
Nonlinear MPC with Motor Failure Identification and Recovery for
Safe and Aggressive Multicopter Flight

Dimos Tzoumanikas, Qingyue Yan, and Stefan Leutenegger

Abstract— Safe and precise reference tracking is a crucial
characteristic of Micro Aerial Vehicles (MAVs) that have to
operate under the influence of external disturbances in cluttered
environments. In this paper, we present a Nonlinear Model
Predictive Control (NMPC) that exploits the fully physics based
non-linear dynamics of the system. We furthermore show how
the moment and thrust control inputs can be transformed
into feasible actuator commands. In order to guarantee safe
operation despite potential loss of a motor under which we
show our system keeps operating safely, we developed an Ex-
tended Kalman Filter (EKF) based motor failure identification
algorithm. We verify the effectiveness of the developed pipeline
in flight experiments with and without motor failures.

I. INTRODUCTION

During the past years, the use of MAVs in applications
such as environmental monitoring, aerial filming, surveil-
lance and search and rescue has dramatically increased.
However, most commonly used control algorithms lack the
necessary robustness needed for the critical applications
stated above and they often struggle when aggressive ma-
neuvers are required. To some extent, these problems can be
eliminated when the Micro Aerial Vehicle (MAV) model is
taken into account in the control design. Model based control
approaches such as Model Predictive Controller (MPC) have
become more popular in robotics thanks to increasing com-
putational capabilities and improved algorithmic efficiency.
The design and implementation of such algorithms on real
robots has become significantly easier due to the open source
availability of optimisation and control toolboxes such as
[1], [2], [3]. At the same time, robust performance under
mechanical failures (such as motor failures), can only be
achieved when the failure can be correctly identified and
appropriately handled by the control design. In our paper we
address the problem of aggressive, precise and fault tolerant
MAV navigation. Our contributions are as follows:
• The design of a quaternion based non-linear model

predictive controller with body torques and collective
thrust as the control inputs.

• The design of a new control allocation algorithm that
maps the desired control inputs into feasible thrust
commands for each motor. We consider the general
case where the motors can generate both positive and
negative thrust. Our algorithm takes into account the

This work has been supported by the EPSRC grant Aerial ABM
EP/N018494/1 and Imperial College London.

The authors are with the Smart Robotics Lab, Department of
Computing, Imperial College London, UK. {dt214, qy916,
s.leutenegger}@ic.ac.uk

Video link: https://youtu.be/cAQeSZ3tIqY

Fig. 1. Our MAV experiencing a propeller loss. The fault is identified
online and the MAV can still control its position and orientation.

different motor coefficients for normal and inverted
rotation eliminating the need for symmetrical propellers.
We show how this can be applied in a motor failure
scenario.

• The design of an EKF which monitors the health of each
individual actuator (motor/propeller) which we use for
fast identification of an actuator failure.

• Seamless integration of the failure detection scheme
with NMPC and allocation under actuator failure: in
particular, our hexacopter platform maintains full con-
trollability (position and yaw) after the loss of one
actuator.

A. Related Work

Regarding MPC in MAVs, the most common approach
is that of a cascade connection between a position and an
attitude controller. In the simplest form, a linear model can be
used for the translational dynamics, resulting in an optimisa-
tion problem whose solution can be solved online [4], [5] or
pre-computed in the form of lookup tables [6], [7]. The use of
a non-linear model for the translational dynamics such as the
one presented in [8] presents performance improvements es-
pecially when tracking of aggressive trajectories is required.
The approach of the cascaded position-attitude controllers
has become popular due to its ease of use, since most
of the available platforms come with a pre-tuned attitude
controller. However, it relies on the assumption that the
attitude dynamics can be controlled independently, requiring
bandwidth separation between the successive loops, i.e. slow
control of attitude. The aforementioned works furthermore
use Euler angles for the vehicle orientation which prohibits
the operation close to gimbal lock. Analogously to the
position-attitude approach the authors of [9] and [10] propose
a quaternion based position controller which uses the angular
rates as control inputs. These were assumed to be tracked
perfectly by a separate angular rate controller.

The benefits of using the true non-linear model of the

https://youtu.be/cAQeSZ3tIqY

MAV has been successfully illustrated in [11] where an
attitude NMPC was employed to stabilise a hexacopter with
a motor failure. Additionally, the authors of [12] proposed
an Sequential Linear Quadratic (SLQ) MPC algorithm able
to run onboard an MAV and capable of following full state
trajectory commands. Similarly, in [13] simulation results of
an SLQ controller stabilizing a quadrotor with slung load
and a quadrotor with motor failure were presented.

For the control allocation – that is, the mapping of the con-
trol inputs to actuator commands – the most commonly used
method employs the pseudo-inverse of the allocation matrix
(e.g. [14], [15]). In this case the actuator commands can be
obtained through a simple matrix by vector multiplication.
However, the main drawback is the fact that it can produce
actuator commands that are not feasible. Control allocation
techniques that respect the actuator limits, such as the ones
presented in [16], [17], result in better trajectory tracking.
This is partially due to the prioritisation of the roll/pitch
moments and collective thrust over the yaw moment which
does not directly contribute to position tracking. Another
interesting approach is the one presented in [18], where
the minimum energy solution is obtained by solving an
optimisation problem. The authors exploit the structure of
the allocation matrix nullspace in order to transform the
original optimisation problem into a computationally cheaper
one. Their method can be used on platforms equipped with
bidirectional capable motors but requires the use of symmet-
rical propellers. When non symmetric propellers are used, the
resulting allocation matrix is not constant but depends on the
direction of rotation of each motor.

As far as fault identification and fault tolerant control
are concerned, the authors of [19] were among the first to
show stable position control (despite losing yaw control) with
a quadrotor despite the loss of a single or two opposing
propellers. The authors of [20] stabilised a hexacopter ex-
periencing a motor failure. However, unlike us, they used
an unconventional hexacopter motor layout which enables
orientation control despite the loss of up to two motors. None
of the above methods includes online fault estimation. This is
done in [21] where the residuals between the measured and
predicted orientation and angular rate are used as criteria
for detecting motor failures. Another example is the work
presented in [22], where faults are identified based on the
measured motor speed and electrical current. Compared to
these approaches, our method achieves up to three times
faster fault detection without relying on additional sensors
apart from the onboard Inertia Measurement Unit (IMU).

II. NOTATION AND DEFINITIONS

Vectors are denoted as e.g. v, when required with coor-
dinate frame F−→A representation as Av. A rotation matrix
CAB changes the coordinates of a vector from F−→B to F−→A

as Av = CAB Bv. We use quaternions analogously i.e. qAB .
We further denote the position of a point P relative to the
origin of F−→A as P rA. The motion of the MAV, with body
frame F−→B (x: forward, y: left, z: upward), is referenced
relative to the World-frame F−→W (z-axis upward).

III. SYSTEM OVERVIEW

The software pipeline presented in this paper consists of
the following different blocks: (i) the NMPC which receives
full state trajectory estimates and commands and outputs
body torques and collective thrust as the control inputs; (ii)
the Control allocation block which transforms the control
inputs to actuator commands and finally (iii) the failure
detection algorithm which estimates the health status of each
motor and notifies the control allocation block in the case of
a failure. An overview of the system is given in Figure 2.

Fig. 2. Overview of the various software components that run onboard the
MAV. The control loop runs at 100Hz while the failure detection EKF at
400Hz.

IV. MODEL BASED CONTROL

A. MAV Dynamics

The Newton-Euler equations are used to model the MAV
dynamics. We ignore less significant phenomena such as
the effect of the aerodynamic friction and the gyroscopic
moments due to the rotation of the propellers (but our
model could be extended accordingly with ease). The MAV
dynamics can then be written in the following form:

W ṙB = W vB , (1a)

q̇WB =
1

2
Ω(Bω)qWB , (1b)

W v̇B =
1

m
CWB BT + Wg, (1c)

Bω̇ = J−1(BM− Bω × JBω), (1d)

Ω =

[
Bω
×

Bω

−Bω
> 0

]
, (1e)

where []× stands for the skew symmetric operator, Wg for
the gravitational acceleration, m for the MAV mass, and J
for the inertia tensor. The thrust vector BT := [0, 0, T]>

acting on the MAV Centre of Mass (CoM) solely depends
on the collective thrust T generated by the motors. This
together with the moments BM are considered as the control
input u := [BM, T]> ∈ R4. The control state x :=
[W rB ,qWB ,W vB ,Bω]> ∈ R3 × S3 × R6, consists of the
MAV position, orientation, linear and angular velocities re-
spectively. The motor dynamics are considered significantly
faster than the MAV body dynamics and are thus neglected.
The generated thrust and moments from the ith motor are
given by:

fi = kTω
2
i , (2a)

Mi = (−1)i+1kMfi. (2b)

Unlike approaches such as [16] where the relationship be-
tween the motor command and the achieved motor thrust was

approximated as a quadratic polynomial, we first estimated
the motor and moment coefficients defined in (2) and we
later identified the relationship between the motor command
and the achieved angular velocity. Figure 3 shows the results
obtained from the experimental identification of the thrust
and moment coefficients kT and kM using a load cell. Since
we use non symmetrical propellers which are optimised for
rotation in one direction, we identified two sets of coefficients
kT and kM one for normal rotation and another one for
inverted. Regarding the motor command to angular velocity
relationship, we experimentally determined the dependency
on input battery voltage which does not remain constant
during flight. The identification results are illustrated in
Figure 4. The obtained quadratic polynomials for different
voltage levels were stored in lookup tables and were used
online depending on the measured battery voltage 1.

-800 -600 -400 -200 0 200 400 600 800

-10

-5

0

5

10

-8 -6 -4 -2 0 2 4 6 8

-0.2

-0.1

0

0.1

0.2

Fig. 3. Experimental identification of the thrust and moment coefficients
using a load cell. Each dot corresponds to the mean of 100 measurements
and the solid lines correspond to the fitted model as defined in (2). The
use of non symmetrical propellers results in different curves for normal and
inverted rotation. The least-squares fit error for the thrust and moment model
for normal motor rotation is 5× 10

−2 N and 8.5× 10
−4 Nm respectively.

The same quantities for inverted rotation are 4.4×10
−2 N and 1.3×10

−3

Nm.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1000

-500

0

500

1000

13.8

14.0

14.2

14.4

14.6

14.8

15.0

15.2

15.4

15.6

15.8

16.0

Fig. 4. Experimental identification of the relationship between the nor-
malised PWM command and the achieved angular velocity. Dots correspond
to averaged measurements and solid lines to the fitted quadratic polynomials.
Different colours correspond to different voltage levels applied on the ESCs
(here only plotting 12 different cases for visualization purposes).

1An easier and more accurate way of handling this problem is by using
motors which are equipped with encoders and perform closed loop angular
velocity control using the encoder information. However, the commercially
available hardware, see http://www.iq-control.com/ is mainly
designed for small racing drones and not ones like ours which carries
significant payload.

B. Nonlinear MPC (NMPC)

For the control formulation, we define the following time-
varying error functions for the position, linear and angular
velocity, orientation and control input respectively:

er = W rB −W rrB , (3a)
ev = W vB −W vrB , (3b)
eω = Bω − CBBr

B
rωr, (3c)

eq = [q−1WB ⊗ qrWB]1:3, (3d)
eu = u− ur. (3e)

Apart from the orientation error which is obtained through
quaternion multiplication, the rest corresponds to the Eu-
clidean difference between the actual and desired (here
denoted with the superscript r) quantity.

We compute the optimal control input u∗ sequence online
by solving the following optimisation problem:

u∗ = argmin
u0,...,uNf−1

{
Φ(xNf

,xrNf
) +

Nf−1∑
n=0

L(xn,x
r
n,un)

}
,

(4a)
s.t. : xn+1 = fd(xn,un), (4b)

x0 = x̂, (4c)
ulb ≤ ui ≤ uub, i = 1, . . . , N, , (4d)

where Nf is the number of time steps, x̂ a known initial state,
fd the discrete-time version of the MAV dynamics given in
(1) and ulb, uub lower and upper bounds for the inputs ui.
We use quadratic costs for the final and intermediate terms
defined as:

Φ(xNf
,xrNf

) = e>r Qrer + e>v Qvev + e>q Qqeq + e>ωQωeω,

L(x,xr,u) = e>r Qrer + e>v Qvev + e>q Qqeq
+ e>ωQωeω + e>uQueu,

with Q < 0 gain matrices of appropriate dimensions
which are considered tuning parameters. In our implemen-
tation we use a 10 ms discretisation step and a constant
time horizon Tf = 2.0 s. For the online computation of
the optimal input we use the CT toolbox [2] and the
Gauss-Newton Multiple Shooting (GNMS) algorithm (out-
lined in [23]) which result in an average computation time
of 5.2 ms with standard deviation of 0.6 ms. At each
GNMS iteration dynamically feasible state and input incre-
ments δx, δu around the state and input trajectories X̄ =
{x0,x1, · · · ,xNf

}, Ū = {u0,u1, · · · ,uNf−1} are computed.
We obtain the dynamics of the minimal state perturbation
δx := [δr, δθ, δv , δω]> ∈ R12 around the state x̄ by intro-
ducing the local quaternion perturbation q = q ⊗ δq with
δq :=

[
sinc

∥∥ δθ
2

∥∥ δθ
2 , cos

∥∥ δθ
2

∥∥]>. The dynamics for the
rotation vector δθ ∈ R3 are given by: ˙δθ = Bω − 1

2Bω
×δθ,

while the rotation matrix CWB can be approximated as:
CWB ≈ CWB (I + δθ×). After each iteration the state
trajectory is updated as: x = [wrB +δr,qWB ⊗δq ,W vB +
δv ,Bω + δω]>.

http://www.iq-control.com/

C. Control allocation

As stated earlier, the control allocation problem involves
mapping the control inputs u∗ to feasible actuator commands
f. We tackle this by solving the following Quadratic Program
(QP):

f∗ = argmin
f

(∥∥Af− u∗
∥∥2

W + λ ‖f‖22
)

(6a)

s.t. : fmin ≤ fi ≤ fmax, i = 1, . . . , N, (6b)

where N is the number of motors. The allocation matrix
A ∈ R4×N , which we will present later, depends on the
MAV geometry and its motor coefficients, whereas fmin, fmax
correspond to the minimum and maximum attainable thrust.
In order to prioritise the roll/pitch moments and the collective
thrust over the yaw moment, we use the weighting matrix
W ∈ R4×4. The scalar λ ∈ R+ is used such that solutions
with smaller norm are preferred. When a feasible control
input is commanded, solution of (6) coincides with the one
obtained by using the pseudo-inverse of A, namely f = A†u∗.

Since we are interested in solving the control allocation
problem for the general case where the motors can produce
both positive and negative thrust, we introduce the vector d =
[d1, d2, · · · , dN] with di ∈ {0, 1},∀i = 1, . . . N . We thus use
the binary variables di to indicate whether the ith motor is
spinning in its intended normal direction–corresponding to
positive thrust (di = 0)–or otherwise in the inverse (di = 1).

The original optimisation problem (6) is transformed to:

f∗,d∗ = argmin
f,d

(∥∥A(d)f− u∗
∥∥2

W + λ ‖f‖22
)

(7a)

s.t. : f+min(1− di) + f−mindi ≤ fi ≤ f
+
max(1− di) + f−maxdi,

(7b)

where the superscript + or − in f+min, f−min, f+max, f−max
has been used to indicate normal and inverted rotation
respectively. The vector d which encodes the direction of
rotation is now an optimization variable and the allocation
matrix A is a function of d. For the case of the hexacopter
used in our experiments, A(d) takes the following form:

A(d) =

ls30 l ls30 −ls30 −l −ls30
−lc30 0 lc30 lc30 0 −lc30
kM (d1) −kM (d2) kM (d3) −kM (d4) kM (d5) −kM (d6)

1 1 1 1 1 1

 (8),

where l stands for the MAV arm length, s30 = sin (30o),
c30 = cos (30o), kM (di) = (1 − di)k

+
M + dik

−
M and

k+M , k
−
M denote the normal and inverted moment coefficients

identified in Section IV-A.
The resulting optimisation is a mixed integer programming

problem. However, since the possible values of d are finite
(72 in the case of a hexacopter), we can solve a single
QP for each single value of d. The global optimum f∗ of
the optimisation problem defined in (7) corresponds to the
solution of the QP with the minimum cost. From a practical
perspective solving 72 QPs instead of a single one does not
affect significantly the overall control computation time as
this is dominated by the computation of the optimal input
u∗ as described in the previous section. This is owing to
the small number of optimisation variables in a single QP

tailored to the solver, CVXGEN [3]. In our implementation,
solving 72 QPs, storing the results in a vector and finally sort-
ing it in ascending order consistently takes less than 0.4 ms.
We acknowledge, however, that our method is more resource
demanding compared to methods using the pseudoinverse
which can be easily implemented on a microcontroller.

It was experimentally found that reverting the direction
of rotation during flight is particularly impractical. This is
because the motor dynamics are significantly slower when
a direction change is commanded. As our control model
does not capture this behaviour, we can prevent unnecessary
direction change commands by augmenting the optimisation
(7) similarly to [18] with the f ∈ Fhyst constraint, where Fhyst
is the set of rotor thrusts that does not require a per motor
direction change when this has already happened during the
past time interval thyst. The solution satisfying this constraint
can be found with a single iteration over the vector of 72
possibilities. The threshold thyst can be iteratively decreased
until a good (e.g.

∥∥Af− u∗
∥∥2

W < ε) solution is found.

V. FAULT IDENTIFICATION

Our goal is to online estimate whether one or more
motors have failed (consequently limiting maximum thrust
and moments). To do so, we introduce the health variable
hi ∈ R for each individual motor i and assume that the
effective force generated from the ith motor is fei = L(hi)fi,
where L(h) = 1.05

1+e
−h is the logistic function shown in

Figure 5 and fi corresponds to the respective motor thrust.
Intuitively, we expect that L(hi) = 1 for a healthy motor
and L(hi)→ 0 for a stopped one. We implemented an EKF
that estimates the set of health variables hi online (and thus
the motor thrust fi) for each individual motor. The effective
body torques and collective thrust are now given by:[

BM
T

]
= A

[
L(h1)f1 · · · L(h6)f6

]>
, (9)

where A is the allocation matrix defined in (8), which
depends on the moment coefficients and the motor direction
of rotation.

-6 -4 -2 0 2 4 6

0

0.5

1

Fig. 5. The logistic function used for the EKF. Notice, that it is
appropriately scaled such that h̄ = L

−1
(1) has finite value.

In our EKF, we use the following prediction and observa-
tion models:

Bω̇ = J−1(BM− Bω × JBω) +wω, (10a)

ḣi =
1

τh
(h̄− hi) + wh, (10b)

ḟi =
1

τf
(fri − fi + wf), (10c)

z : =

[
Bω + vω̃
T + vT

]
. (10d)

The noises wω , wh, and wf are Gaussian white noise
processes with densities σω , σh, and σf , respectively; the
measurement z is assumed to be corrupted by vω̃ ∼
N (0, σ2

ω̃I) and vT ∼ N (0, σ2
T̃). Furthermore, fri stands

for the per-motor reference thrust as given by the control
allocation and τf for the time constant characterising the first
order motor thrust dynamics. The measurements Bω̃ and T̃
required for the EKF update are obtained using the onboard
IMU. For Bω̃ we use the bias corrected gyro measurements
and for measured collective thrust T̃ we use T̃ ≈ maz
with m denoting the known mass of the MAV and az the
accelerometer measurement along the z axis. Notice that our
observation model for the collective thrust does not account
for the Bω × Bv term which appears in the Body frame
expressed linear acceleration dynamics. The values for the
noise parameters and model constants are given in Table I.

TABLE I
EKF PARAMETERS

σω 3.16 rad/(s
√

hz) σh 0.31
√

hz
−1

σf 0.94 N/
√

hz σω̃ 0.01 rad/s
σT̃ 0.1 N τh 0.3 s τf 0.01 s h̄ 2.99

In order to avoid false positives due to e.g. inaccurate
model, we use the estimated value of hi and its estimated
uncertainty. We thus consider a motor failed when L(hi +
3σi) < 0.5 (with σi denoting the health state standard
deviation obtained as a marginal from the state covariance
matrix). When the above inequality is true we update the
control allocation algorithm by setting fmin = fmax = 0 for
the failed motor and enabling the bidirectional mode for the
opposite.

VI. EXPERIMENTS

We showcase the capabilities of our algorithms in two
different scenarios, namely response to step commands and
autonomous detection and recovery after a motor failure. For
the experiments presented we used a custom-built hexacopter
using off-the-shelf components. It consists of a 550 mm wide
frame, a Pixhawk flight controller flashed with a modified
version of the PX4 firmware and an Intel NUC-7567U
onboard computer. We used 960KV motors coupled with the
carbon reinforced Aeronaut CAMcarbon 9.5×4.5 propellers
and the DYS ARIA bidirectional capable ESCs. A Vicon
motion capture system was responsible for providing external
position and orientation measurements while all the other
components run onboard the MAV.

A. Aggressive step commands
In order to verify the tracking capabilities of the designed

NMPC, Figure 6 shows the MAV response for a 2 m step
in x and z and a 180o step in yaw. The NMPC generated
dynamically feasible trajectories which can steer the MAV in
any orientation and achieve large linear accelerations (given
the physical limitations of the platform) without overshoot-
ing. We conducted the same experiment twice using low and
high orientation gains and observed that, in the latter case,
the NMPC reduces the yaw error faster by simultaneously
performing a half flip in roll and pitch.

Fig. 6. Our MAV executing a 2 m step in x and z and a 180o step in yaw
with low (left) and high (right) orientation gains. Peak acceleration exceeds
15m/s

2 while peak orientation exceeds 120o in pitch.

B. Fault detection and recovery

We tested the failure detection and autonomous recovery in
two different scenarios where one motor was switched off (i)
while hovering and another (ii) while the MAV was following
setpoint commands. The results regarding the position and
yaw tracking along with the online estimated health status
of each motor, are shown in Figures 7 and 8. The injected
motor failure was correctly identified with a maximum delay
of 0.18 s. In both scenarios, the MAV was able to recover
with a maximum height loss of 0.6 m. Position and yaw ref-
erences were still tractable however the 5-motor asymmetric
configuration resulted in slower tracking response. Regarding
the health status variables of the functioning motors, these
always remain close to 1. It can be seen that, in the setpoint
experiment, there exist some short-in-duration deviations
from 1. These spikes correspond to time instants when large
angular accelerations were executed. We consider the main
reason for this behaviour to be the mismatch between the
EKF prediction model (which does not take into account less
significant phenomena, such as gyroscopic moments) and the
real one. In any case the estimated upper bound was always
greater than 0.8 and thus unable to trigger a false positive.

VII. CONCLUSION AND FUTURE WORK

This paper presented a series of algorithms that can be
used for aggressive and fault tolerant multicopter naviga-
tion. We experimentally verified their performance using
a hexacopter although the same approach can be imple-
mented on any other multirotor with minor modifications.
Control performance can be further improved by using a
more accurate system model, as the current one does not
take into account effects such as the motor dynamics, rotor
drag and gyroscopic moments. The fault detection EKF can
seamlessly be implemented as an algorithmic update on any
MAV as it only requires inertial measurements. It can be
accordingly extended with speed or current measurements
in order to prevent false positives due to large external
disturbances. The disadvantage of our approach is that it
requires carefully identifying physical parameters such as the
motor coefficients and the inertia tensor. By online estimating
these as shown in [24], we can make the controller adaptive
to model changes and eliminate the need for tedious accurate
offline identification.

0.5

1

0.5

1

24 26 28 30

0.5

1

0.5

1

0.5

1

24 26 28 30

0.5

1

24 26 28 30

0

5

10

15

20

25

30

35

40

Fig. 7. Top row: Three different experiments with autonomous fault identification and recovery during hover. In all the experiments the failure was
identified and the fail-safe was triggered within 0.18 s after the manual deactivation of Motor 1. The MAV was able to recover with a maximum height
loss of 0.40 m. Bottom row: The online estimates of the health status L(hi) and their corresponding 3σ confidence bounds and the absolute yaw error
for the first experiment. Notice how the upper bound estimate L(h1 + 3σ1) for Motor 1 drops below the 0.5 threshold after the motor deactivation at t =
23.68s. Once the fail-safe is triggered at t = 23.85s, control of yaw (bottom right) is maintained and the error converges to zero.

0.5

1

0.5

1

24 26 28 30 32 34 36

0.5

1

0.5

1

0.5

1

24 26 28 30 32 34 36

0.5

1

24 26 28 30 32 34 36

0

5

10

15

20

25

30

Fig. 8. Top row: Three different experiments with autonomous fault identification and recovery while following setpoint commands. In all the experiments
the failure was identified and the fail-safe was triggered within 0.18 s after the manual deactivation of Motor 3. The MAV was able to recover with a
maximum height loss of 0.60 m. Bottom row: The online estimates of the health status L(hi) and their corresponding 3σ confidence bounds and the
absolute yaw error for the first experiment. The upper bound estimate L(h1 + 3σ1) for Motor 3 drops below the 0.5 threshold after the motor deactivation
at t = 26.80 s. Once the fail-safe is triggered at t = 26.96 s, control of yaw (bottom right) is maintained and the error converges to zero.

REFERENCES

[1] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit – An Open
Source Framework for Automatic Control and Dynamic Optimization,”
Optimal Control Applications and Methods, vol. 32, no. 3, pp. 298–
312, 2011.

[2] M. Giftthaler, M. Neunert, M. Stäuble, and J. Buchli, “The Control
Toolbox - an open-source C++ library for robotics, optimal and model
predictive control,” in IEEE International Conference on Simulation,
Modeling, and Programming for Autonomous Robots, May 2018, pp.
123–129.

[3] J. Mattingley and S. Boyd, “Cvxgen: A code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, no. 1,
pp. 1–27, 2012.

[4] D. Tzoumanikas, W. Li, M. Grimm, K. Zhang, M. Kovac, and
S. Leutenegger, “Fully autonomous micro air vehicle flight and land-
ing on a moving target using visual-inertial estimation and model-
predictive control,” Journal of Field Robotics, vol. 36, no. 1, pp. 49–
77, 2019.

[5] I. Sa, M. Kamel, R. Khanna, M. Popović, J. Nieto, and R. Siegwart,
“Dynamic system identification, and control for a cost-effective and
open-source multi-rotor mav,” in Field and Service Robotics, M. Hutter
and R. Siegwart, Eds. Cham: Springer International Publishing, 2018,
pp. 605–620.

[6] G. Darivianakis, K. Alexis, M. Burri, and R. Siegwart, “Hybrid
predictive control for aerial robotic physical interaction towards in-
spection operations,” in IEEE International Conference on Robotics
and Automation, May 2014, pp. 53–58.

[7] C. Papachristos, K. Alexis, and A. Tzes, “Dual–authority thrust–
vectoring of a tri–tiltrotor employing model predictive control,” Jour-
nal of Intelligent & Robotic Systems, vol. 81, no. 3, pp. 471–504, Mar
2016.

[8] M. Kamel, M. Burri, and R. Siegwart, “Linear vs Nonlinear MPC for
Trajectory Tracking Applied to Rotary Wing Micro Aerial Vehicles,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 3463 – 3469, 2017, 20th IFAC
World Congress.

[9] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “Pampc: Perception-
aware model predictive control for quadrotors,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Oct 2018, pp. 1–8.

[10] P. Foehn and D. Scaramuzza, “Onboard State Dependent LQR for
Agile Quadrotors,” in IEEE International Conference on Robotics and
Automation, May 2018, pp. 6566–6572.

[11] M. Kamel, K. Alexis, M. Achtelik, and R. Siegwart, “Fast nonlinear
model predictive control for multicopter attitude tracking on SO(3),” in
IEEE Conference on Control Applications, Sep. 2015, pp. 1160–1166.

[12] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian,
R. Siegwart, and J. Buchli, “Fast nonlinear model predictive control
for unified trajectory optimization and tracking,” in IEEE International
Conference on Robotics and Automation, May 2016, pp. 1398–1404.

[13] C. de Crousaz, F. Farshidian, M. Neunert, and J. Buchli, “Unified
motion control for dynamic quadrotor maneuvers demonstrated on
slung load and rotor failure tasks,” in IEEE International Conference
on Robotics and Automation, May 2015, pp. 2223–2229.

[14] M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart, “Inversion
based direct position control and trajectory following for micro aerial
vehicles,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, Nov 2013, pp. 2933–2939.

[15] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor UAV on SE(3),” in IEEE Conference on Decision and
Control, Dec 2010, pp. 5420–5425.

[16] M. Faessler, D. Falanga, and D. Scaramuzza, “Thrust Mixing, Sat-
uration, and Body-Rate Control for Accurate Aggressive Quadrotor
Flight,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 476–
482, April 2017.

[17] D. Brescianini and R. D’Andrea, “Tilt-prioritized quadrocopter attitude
control,” IEEE Transactions on Control Systems Technology, pp. 1–12,
2018.

[18] D. Brescianini and R. DAndrea, “An omni-directional multirotor
vehicle,” Mechatronics, vol. 55, pp. 76 – 93, 2018.

[19] M. W. Mueller and R. D’Andrea, “Stability and control of a quadro-
copter despite the complete loss of one, two, or three propellers,”
in IEEE International Conference on Robotics and Automation, May
2014, pp. 45–52.

[20] T. Schneider, G. Ducard, R. Konrad, and S. Pascal, “Fault-tolerant
Control Allocation for Multirotor Helicopters Using Parametric Pro-
gramming,” in International Micro Air Vehicle Conference and Flight
Competition, Braunschweig, Germany, Jul. 2012.

[21] M. Saied, B. Lussier, I. Fantoni, C. Francis, H. Shraim, and
G. Sanahuja, “Fault diagnosis and fault-tolerant control strategy for
rotor failure in an octorotor,” in IEEE International Conference on
Robotics and Automation, May 2015, pp. 5266–5271.

[22] M. Saied, B. Lussier, I. Fantoni, H. Shraim, and C. Francis, “Fault
diagnosis and fault-tolerant control of an octorotor uav using motors
speeds measurements,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 5263
– 5268, 2017, 20th IFAC World Congress.

[23] M. Giftthaler, M. Neunert, M. Stäuble, J. Buchli, and M. Diehl, “A
Family of Iterative Gauss-Newton Shooting Methods for Nonlinear
Optimal Control,” CoRR, vol. abs/1711.11006, 2017.

[24] M. Burri, M. Bloesch, Z. Taylor, R. Siegwart, and J. Nieto, “A
framework for maximum likelihood parameter identification applied
on MAVs,” Journal of Field Robotics, vol. 35, no. 1, pp. 5–22, 2018.

	Introduction
	Related Work

	Notation and Definitions
	System Overview
	Model Based Control
	MAV Dynamics
	Nonlinear MPC (NMPC)
	Control allocation

	Fault Identification
	Experiments
	Aggressive step commands
	Fault detection and recovery

	Conclusion and Future Work
	References

