)

Fig. 4: Our office reconstruction dataset: On the left are
the captured RGB and Depth images. On the right, is our
3D reconstruction and annotation. Inset into that is the final
ground truth rendered labelling we use for testing.

k2(fs, fs′) = exp
(
−|ps − ps′ |2

2θ2α
− |ns − ns′ |2

2θ2γ

)
. (6)

The gaussian edge potentials allow for an efficient mean
field approximation algorithm for inference even in a fully
connected CRF. The computational cost of this algorithm is
linear in the number of surfels, which is particularly useful
in our case as the SLAM system can potentially enable long
trajectories and millions of surfels.

We chose unit standard deviations of θα = 0.05m in the
spatial domain, θβ = 20 in the RGB colour domain, and
θγ = 0.1 radians in the angular domain. We experimented
with varying these parameters on the reconstruction dataset
below, but this did not lead to any noticeable improvement.
We also maintained w1 of 10 and w2 of 3 for all experiments.
These were the default settings in Krähenbühl and Koltun’s
public implementation2 [12] .

IV. EXPERIMENTS

A. Network Training

We initialise our CNNs with weights from Noh et. al. [17]
trained for segmentation on the PASCAL VOC 2012 segmen-
tation dataset [3]. For depth input we initialise the fourth
channel as described in Section III-B, above. We finetuned
this network on the training set of the NYUv2 dataset for
the 13 semantic classes defined by Couprie et al. [1]. The
NYUv2 training images contain depth inpainted with the
colorization scheme of Levin et al. [14] and we continue to
preprocess depth in this manner in the experiments below.

For optimisation we used standard stochastic gradient
descent, with a learning rate of 0.01, momentum of 0.9, and
weight decay of 5 × 10−4. After 10k iterations we reduced
the learning rate to 1 × 10−3. We use a mini-batch size of
64, and trained the networks for a total of 20k iterations over
the course of 2 days on an Nvidia GTX Titan X.

2Available from: http://www.philkr.net/home/densecrf
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Fig. 5: The class average accuracy of our RGB-CNN on the
office reconstruction dataset against the number of frames
skipped between fusing semantic predictions. We perform
this evaluation without CRF smoothing. The right hand axis
shows the estimated run-time performance in terms of FPS.

B. Reconstruction Dataset

We produced a small experimental RGB-D reconstruction
dataset, which aimed for a relatively complete reconstruction
of an office room. The trajectory used is notably more loopy,
both locally and globally, than the NYUv2 dataset which
typically consists of a single back and forth sweep. We
believe the trajectory in our dataset is more representative
of the scanning motion an active agent may perform when
inspecting a scene.

We also took a different approach to manual annotation of
this data, by using a 3D tool we developed to annotate the
surfels of the final 3D reconstruction with the 13 NYUv2
semantic classes under consideration (only 9 were present).
We generated 2D projections of our 3D annotations using
the camera pose trajectory from the SLAM system, enabling
us to render ground truth labels for any frame in the input
video sequence. This approach was much more efficient than
producing manual 2D single-frame annotations, and produces
a more temporally consistent ground truth. The tool, and the
resulting annotations are depicted in Figure 4. Every 100th

frame of the sequence was used as a test sample to validate
our predictions against the annotated ground truth, resulting
in 49 test frames.

C. CNN and CRF Update Frequency Experiments

We used the dataset to evaluate the accuracy of our
system when only performing a CNN prediction on a subset
of the incoming video frames. We used the RGB-CNN
described above, and evaluated the accuracy of our system
when performing a prediction on every 2n frames, where
n ∈ {0..7}. We calculate the average frame-rate based upon
the run-time analysis discussed in Section IV-F. As shown
in Figure 5, the accuracy is highest (50.8%) when every

500 1,000
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Fig. 6: The average class accuracy processing every 10th

frame with a CNN, with a variable number of frames
between CRF updates. If applied too frequently the CRF
was detrimental to performance, and the performance im-
provement from the CRF was not significant for this CNN.

frame is processed by the network, however this leads to
a significant drop in frame-rate to 8.2Hz. Processing every
10th frame results in a slightly reduced accuracy (48.6%),
but over three times the frame-rate of 25.3Hz. This is the
approach taken in all of our subsequent evaluations.

We also evaluated the effect of varying the number of
frames between CRF updates (Figure 6). We found that when
applied too frequently the CRF resulted in a significant re-
duction in accuracy. Performing an update every 500 frames
results in a slight improvement, and so we use that as the
default update rate in all subsequent experiments.

D. Accuracy Evaluation

We evaluate the accuracy of our SemanticFusion pipeline
against the accuracy achieved by a single frame CNN seg-
mentation. Here we give two accuracy metrics; pixel average
accuracy, the proportion of correctly classified pixels out of
all ground truth labelled pixels, and class average accuracy,
which is the average of the diagonal of the prediction’s
normalised confusion matrix. The results of this evaluation
on the reconstruction dataset are summarised in Table I.
We observe that in all cases semantically fusing additional
viewpoints improved the accuracy of the segmentation over
a single frame system. For the RGB-CNN, performance
improved from 39.4% for a single frame to 48.6% when
projecting the predictions from the 3D SemanticFusion map.
The RGBD-CNN, also saw a marked improvement, from
43.6% for a single frame to 48.3% with SemanticFusion.

We also evaluate our system on the office dataset when
using predictions from the state-of-the-art CNN developed
by Eigen et al.3 based on the VGG architecture. To maintain

3We use the publicly available network weights and implementation from:
http://www.cs.nyu.edu/˜deigen/dnl/.
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TABLE I: Reconstruction dataset results: SF denotes that the labels were produced by SemanticFusion, and the results were
captured immediately if a frame with ground truth labelling was present. When no reconstruction is present for a pixel, we fall back to
the predictions of the baseline single frame network. All accuracy evaluations were performed at 320× 240 resolution.

consistency with the rest of the system, we perform only a
single forward pass of the network to calculate the output
probabilities. The network requires surface normal informa-
tion, and so to ensure the input pipeline is the same as
in Eigen et al. [2], we preprocess the sequence with the
MATLAB script linked to in the project page to produce
normals from the current depth frame. The requirement
of this preprocessing step prohibits using the Eigen et al.
CNN live in real-time, but we include it here to show that
even a state-of-the-art CNN with additional useful input
channels such as normal information, can still benefit from
fusing predictions from multiple viewpoints. With this setup
we see an improvement of 2.9% over the single frame
implementation with SemanticFusion, from 57.1% to 60.0%.

The performance benefit of the CRF was less clear. It
provided a very small improvement of +0.5% for the Eigen
network and +0.2% for the RGB-CNN, but a slight detriment
to the RGBD-CNN of -0.2%.

E. NYU Dataset

We choose to validate our approach on the NYUv2
dataset [20], as it is one of the few datasets which provides
all of the information required to evaluate semantic RGB-D
reconstruction. The SUN RGB-D [22], although an order of
magnitude larger than NYUv2 in terms of labelled images,
does not provide the raw RGB-D videos and therefore could
not be used in our evaluation.

The NYUv2 dataset itself is still not ideally suited to
the role. Many of the 206 test set video sequences exhibit
significant drops in frame-rate and thus prove unsuitable for
tracking and reconstruction. In our evaluations we excluded
any sequence which experienced a frame-rate under 2Hz.
The remaining 140 test sequences result in 360 labelled test
images of the original 654 image test set in NYUv2. The
results of our evaluation are presented in Table II and some
qualitative results are shown in Figure 7.

Overall, fusing semantic predictions resulted in a notable
improvement over single frame predictions. However, the

total relative gains of 2.3% for the RGBD-CNN was approx-
imately half of the 4.7% improvement witnessed in the office
reconstruction dataset. We believe this is largely a result
of the style of capturing NYUv2 datasets. The primarily
rotational scanning pattern often used in test trajectories
does not provide as many useful different viewpoints from
which to fuse independent predictions. Despite this, there
is still a significant accuracy improvement over the single
frame predictions. The RGBD-CNN performed better than
the RGB-CNN both in the baseline (+3.3%), and after
SemanticFusion (+3.7%).

We also improved upon the state-of-the-art Eigen et al. [2]
CNN, with the class average accuracy going from 59.9%
to 63.2% (+3.3%). This result clearly shows, even on this
challenging dataset, the capacity of SemanticFusion to not
only provide a useful semantically annotated 3D map, but
also to improve the predictions of state-of-the-art 2D se-
mantic segmentation systems. It is also interesting to note
that although better overall, the Eigen Multi-Scale CNN
produced quite different accuracies for individual classes
when compared against our CNNs. It performed particularly
well on tv, table, and ceiling while under performing in
bed, books, and objects. The differences in the Eigen CNN
architecture, input channels, and training procedure make it
difficult to speculate on why this may be the case without
further detailed experiments, however it does suggest that the
networks may complement each other and a hybrid approach
could improve performance further.

We also give the accuracy results of the similar work of
Hermans et al. [7] which used Random Decision Forests.
It can be seen that the accuracy of even the baseline
CNN approach is superior and the difference when using
SemanticFusion is greater still. It is however difficult to draw
precise comparisons as we exclude sequences with less than
a 2Hz frame-rate, while they did not.

The improvement as a result of the CRF was not particu-
larly significant, but slightly positive for all CNNs. Eigen’s
CNN saw +0.4% improvement and the RGBD-CNN saw
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RGB 61.1 52.0 27.9 44.3 93.9 59.7 60.8 68.0 30.2 21.0 14.7 86.0 60.4 52.3 62.2
RGB-SF 60.4 49.8 32.5 50.8 92.8 65.4 60.6 62.5 43.6 30.5 18.8 85.8 63.9 55.2 67.2
RGB-SF-CRF 60.5 49.7 32.7 50.9 93.0 65.5 60.5 62.6 43.6 30.0 18.8 85.9 64.0 55.3 67.2

RGBD 62.5 60.5 35.0 51.7 92.1 54.5 61.3 72.1 34.7 26.1 32.4 86.5 53.5 55.6 62.0
RGBD-SF 61.7 58.5 43.4 58.4 92.6 63.7 59.1 66.4 47.3 34.0 33.9 86.0 60.5 58.9 67.5
RGBD-SF-CRF 62.0 58.4 43.3 59.5 92.7 64.4 58.3 65.8 48.7 34.3 34.3 86.3 62.3 59.2 67.9

Eigen [2] 42.3 49.1 73.1 72.4 85.7 60.8 46.5 57.3 38.9 42.1 68.5 85.5 55.8 59.9 66.5
Eigen-SF 47.8 50.8 79.0 73.3 90.5 62.8 46.7 64.5 45.8 46.0 70.7 88.5 55.2 63.2 69.3
Eigen-SF-CRF 48.3 51.5 79.0 74.7 90.8 63.5 46.9 63.6 46.5 45.9 71.5 89.4 55.6 63.6 69.9

Hermans et al. [7] 68.4 45.4 83.4 41.9 91.5 37.1 8.6 35.8 28.5 27.7 38.4 71.8 46.1 48.0 54.3

TABLE II: NYUv2 test set results: SF denotes that the labels were produced by SemanticFusion, and the results were captured
immediately if a keyframe was present. When no reconstruction is present for a pixel, we fall back to the predictions of the baseline single
frame network. Note that we calculated the accuracies of [2] using their publicly available implementation. Our results are not directly
comparable with Hermans et al. [7] as we only evaluate on a subset of the test set, and their annotations are not available. However,
we include their results for reference. Following previous work [7] we exclude pixels without a corresponding depth measurement. All
accuracy evaluations were performed at 320× 240 resolution.

+0.3%, while the RGB-CNN only saw +0.1%. An interesting
avenue for future work would be further experiments to
improve the performance of both this and other kinds of
map-based semantic regularisation schemes.

F. Run-time Performance

We benchmark the performance of our system on a random
sample of 30 sequences from the NYUv2 test set. All tests
were performed on an Intel Core i7-5820K 3.30GHz CPU
and an Nvidia Titan Black GPU. Our SLAM system requires
29.3ms on average to process each frame and update the
map. For every frame we also update our stored surfel
probability table to account for any surfels removed by the
SLAM system. This process requires an additional 1.0ms.
As discussed above, the other components in our system do
not need to be applied for every frame. A forward pass of
our CNN requires 51.2ms and our Bayesian update scheme
requires a further 41.1ms. Our standard scheme performs
this every 10 frames, resulting in an average frame-rate of
25.3Hz.

Our experimental CRF implementation was developed
only for the CPU in C++, but the message passing al-
gorithm adopted could lend itself to an optimised GPU
implementation. The overhead of copying data from the
GPU and performing inference on a single threaded CPU
implementation is significant, and we initialise the entire
CRF lattice from scratch each time it is run. Therefore
on average, it takes 20.3s to setup and perform 10 CRF
iterations. In the evaluation above, we perform a CRF update
once every 500 frames, but for online use it can be disabled
entirely or applied once at the conclusion of a sequence.

V. CONCLUSIONS
Our results confirm the strong expectation that using a

SLAM system to provide pixel-wise correspondences be-

tween frames allows the fusion of per-frame 2D segmen-
tations into a coherent 3D semantic map. It is the first time
that this has been demonstrated with a real-time, loop-closure
capable approach suitable for interactive room scanning. Not
only that, the incorporation of such a map led to a significant
increase in the corresponding 2D segmentation accuracy.

We exploited the flexibility of CNNs to improve the
accuracy of a pretrained RGB network by incoporating an
additional depth channel. In this work we opted for the
simplest feasible solution to allow this new modality. Some
recent work has explored other ways to incorporate depth
information [8], but such an approach requires duplication of
the lower network parameters and was infeasible in our sys-
tem due to GPU memory limitations. Future research could
incorporate CNN compression [9], which would not only
enable the incorporation of other modalities, but also offer
exciting new directions in real-time semantic segmentation
on low memory and power mobile devices.

We believe that this is just the start of how knowledge
from SLAM and machine-learned labelling can be brought
together to enable powerful semantic and object-aware map-
ping. Our own reconstruction-focused dataset shows a much
larger improvement in labelling accuracy via fusion than the
NYU dataset with less varied trajectories, this underlines
the importance of viewpoint variation. It also hints at the
improvements possible with significantly longer trajectories,
such as those of an autonomous robot in the field making
direct use of the semantically annotated 3D map.

Going further, it is readily apparent, as demonstrated in a
so far relatively simple manner in systems like SLAM++ [19]
that not just should reconstruction be used to provide cor-
respondence to help labelling, but that labelling/recognition
can make reconstruction and SLAM much more accurate
and efficient. A loop-closure capable surfel map as in Elas-



Fig. 7: Qualitative NYUv2 test set results: The results of
SemanticFusion are using the RGBD-CNN with CRF against the
same networks single frame predictions. For evaluation, the black
regions of SemanticFusion denoting areas without a reconstruction,
are replaced with the baseline CNN predictions. The first two rows
show instances where SemanticFusion has clearly improved the
accuracy of the 2D annotations. The third row shows an example
of a very rotational trajectory, where there is little difference as a
result of fusing predictions. The final row shows an example where
the trajectory was clearly not taken with reconstruction in mind,
and the distant geometry leads to tracking and mapping problems
even within our subset requiring 2Hz frame-rate. Cases such as this
provide an advantage to the accuracy of the single frame network.

ticFusion is highly suitable for applying operations such as
class-specific smoothing (as in the extreme case of planar
region recognition and fitting [18]), and this will be an
interesting direction. More powerful still will be to interface
with explicit object instance recognition and replace elements
of the surfel map directly with 3D object models once
confidence reaches a suitable threshold.
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