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Abstract

We introduce a novel volumetric SLAM pipeline for the
integration and rendering of depth images at an adaptive
level of detail. Our core contribution is a fusion algo-
rithm which dynamically selects the appropriate integra-
tion scale based on the effective sensor resolution given
the distance from the observed scene, addressing alias-
ing issues, reconstruction quality, and efficiency simultane-
ously. We implement our approach using an efficient octree
structure which supports multi-resolution rendering allow-
ing for online frame-to-model alignment. Our qualitative
and quantitative experiments demonstrate significantly im-
proved reconstruction quality and up to six-fold execution
time speed-ups compared to single resolution grids.

1. Introduction

Dense Simultaneous Localisation and Mapping (SLAM)
systems have been at the forefront of computer vision re-
search for the past ten years. The richness of the geomet-
ric information that this family of algorithms is able to re-
cover in real-time is of central importance for a variety of
applications, from mobile robotics to augmented and vir-
tual reality. However, reconstructing high-fidelity models
of the environment brings many challenges. First, state-of-
the-art methods are notoriously expensive, both in terms of
computational cost and memory footprint. Second, faith-
fully capturing the fine details of the scene is challenging, as
maintaining a uniformly high resolution map is neither fea-
sible, nor necessary. Any depth estimation system, whether
being variable baseline multi-view stereo, stereo rigs or ac-
tive depth cameras, provide information at different scales.
Close-up views capture fine details that are not preserved
when observed at farther distances. Hence, fusing such data
at uniform scale is wrong for two main reasons: i) alias-
ing artefacts arising from a resolution mismatch between
the map and sensor data may result in degraded map qual-

Figure 1: Comparison of final reconstruction mesh obtained
with a fixed resolution grid of 2mm (on the left and in
red) and our adaptive resolution system (on the right and
in green). Notice how fine details like the mug handle or
the shallow keyboard keys and structure are well preserved
by our algorithm.

ity; ii) fine details recovered from close-up views may be
lost when the scene is observed from a greater distance.
While much recent research has addressed the scalability
limitations of dense SLAM systems, very few have explic-
itly tackled these issues.

In this paper we introduce a novel multi-scale dense
SLAM pipeline that supports variable resolution integration
and rendering of depth data. As in many volumetric sys-
tems, our algorithm alternates between fusion of new infor-
mation coming from the sensor and pose estimation against
synthetic views of the scene being reconstructed. Crucially,
in both integration and rendering the appropriate voxel res-
olution is chosen dynamically. Although we use an RGB-D
camera as input, our system is sensor agnostic as long as
depth is provided. As in [14], we adopt a volumetric rep-
resentation based on a truncated signed-distance function
(TSDF). To represent the volume with variable level of de-
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tail (LOD), we exploit supereight, the octree-based frame-
work of [21] and extend it to support dynamic resolution op-
erations. As we discuss in the following sections, the main
challenge is to keep the hierarchy consistent when fusing at
variable scales. Our pipeline achieves much higher perfor-
mance compared to single-resolution grids but more impor-
tantly it obtains a better reconstruction quality of cluttered
scenes with thin structure.

In addition to better recovery of map details, the pro-
posed approach substantially improves runtime thanks to
more efficient map updates at larger distance. The hierar-
chical map nature allows for integration of new information
up to the selected resolution, while only propagating up-
dates further down when needed, effectively implementing
a form of lazy information propagation up and down the
octree. Summarising, our contributions are the following:

1. An extension of the hierarchical representation of [21]
to support queries at any level of detail;

2. An efficient fusion algorithm that adaptively selects the
appropriate level of detail and maintains the surface
representation consistent across the hierarchy;

3. A qualitative and quantitative evaluation on synthetic
and real datasets, which reveals that we substantially
improve map accuracy, as well as runtime.

In addition, we will release our code as an open-source ex-
tension to supereight [21].

2. Related Work

Dense surface reconstruction algorithms have gained
substantial attention in the scientific community in the past
ten years. While a number of offline methods that achieve
impressive results have been recently proposed [3, 5, 6, 20],
we focus on dense reconstruction methods usable in real-
time settings, such as augmented/virtual reality applications
or mobile robotics. In the context of dense SLAM, af-
ter the initial KinectFusion [14] breakthrough, researchers
have focused on scaling-up the size of the reconstructed
environment. This has been achieved by either shifting a
fixed-size fusion volume in space following camera move-
ment [16, 22] or exploiting the sparseness of the environ-
ment using dynamically allocated data-structures such as
octrees or hash-tables. Several variations of hierarchical
data-structures have been proposed. Zeng et al. [24] in-
troduce a GPU accelerated, octree-based volumetric rep-
resentation that allow to significantly reduce the memory
footprint for a given reconstruction area. However, their
structure is limited to a 10-levels hierarchy, which may be
too restrictive even for room-sized environment depending
on the required resolution. Vespa et al. [21] develop an

efficient octree framework which achieves real-time perfor-
mance on a CPU and supports both signed-distance map-
ping and occupancy mapping. Chen et al. [2] propose a hi-
erarchical 3D tree structure, with a parametric and possibly
variable subdivision factor at each tree level. Nießner et al.
[15] introduce an efficient reconstruction system based on
flat hashing, where contiguous blocks of voxels are stored
in a concurrent hash-table. Their approach has been fur-
ther developed by Kahler et al. [10] with their InfiniTAM
framework. Common to all these volumetric approaches
is their reliance on single resolution grids, even if imple-
mented with hierarchical structures.

Our work shares many aspects with the multi-scale re-
construction framework of Steinbrucker et al. [17], where
an octree data-structure is used to store a signed-distance
function representation at multiple level of detail. However,
no facilities for real-time multi-scale rendering are provided
and consequently it relies on an external SLAM system for
pose estimation. Kahler et al. [11] propose a hierarchi-
cal hashing system in which the scene is represented with
multiple hash-tables each with a different resolution. Inter-
estingly, the level of refinement is chosen according to sur-
face curvature rather than distance from the sensor. Their
method is complementary to ours and we plan to unify both
approaches in future work.

While till now we have focused on volumetric methods
based on signed-distance fields, other representations have
been proposed. Popular alternatives are explicit point-based
surface representations, such as [9] and [23]. Stückler et al.
[18] develop a complete tracking and mapping pipeline us-
ing adaptive resolution surfel maps organised in an octree.
Recently, Zienkiewicz et al. [25] propose a reconstruction
framework based on 2.5D height-maps with adaptive mesh
refinement. While achieving sub-millimetre reconstructions
in real-time, their method cannot handle generic 3D shapes,
which is limiting it to a small number of application scenar-
ios. However, their incremental coarse-to-fine surface re-
finement is certainly related to the down-propagation strate-
gies we exploit in our work.

3. Overview
In this paper we utilise a volumetric signed-distance

function (SDF) as implicit surface representation. As in the
seminal work of Newcombe et al. [14], the world is discre-
tised in a regular three-dimensional grid in which each voxel
holds the distance from the closest surface. It is well known
that volumetric methods based on pre-allocated grids are
not scalable, as the memory footprint grows cubically with
the resolution or area explored. To address this issue, a
number of more efficient data-structures have been pro-
posed, such as moving volumes [22], octrees [17, 21, 24],
N3 trees [2] or hash-tables [10, 15]. Since they naturally
represent data at multiple scales, we choose a hierarchical
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representation based on octrees. We adopt and significantly
extend the framework of [21] in order to support the dy-
namic resolution pipeline detailed in Section 4.3.

From a high level perspective, our system follows a stan-
dard dense tracking and mapping pipeline. As in KinectFu-
sion, the computation is structured as a closed loop divided
in three main stages:

1. A tracking stage, where the camera egomotion is es-
timated by aligning the most recent depth map Dk

coming from the sensor against a synthetic view of the
model Dk−1 obtained at the previous time step. This
is achieved using a variant of the well-known Itera-
tive Closest Point (ICP) algorithm using point-to-plane
distance and projective data-association [1]. We stress
that our reconstruction method is agnostic to the track-
ing algorithm employed and alternatives exist. A pop-
ular choice is to use a sparse SLAM system as tracking
front-end while performing dense fusion, as in [17] or
[25].

2. An integration stage, where sensor data is fused into
the volume. Crucially, and in contrast to previous vol-
umetric approaches, we do this by dynamically select-
ing the level of detail at which data is fused. Further-
more, we maintain the hierarchy of voxels consistent
across octree levels in a subsequent step. We report
our method in detail in Section 4.3.

3. A rendering stage, where the volume is ray-cast from
the most recent camera position and surface points are
extracted at the zero-crossing of the TSDF function.
The produced renderings are then used for dense ICP
tracking and visualisation. Also in this case, we exploit
multi-resolution information by selecting the appropri-
ate interpolation scale depending on distance from the
camera. We detail our approach in Section 4.4.

3.1. Notation

We briefly describe the notation used throughout this pa-
per. We denote n-dimensional vectors with lower-case, bold
letters, e.g. x ∈ Rn. Superscripts in the form of xl indicate
the scale l at which voxel x is allocated on the tree. We
denote the coordinate frame in which vectors are expressed
with a subscript, e.g. xc. We will be using two different
frames, the World frame {w} and the Camera frame {c}.
We also concatenate subscripts when necessary, e.g. xcz de-
notes the z-component of the vector x expressed in camera
coordinate frame. We denote matrices with upper-case bold
letters, e.g. D ∈ Rn×m. Euclidean transformations from
coordinate frame {c} to {w} are denoted as Twc ∈ SE3.

4. Multi-resolution tracking and mapping
In this section, we present the algorithmic and theoretical

contributions of our work. After a brief description of our

underlying data-structure and extensions to [21], we detail
our reconstruction pipeline.

4.1. Hierarchical representation

Fundamentally, as a means to avoid aliasing we store the
TSDF values at a selectable resolution – where we have to
keep the values consistent. Our data-structure of choice is
an octree, as its regular subdivision exposes a simple rela-
tionship between refinement levels – octant’s TSDF values
can be expressed as a function (normally the mean) of their
children.

There is a wide spectrum of possible octree layouts. The
simplest solution is to keep the full tree structure explicit, as
in [24]. While this allows fine grained control over which
voxels are allocated, it is subject to significant overheads
when it comes to depth integration and ray-casting [2]. To
mitigate this, a common solution is to aggregate the last
levels of the tree into contiguous blocks of voxels, usually
of size 83 [2, 10, 15, 21]. However, as a consequence the
multi-scale representation of the bottom levels is lost. In
[17], this issue is addressed by allocating voxel blocks of
the same aggregation factor at each level of the tree, effec-
tively resulting in a hierarchy of stacked bricks. For effi-
ciency reasons, we choose an intermediate approach. As
in [21], we keep an 83 aggregation factor at the finest level
of the tree, but we also store its mipmapped representation
contiguously, i.e. blocks of 43 and 23 voxels. This is in
fact equivalent to instantiating a full octree of three levels
for each voxel block, but without the pointers’ connectivity
overhead and with guaranteed spatial locality. Figure 2 de-
picts the architecture described in the above. An unordered
set of voxel blocks is stored in a contiguous, yet dynami-
cally grown array and indexed via a pointer-based tree struc-
ture. Voxel blocks are allocated at the deepest level (leaves)
of the tree, which also corresponds to the maximum resolu-
tion attainable. The magnified voxel block shows its inter-
nal structure. Logically, in this two-dimensional 4x4 grid
example, a coarser grid (green dots) is overlaid on top of its
underlying finer resolution grid (red dots). In practice, we
store the grids contiguously one after the other. Compared
to single resolution blocks, this implies only a 14% increase
in memory footprint, while significantly simplifying block
management operations.

4.2. Data indexing and retrieval

The layout described in the previous section enables vox-
els retrieval in their corresponding coarser or finer grids ef-
ficiently and in a simple manner. While we retain the index-
ing scheme of [21], we add the possibility to address voxels
in the mip-mapped blocks. Voxels at any scale are denoted
by their integer coordinates (3D indices) xl

w at the finest
resolution possible. A scale parameter determines the factor
to be applied to retrieve the corresponding entry in coarser
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Figure 2: High-level representation of our octree structure.
Coarser nodes are connected via pointers up to a maximum
depth at which voxels are aggregated in continuous blocks.
The focused block shows its internal structure, were coarser
grids are logically overlaid on top of each other (red, green
and blue dots).

grids. If d is the maximum depth of the tree and l the de-
sired voxel depth, the scaling factor is given by s = 2d−l,
with d− log2(8) ≤ l ≤ d. Hence, index coordinates to ac-
cess the multi-resolution grid at any scale l can be obtained
by simple arithmetic as: xl

w = s
⌊
xd
w/s

⌋
. Also, we distin-

guish the world frame index coordinate representation xw

from block index coordinates xb, where we store the block
offset bw. Finally, to access a value from memory relative
to the dynamically allocated block, we linearise the block
coordinate index as

i = offset(s) +
xl
bx

s
+

xl
by

s
vl +

xl
bz

s
vl

2
, (1)

where offset(·) is a precomputed function that returns the
starting position of the local sub-grid and vl is the number
of voxels per side at scale l.

Another significant difference compared to [21] is our
adoption of cell-centred voxels: we place the sampling lo-
cation at the centre of its enclosing octant. While this can be
trivially achieved by linear shifting, it has important conse-
quences in terms of local consistency. As shown in Figure
2, in a cell-centred grid parent voxels are exactly the linear
combination of its children. This is crucial in that it allows
node-local exchange of data between tree levels. We ex-
ploit this property extensively in the algorithms described
in Section 4.3.

4.3. Data integration

We structure the field update into two distinct phases.
First, the last acquired depth map is fused into the map. In

contrast to previous volumetric approaches, this is done by
selecting the appropriate scale proportional to the distance
from the camera. If the currently selected scale is finer than
the scale at which integration was last performed, we first
down-propagate the available information from parent oc-
tants (Section 4.3.3). In a second step, we up-propagate
the newly fused information to the coarser nodes (Section
4.3.2). This is done in a lazy way: we perform upward and
downward propagation only up to the tree levels which are
needed for the fusion and rendering operations at the cur-
rent time step. In the following, we report our method in
detail.

4.3.1 Single layer update

Each new depth measurement will observe regions of space
that possibly have not yet been allocated on the tree hierar-
chy. Hence, as in [21], we allocate the scene via ray-casting
and collecting all the intersected voxels around the trunca-
tion region ±µ. However, we select the allocation scale dy-
namically, such that voxels far away from the camera that
do not reach the aggregation layer of the tree will not be
allocated as contiguous blocks. Processing the kth depth
frame, the TSDF sample fk for each allocated voxel at scale
l, at position pl

w, is computed by projecting it into camera
frame and taking the signed distance to the corresponding
depth measurement, as shown in Equation (2), where λ is a
factor that transforms a distance along the z-axis to a range
distance.

d = λ(Dk[π(Tcwp
l
w)]− pl

cz),

fk(pl
c) = min

(
1,
d

µ

)
,

(2)

where π(·) denotes the projection from 3D coordinates in
camera frame to pixels, and where Dk denotes the depth
map that can be indexed via the operator [·]. The current
sample is then integrated in the global map F l

k in an incre-
mental fashion:

F l
k = max

(
min

(
ylk−1F

l
k−1 + wf lk

ylk−1 + 1
, 1

)
,−1

)
,

ylk = min(ymax, y
l
k−1 + 1),

∆ylk = ∆ylk−1 + 1,

(3)

where yl denotes the weighting and is clamped to a max-
imum weight of ymax (we use ymax = 100) and F l

k−1 is
either the function value at the previous time step or the
down-propagated value in case of integration scale change.
Note that we also keep track of the increment on yl in the
form of ∆ylk, which will be needed later for down propaga-
tion. Notice that for compactness we omit the voxel param-
eter and denote fk(plc) ≡ f lk when clear from the context.
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(a) scale = 0 (b) scale = 1 (c) scale = 2

Figure 3: Synthetic rendering of a scene at progressively coarser voxel resolutions, ordered left-to-right starting from the
finest resolution.

We are left with the issue of selecting the fusion scale l.
We aim to keep the ratio between the back-projected pixel
size and the corresponding voxel as close as possible to one.
Hence, we select the appropriate resolution proportional to
the distance from the camera. In principle, each voxel can
be updated at a different scale as long as it is consistent
among its siblings. However, this would imply unnecessary
overhead when updating the densely allocated voxel blocks
and complicate the subsequent up-propagation operations.
Instead, we simplify the problem by assigning each block a
uniform scale. This works very well in practice and it has
the main advantage of enabling uniform iteration over the
appropriate mipmapped grid (see Section 4.3.2).

4.3.2 Upward propagation

Once a depth map has been integrated, we propagate the up-
dated information along the hierarchy in the upward direc-
tion. As we report in Section 4.4, this is required to guar-
antee scale consistency amongst neighbouring blocks and
octants. Furthermore, we stop the up-propagation at the
coarsest scale observed during the current frame, bound-
ing the number of octants to be updated. The cell-centred
data-model ensures that each octant is fully described by its
children by means of simple linear interpolation:

F l =

∑8
i=1 F

l+1
i

8
,

yl =

∑8
i=1 y

l+1
i

8
,

(4)

where the subscript i denotes the i-th child at scale l+ 1. In
the rare event that not all children are initialised, we com-
pute the mean of the initialised ones. Figure 3 demonstrates
the soundness of our approach. In an artificial experiment,
we fuse information at the finest resolution possible and
up-propagate. We then render the same frame at progres-
sively coarser voxel resolution via ray-casting, obtaining
consistent results. Notice how the reconstruction appears

smoother as the voxel size used for interpolation and gradi-
ents grows.

4.3.3 Downward propagation

We perform downward propagation of information when
the camera moves closer to the surface and requires a
finer resolution for depth integration. However, coarse-to-
fine propagation is significantly more challenging compared
to upward propagation. One possible approach is to tri-
linearly interpolate field values from the coarser grid, in a
similar fashion to multi-grid methods [7], but this would
smooth already reconstructed details which are then re-
visited. Instead, we take an approach similar to that of
Zienkiewicz et al. [25] in the context of height map recon-
struction. In order to preserve details, we propagate to the
children octant a fixed delta which represents the difference
between the last updated values at the parent scale. In or-
der to enable lazy propagation we need to keep track of all
the updates performed in the time interval [k, . . . , k + n].
A key observation is that this would be equal to the differ-
ence between the children’s means F̄ l

k at time k and the last
parent value F l

k+n at time k+n. Since F̄ l
k is unchanged be-

tween consecutive frames in which children’s values have
not been up-propagated, it holds that F̄ l

k+n = F̄ l
k. Using

similar reasoning for the weight values, we can formulate
down-propagation in compact form as:

∆F l
k = F l

k−1 − F̄ l
k−1,

F l+1
k,i = F l+1

k−1,i + ∆F l
k,

yl+1
k,i = min(ymax, y

l+1
k−1,i + ∆ylk),

∆yl+1
k = ∆ylk−1 + ∆yl+1

k−1,

∆ylk+1 = 0.

(5)

Finally, to achieve smoother propagation, we enforce scale
changes in unitary steps, i.e. the current integration scale
can be at most double or half the resolution of the previous
used.
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Figure 4: Progressive initialisation of fine resolution voxels
from parent octants. Images display a horizontal slice of the
TSDF volume ordered top-to-bottom from the older to the
newer. Red indicates empty and unseen space, salmon-to-
white shades denote space in front of the surface and blue
corresponds to back surfaces. Regions of space that appear
blocky have not yet been refined at the rendering resolu-
tion. Notice how the field is progressively smoothed in pro-
portion to the scale refinement caused by the camera mov-
ing closer towards to the surface (highlighted by the yellow
box).

One subtle issue that remains is how to deal with vox-
els at finer scales that have yet to be initialised, since the
delta propagation described in this section clearly would
not work. Instead, on initialisation we interpolate the val-
ues from the parent grids. To keep computation as local
as possible, we resort to extrapolation in order to compute
values for voxels at the boundaries of contiguous blocks.
This avoids complex synchronisation issues to guarantee
that that the neighbouring blocks are up-to-date and it en-
sure a smooth initialisation, as we show in Figure 4.

4.4. Multi-resolution rendering

Volume rendering is implemented via ray-casting. As
in [21], the hierarchy is traversed to skip empty space and
advance the ray as close as possible to the surface. In the
proximity of the surface the ray is marched in steps propor-
tional to the distance from the zero-crossing. At each step,
the SDF field is sampled via tri-linear interpolation. Once
the ray transitions from positive to negative space the ac-
curate 3D position of the surface is computed as in [14].
Our fusion method and delayed propagation impacts the
way that interpolation and gradient calculations have to be
performed. The key issue is that interpolating points at the
boundaries of voxel blocks requires access to neighbouring

fetch_points( x w, l)

discretise( pw, l)

interp( pw, x w[8], l)

point pw, scale l

l = l - 1

is 
resolution
uniform? 

No

Yes

x w[8]

x w

Figure 5: Schematic representation of the interpolation
point-search algorithm. Given a point pw and scale l,
the point is converted to voxel coordinates xl

w and the
corresponding 8-neighbour is fetched (fetch function). If
the neighbours’ resolution is uniform, interpolation is per-
formed at scale l (interp function), otherwise the search is
repeated at a coarser scale.

blocks. However, there is no guarantee that the lastly inte-
grated data has the same resolution. This would mean inter-
polating between points with variable spacing (i.e. akin to
an unstructured grid) and consequently simple tri-linear in-
terpolation rules would not work. There are several ways
to solve this problem. In [11], a linear system is built
and solved to derive the interpolation coefficients. How-
ever, this is computationally expensive. While the occur-
rence of interpolation across blocks of different resolution
should be relatively rare and restricted to the depth regions
at which the switch occurs, we opted for a simpler strat-
egy, schematically shown in Figure 5. Given a 3D sampling
point, we look for its corresponding voxel in the hierarchy
at the finest, most recently updated resolution. Once we
have found the base point in voxel space, we search for
the neighbouring points at the same resolution. If any of
the required points violates the resolution constraint, i.e. its
last updated scale is greater than the current one, we repeat
the search process of fetching points at the coarser scale.
In other words, we perform the interpolation on the com-
mon finest grid between neighbouring voxel blocks. Figure
6 shows an example of renderings obtained with the ray-
casting strategy detailed in the above. The colour-coding
denotes progressively coarser interpolation scales propor-
tionally to the surface distance. Notice how surfaces at the
interface of scale changes are smoothly rendered.
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(a) ICL-NUIM liv traj 2 (b) TUM fr2 desk (c) Desk sequence

Figure 6: Example of multi-resolution ray-cast rendering on different scenes. The colour coding indicates the variable
resolution used (green finest, purple coarsest).

Figure 7: Reconstruction comparison between a single res-
olution pipeline (left and in red) and our multi-resolution
approach (on the right and in green) on the helmet data-set.

5. Experimental evaluation

In this section, we report our experimental results. All
our tests have been performed on a Intel Haswell i7-4770
CPU with 16GB of memory, Ubuntu 16.04 and frequency
scaling disabled. The software has been compiled with
GCC 8.0 with OpenMP acceleration. We evaluate our
dense SLAM system, which we refer to as multires, against
the single resolution pipeline of [21], denoted as baseline
and InfiniTAM’s voxel hashing implementation [10]. We
have configured all systems with 2mm maximum voxel
resolution and 5cm truncation bandwidth. ICP tracking
uses a three level image pyramid with 10−5 convergence
threshold. As the finest sensor resolution, we use QVGA,
320x240 pixels (i.e. downsampling the VGA resolution by
a factor of two). We stress that the same set of parameters
has been used for all the datasets.

5.1. Qualitative evaluation

To demonstrate the effectiveness of our multi-scale fu-
sion approach we have recorded a series of sequences with
fine structure components, such as scissors, cables, handles
and objects with more complex geometry such as a helmet
or a drone. In all the recorded sequences we have simu-
lated a realistic scanning scenario, where first the scene is
observed closely and then the camera slowly moves away
to scan other parts of the environment. We believe this kind
of scenario is particularly relevant for instance in case of
augmented reality (AR) applications. It is common that in a
bootstrap phase, the user is required to scan the surrounding
environment. Then virtual characters and objects may be
placed on desktops or cluttered scenes and have to navigate
and interact with the map in an accurate way. Similarly, the
scenario is very relevant in robotic exploration, e.g. using a
drone, with the aim of accurately reconstructing an indoor
space. Figures 1 and 7 compare the output of our novel re-
construction pipeline against a traditional single-resolution
system. Both meshes are extracted via marching cubes [4]
at the maximum available resolution. Our method is able to
preserve the fine structure details and furthermore provides
a smoother estimate of planar surfaces. We attribute this
to the reduction of aliasing and better smoothing of sensor
noise at coarser resolutions.

5.2. Quantitative evaluation

We evaluated the run-time performance, tracking and re-
construction accuracy of our pipeline on standard synthetic
(ICL-NUIM [8]) and real (TUM RGB-D [19]) data-sets us-
ing the SLAMBench framework [13]. Table 1 shows the
absolute trajectory error (ATE) across different sequences
from each data-set. With regard to tracking accuracy, our
multi-resolution system achieves same or better results than
the single resolution methods. Note that InfiniTAM results
reported in [10] are slightly superior to what we report, but
were obtained at VGA resolution and at coarser voxel res-
olution, while for fairness we used the same voxel and in-

7



liv_traj_0 liv_traj_1 liv_traj_2 liv_traj_3
0

200

400

600

tim
e 

[m
s]

Multires Remaining
Multires Raycast
Multires Fusion

Baseline Remaining
Baseline Raycast
Baseline Fusion

ITM Remaining
ITM Raycast
ITM Fusion

fr1_xyz fr1_desk fr2_desk fr3_desk
0

200

400

600

Figure 8: Mean execution time per frame, in milliseconds.
The top and bottom respectively rows indicate timings for
the ICL-NUIM and TUM RGB-D datasets.

ATE (m)
Dataset Baseline Multires InfiniTAM
ICL LR 0 0.1315 0.0031 0.1384
ICL LR 1 0.0024 0.0061 0.0044
ICL LR 2 0.0083 0.0052 0.0065
ICL LR 3 0.1213 0.0539 0.1071
TUM fr1 xyz 0.0137 0.0140 0.0273
TUM fr1 desk 0.0633 0.0622 0.0492
TUM fr2 desk 0.0838 0.0853 0.0887
TUM fr3 office 0.0226 0.0227 0.1022

Table 1: Absolute trajectory error (ATE) comparison on se-
quences from the ICL-NUIM and TUM datasets.

put resolutions (2mm, QVGA) across all experiments. Also
note that we manually tuned various InfiniTAM parameters
such as the truncation distance and found that best results
were obtained when using the same parameters as our ap-
proach. Table 2 reports the root mean squared error (RMSE)
of the reconstruction error on the ICL-NUIM sequences,
where the results are consistent with the tracking accuracy.
Notice that this synthetic dataset lacks fine structure ele-
ments and consequently, given the same tracking accuracy,
it is expected to have a reconstruction precision very close
to single resolution grids.

As shown in Figure 8, multi-resolution fusion brings re-
ductions in computational cost, achieving up to 6x higher
frame rate compared to the baseline and always performing
better than voxel hashing. This is due to the combination
of our dynamic resolution fusion, as it reduces the number
of voxels updated per frame according to the distance from
the camera, and the delayed propagation of newly fused

RMSE (m)
Dataset Baseline Multires InfiniTAM
ICL LR 0 0.0532 0.0054 0.0541
ICL LR 1 0.0048 0.0080 0.0057
ICL LR 2 0.0051 0.0048 0.0049
ICL LR 3 0.0568 0.0110 0.0547

Table 2: Reconstruction precision evaluation in terms of
the Root Mean Square Error (RMSE) distance on the ICL-
NUIM dataset.

information. Notice that rendering is faster when using a
single resolution grid. In our current implementation, the
extra control logic required by the interpolation scheme de-
scribed in Section 4.4 induces a non-negligible execution
time penalty compared to the simpler interpolation algo-
rithm usable in case of uniform scale. Overall, the sys-
tem presented in this paper achieves frame rates between
5hz and 10hz on a commodity CPU, while providing very
fine scale reconstructions. This is a strong indication that
the method is scalable and if ported to GPU accelerators
could reach levels of performance far exceeding the cam-
era’s frame rate of 30fps even at the full VGA resolution.

6. Conclusions
We have presented a method for the online volumetric

fusion of depth images at adaptive levels of detail. Our sys-
tem dynamically select the best integration scale to match
the sensor resolution and propagate up and down the oc-
tree hierarchy as required in a lazy fashion, guaranteeing
reconstruction consistency and significantly improved run-
time performance compared to equivalent single-resolution
grids.

There are several directions in which we plan to extend
our work. The surface refinement criteria based on local
curvature proposed by Kahler et al. [11] allows for signif-
icant reduction of memory usage in correspondence of flat
surfaces. We believe that this can be combined with our
distance-based criteria and yield significantly better perfor-
mance while preserving reconstructed details. We also plan
to port our approach to occupancy mapping, specifically ex-
tending the formulations introduced in [12, 21]. This would
allow us to better take into account sensor noise in a proba-
bilistically sound framework.
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