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Abstract— Real-time monocular SLAM is increasingly ma-
ture and entering commercial products. However, there is a
divide between two techniques providing similar performance.
Despite the rise of ‘dense’ and ‘semi-dense’ methods which use
large proportions of the pixels in a video stream to estimate
motion and structure via alternating estimation, they have
not eradicated feature-based methods which use a significantly
smaller amount of image information from keypoints and
retain a more rigorous joint estimation framework. Dense
methods provide more complete scene information, but in
this paper we focus on how the amount of information and
different optimisation methods affect the accuracy of local
motion estimation (monocular visual odometry). We propose
a new method for fairly comparing the accuracy of SLAM
frontends in a common setting. We suggest computational cost
models for an overall comparison which indicates that there is
relative parity between the approaches at the settings allowed
by current serial processors.

I. INTRODUCTION

Monocular visual odometry (VO) is the process of es-
timating the incremental motion of a camera purely from
the image sequence it captures. It is now well understood
that VO can form the ‘front-end’ of a full SLAM system
capable of consistent long-term motion estimation and scene
mapping. VO, similarly to the larger problem of full SLAM,
is a joint estimation problem: to estimate either camera
motion or the shape of the scene it sees, we must estimate
both. The representations used by monocular VO systems
have progressed and changed significantly in the past 20
years. For a long time, almost all monocular VO systems
or SLAM front-ends were feature-based, extracting tens to
hundreds of salient points1 and then performing either joint
filtering (e.g. [1], [2], [3]) or bundle adjustment ([4], [5], [6],
[7]) to minimise the geometric reprojection error.

The value of ‘every pixel’ methods, which do not first ex-
tract features but rather use all pixels in the images, has been
long known in visual SLAM [8]. We can also draw parallels
with feature-free methods using other sensors such as laser
scan matching [9]. However, recently we have seen a strong
shift towards semi-dense and fully dense VO algorithms [10],
[11] which perform real-time estimation of the locations of
many thousands of points and use photometric alignment
against all of them to track camera motion. They use al-
ternating tracking and mapping rather than joint filtering or
optimisation so that they remain computationally tractable
while building much more complete scene representations.

Currently, there are high quality algorithms and open
source implementations of both the sparse and semi-dense
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Fig. 1: Differences in the sparse and dense methods. Points
extracted from the image (shown in red) for the sparse
method and the sparse map are on the left and the points
used from the image for the semi-dense method and the
semi-dense map are on the right. The greater amount of
information about the scene that dense methods provide is
apparent. The question is whether they also provide better
accuracy for VO systems.

approaches, and there is an unclear choice between these two
quite different paradigms in applications. Following an ap-
proach inspired by Strasdat et al.’s ‘Why Filter?’ comparison
of filtering and optimisation methods in sparse SLAM [12],
[13], we have developed a framework for rigorous com-
parison of several aspects of dense and sparse monocular
SLAM front-ends. We focus on experimentally answering a
specific question: which approach offers the most accurate
motion estimation as a function of computational cost? In
this paper we start by looking into whether the weight of
data in semi-dense VO surpasses the more principled joint
optimisation of trajectory and map in the sparse approach.
Our novel software framework allows us to abstract away
the implementation details of systems and concentrate on
the fundamental algorithmic differences. We evaluate the
systems against high quality synthetic image data with
ground-truth trajectory. See Figure 1 for an example of dense
and sparse output from our system. Our framework uses
optimisation uniformly based on Ceres Solver [14] with a
very careful choice of measurement and evaluation methods.

II. BACKGROUND

Around five years ago, rising commodity processing
power, particularly from GPUs, made it apparent that live



dense reconstruction was becoming possible by bringing
multi-view stereo depth map estimation into monocular
SLAM [15], [16]. These systems were immediately of in-
terest for the increased level of information they provided
about the scene, but were not explicitly a move forward from
a SLAM point of view because they still relied on feature-
based SLAM [5] for camera tracking and map consistency.

However, they were soon followed by DTAM [11], a
monocular SLAM system where feature based tracking was
replaced by whole image alignment against a dense recon-
struction of every pixel in the scene. This work coincided
with release of the first commodity depth camera, and
great general increased interest in dense, feature-free SLAM
approaches. In particular, KinectFusion [17] showed that
the 30Hz depth maps measured by Kinect could be fused
incrementally into a consistent volumetric signed distance
function model, with camera tracking achieved by immediate
aligment of new depth maps against the fused model. Point
based fusion [18] achieved a similar thing using surfels.
There is now a great overlap between visual SLAM methods
that use either raw RGB or depth camera data as input, and
Newcombe [19] in particular unified these approaches.

Curcially, these new dense systems rather than using joint
estimation of camera motion and scene shape demonstrated
that very accurate local SLAM can be achieved by alterna-
tion of tracking and map improvement. Joint optimisation
became computationally infeasible for this amount of data,
but the arguably inferior computational method using the
alternation still provides results competitive with the sparse
jointly-optimised methods. When a new frame arrives, the
new position of the camera is tracked by aligning it with
the current reconstruction which is temporarily assumed to
be correct. Then, it is used to improve the reconstruction by
assuming the the new tracked camera position is correct.

DTAM and the Kinect-based dense systems required GPU
processing, but Engel et al. [10] took the important step of
showing that the same essential methods could be made less
computationally intense if thresholding was used to reduce
the number of pixels under consideration. DTAM’s main
computational expense is the estimation of fully dense depth
maps, requiring variational optimisation of a regularised
cost function to fill in less textured scene areas with good
depth estimates. Engel et al.’s monocular semi-dense visual
odometry [10] discards pixels with low image gradient, only
performs reconstruction of pixels with some appreciable
edge magnitude, and tracks the camera against the semi-
dense reconstructions this leads to. Still, though, the essential
approach of dense SLAM is retained: the number of recon-
structed points is high, and tracking and map improvement
are carried out in alternation. It is this alternation (and
lack of joint estimation such as bundle adjustment) which
rather cheaply allows the reconstruction of a number of
semi-dense points which is much larger than feature-based
approaches. The method of [10] and its later extension into
a full largescale SLAM system LSD-SLAM [20] run in real-
time on a CPU.

LSD-SLAM is now widely used, but at the same time

well-engineered new sparse SLAM systems such as ORB-
SLAM [6] and SVO [4] seem to offer similar performance
in local VO and SLAM. The main contribution of this paper
is providing a way to examine these two different paradigms
and give some explanations of why the less precise alternat-
ing optimisation method provides results that are competitive
with the carefully selected jointly-optimised keypoints. It is
the case that from the point of view of an experienced SLAM
theorist, the alternation of tracking and map improvement is
probabilistically inferior to the joint estimation performed
by sparse approaches. Alternating tracking and mapping is
equivalent to assuming independence rather than correlation
between the estimates of the reconstructed scene elements, an
approach which was proven to be inaccurate and discarded
early on in SLAM research (e.g. [21], [22]). Our hypothesis
is that the vastly increased amount of data which dense and
semi-dense approaches make use of can make up for (and
ultimately outweigh) the inaccuracy introduced by their use
of more approximate estimation methods.

III. A NEW FRAMEWORK FOR FAIR COMPARISON

We take inspiration for the current paper from the ‘Why
Filter?’ work of Strasdat et al.[12], [13]. This work provided
an analysis and comparison of two different approaches to
sparse feature-based SLAM. It compared joint filtering and
bundle adjustment approaches and suggested that in most
cases bundle adjustment optimisation proves to be a more
efficient method for the task of precise pose estimation.
If that analysis could be characterised as ‘MonoSLAM vs.
PTAM’, then our current work could be considered the next
step: ‘PTAM vs. LSD-SLAM’.

We use several aspects of the approach of Strasdat et al..
The different algorithms to be compared are used to estimate
visual odometry on a synthetic dataset with known ground-
truth camera motion. We aim to present results for the two
methods we are comparing as a graph showing the minimum
VO error which can be obtained for a certain computational
cost, and to determine whether one method is better than the
other for all possible levels of computation or whether there
are regimes where different methods dominate. Like [12],
[13] our framework is not real-time; it is a tool for evaluating
accuracy against ground truth. Computation speed modelling
is performed separately.

The definition we adopt of the difference between a
‘dense’ VO algorithm as opposed to a ‘sparse’ one has the
following key factors:

1) Choice of scene elements: A sparse method uses fea-
ture detection and reconstructs disjoint scene elements,
usually numbered at maximum in the hundreds. A
dense method chooses to estimate the locations of
a large number of elements which are close enough
together that they will tend to join up. It may try to
reconstruct a scene element for every pixel and thus
be fully dense, or use some weak thresholding and be
semi-dense.

2) Estimation strategy: A sparse method employs joint
estimation of the camera motion and feature locations,



via either joint probabilistic filtering or sliding window
optimisation. A dense method performs alternating
estimation of the scene structure and per-frame cam-
era motion, decoupling the correlation between scene
elements.

By this definition, systems like DTAM [11] and LSD-
SLAM [20] are dense; and MonoSLAM [23], PTAM [5],
ORB-SLAM [6] and SVO [4] are sparse. It is not our aim
here to compare and benchmark specific algorithms and
systems. We could have taken, for example, the front-ends
of ORB-SLAM [6] and LSD-SLAM [20] (both excellent
systems and available open source) and run them head
to head on our synthetic test sequences, comparing their
accuracy and computation times and plotting the results.
However, the details of how those systems are implemented
would leave doubt about which differences were down to
fundamental algorithmic choices. Also, it is hard within
software designed for real-time performance to have full
control over tunable settings.

Instead we have implemented a completely new and
custom VO framework which can be set to emulate the main
aspects of dense and sparse, jointly-optimised and alternating
approaches with the bulk of estimation performed in a
common way. Note that we do not specify the measurement
strategy for sparse methods, and methods which either detect
point features on every frame and seek correspondence with
map as in [5], [6] or use direct patch alignment as in [23],
[4] all fit our definition of sparse. In our experiments we in
fact use the latter approach because this unifies measurement
and optimisation between dense and sparse approaches.

In the coming sections, we first carefully describe
our framework and test sequence, then we proceed with
analysing the behaviour of the alternating and joint opti-
misation methods with different amounts of data used. We
conclude by proposing a computational cost model and eval-
uating the accuracy of the sparse jointly-optimised system
and the semi-dense alternating system against a common
computational cost domain.

IV. DETAILED METHODOLOGY

In the implementation of the framework, we compare
a simulated joint optimisation and alternating optimisation
systems. Our sliding window joint optimisation system is
inspired by [4], as we minimise the photometric error on
patches, but we perform the minimisation directly in the
optimisation rather than optimising geometric error between
observations.

The alternating optimisation system is heavily inspired
by [10]. Both our optimisation systems share the same
patch initialisation and similar variance estimation. The only
difference is in the tracking and mapping optimisation part.
One of the advantages of having this highly homogeneous
yet modular framework is that we can easily test different
configurations of the methods and determine where the
differences in accuracy between the systems come from.

While ‘Why Filter?’ [13] was able to abstract away
the the actual image measurement process and work on

synthesized feature measurements directly, this would be
impossible to do in our current work because semi-dense
and feature-based methods extract different information from
images. The question of correspondence between features
and pixels in both methods cannot be ignored, as it is one of
the important differentiators between the methods. Finding
correspondences between a few hundred highly distinctive
corner patches versus pixels (or patches) with gradients
possibly in just one direction is completely different. Rather
than simulate this sort of correspondence we decided to
use more realistic data. Therefore, we turn to photorealistic
synthetically generated data and direct photometric error
minimisation in our experiments.

A. Notation

The coordinate system W is fixed at the origin of the
modelled scene. Each point in the map is expressed as a tuple
(ui, ρi), where ui = [xi, yi]

T is a 2-D vector with xi and yi
being the pixel locations in the image in which the point was
created, and ρi, the estimated inverse depth of the point. By
depth we mean in this paper the length of the ray from the
centre of the camera to the 3D location of the point. Each
point is also assigned a variance σ2

i as we (similarly to LSD-
SLAM[20]) model the probability distribution of the point’s
inverse depth as a Gaussian distribution N (ρi, σ

2
i ). In order

to calculate the 3D position of the point in the Euclidean
coordinates of the origin frame, we need to backproject the
point using the function π′(u, ρ) : R2 × R → R3. We also
define a function π(p) : R3 → R2 which projects a 3D point
p onto image pixel coordinates.

In the following equations the function wjk(p) : R3 → R3

denotes the warping transformation of a 3D point p in the
coordinate frame Cj of the frame j into the coordinate frame
Ck of the frame k. Hence, wjk(p) = TWCk

T−1WCj
p, where

TWCj
∈ SE3 is the 6-DOF transformation from world

coordinates into the camera coordinates in frame j. In the
rest of the paper we assume P to be the set of 3D points that
were selected for the optimisation and pi = π′(ui, ρi) is a
3D point in its origin frame coordinates. Ij(u) : R2 → R is
the image intensity function at pixel u.

1) Map Representation: The map for both systems con-
sists of a set of points that each corresponds to a patch
in the image they were initialised from. Each point is
associated with the calculated transformation TWCj , where
j is the index of the ‘origin image’ from which the point
was initialised. Each point carries a set of brightness values
contained in the patch of size SxS centred around the points.
We choose S = 5 for all experiments.

B. Optimisation

1) Photometric Cost Function: The usual approach for
sparse systems is to establish feature correspondences be-
tween frames and then minimise the geometric reprojection
error. Some approaches (e.g. [6]) use only feature detectors
to establish these correspondences across frames. Many
other approaches (e.g. [5]) use further photometric error
minimisation to find the sub-pixel location of the features.



SVO [4] uses only photometric error to find correspondences.
We decided to use a single optimisation performed directly
on photometric error. As the optimisation is always initialised
close to the minimum, we get the best accuracy in joint
optimisation by going back to the original data. In terms
of our main aim of comparing against dense alternation
methods this brings all systems onto the same playing field
of optimisation of photometric error, and means that our
results are not affected by the details of feature extraction
and matching. The photometric error of reprojecting patch i
originating in frame j into frame k is:

Ep(p, j, k) =
∑

u,v∈[−S/2..S/2]

(Ij(π(p) + [u, v]T

−Ik(π(wjk(p)) + [u, v]T )2 .

(1)

We do not use any warping, because the sliding window
is small enough not to introduce large shifts in viewpoint.
For estimating the intensities and gradients between the pixel
centres, we use bilinear interpolation throughout the paper.

2) Sparse vs Semi-Dense Optimisation Problem: In the
previous section we have defined the photometric error for
a single patch in equation 1. Now, given a set of patches P ,
we define a photometric error function for that set to be:

E(P, j, k) =
∑
pi∈P

(Ep(pi, j, k)) . (2)

To identify the set of points Ps for the sparse methods,
we use the BRISK feature detector [24] with the extension
described in [25]. This helps us achieve a more homogeneous
distribution of the features across the image. To extract set of
patches Pd for the semi-dense method, we select pixels with
intensity gradients greater than a pre-determined threshold.
We vary the threshold parameters for both methods to obtain
different number of points selected.

3) Joint vs Alternating Optimisation: We adapt the equa-
tion 2 for the purposes of optimisation:

Em(P,D, j, k) =
∑
pi∈P

(C(E(π′(ui, ρ
′
i), j, k))) . (3)

Here, D is the set of inverse depths from which we pick ρ′i
that we are optimising and C(e) is a Cauchy loss used to
add robustness during the optimisation.

The ‘joint optimisation’ side of our comparison uses slid-
ing window bundle adjustment. This optimisation needs to
be anchored in a reference frame to prevent the system being
ill-defined. Because we are in monocular case, we also have
scale ambiguity. To tackle this, we keep the transformations
of the first two frames of the sliding window (TWCm−M

,
TWCm−M+1

) fixed. We minimise the photometric patch error
defined in equation 3. The optimisation for the current frame
m over the sliding window of camera transforms W =
[TWCm−M+2

..TWCm ] and the set of inverse depth estimates
D for the points P can be written as:

D′,W ′ = arg min
ρ′i∈D,TWCk

∈W

∑
l∈[m−M..m]

Em(P,D, j, l)

+λ
∑
pi∈P

(
1

σ2
i

(‖ρ′i − ρi‖))
. (4)

Here ρi is the inverse depth from the optimisation done at
the previous frame. The second term is included to provide
a prior on the point distribution around its latest estimated
position. We minimise the cost function using the Schur
algorithm. For our test sequences, we set M = 20 as the
window size. To apply the depth update, we simply set D′
as the new current estimate for the inverse depths and we
update the variances similarly to variance update in [20].

Our ‘alternating optimisation’ implementation uses alter-
nating tracking and mapping steps instead of joint optimi-
sation. In the tracking step we optimise for the pose of the
latest camera frame as follows:

T′WCm
= arg min

TWCm

∑
pi∈P

(
1

σ2
i

C(Ep(pi, j,m))) . (5)

We use the solver to minimise the sum of patch errors
robustified with a Cauchy loss function. Only the currently
optimised pose is updated, and all other parameters are kept
fixed. The map update step, applied after tracking, is:

D′ = arg min
ρ′i∈D

Em(P,D, j, k) . (6)

We again optimise only the inverse depths of the points.
We keep the x and y coordinates fixed. Otherwise, we
would have a greater number of unknowns than observations
resulting in an ill-defined system. This is also similar to the
way the optimisation is done in LSD SLAM [20]. Note that
the alternating method assumes pixel independence, so we
can just perform an exhaustive search over the epipolar lines,
as this is substantially faster than performing the optimisation
via Ceres in this case. After the optimal inverse depth is
found, we apply an individual Kalman Filter update to each
of the points, just as in LSD-SLAM. To assign variance to
the measurements, we use the method proposed in [10].

All reconstruction and tracking optimisations are executed
using the Ceres Solver [14]. To keep the semi-dense system
close to reality, the mapping optimisation is done by ex-
haustively searching the epipolar line and finding the point
with the minimal patch error Ep within the 2σ inverse depth
interval centered around the current inverse depth of the
point. The same is done for the initialisation of new patches
for joint optimisation.

C. Maintaining the Map

New points are added to the map from each keyframe
after its pose has been tracked. Keyframes are created every
20 frames2. We first extract a set of potentially new pixels.
We then reproject all the points in the map onto the current

2Because the motion in the sequences is regular, we can use this
simplification instead of a more common overlap-based heuristic.



frame, and select the pixels that do not have any point
reprojected onto them. These new points are first added at
an arbitrary depth of 2.0m and their depth is refined in the
next frame by performing exhaustive epipolar search.

When a new keyframe is created, all points that are are not
visible in that frame get deleted from the map. To propagate
the previous measurements of a point during reprojection
to a new keyframe we initialise the point at the position
of the new interest point xnew, ynew. The inverse depth of
a reprojected point from frame j to frame m is set as
ρnew = 1

‖wjm(pold)‖ , and σ2
new = vrσ

2
old, where vr = 1.1.

The purpose of increasing the variance is to accommodate
the imperfection in the reprojection. We similarly penalise
points with high photometric error at their estimated location
during each mapping update.3

D. Experiments
We run our experiments on 4 different systems:
1) Sparse jointly optimised system using points Ps and

equation 4.
2) Sparse aletrnating system using points Ps and equa-

tions 5 and 6.
3) Semi-dense jointly optimised system using points Pd

and equation 4.
4) Semi-dense aletrnating system using points Pd and

equations 5 and 6.
1) Scene and Sequence: The sequence we use is a real-

istically modelled scene from the ICL-NUIM dataset [26].
A sequence of frames along a looped circular trajectory is
rendered at VGA resolution using high-precision ray-tracing
as in [27] and [26]. Example images are shown in Figure 1.

2) Modelling Image Noise: We add realistically modelled
image intensity noise to the synthetic images. This is based
on a model described in [27]. We assume a linear approxima-
tion for irradiance and apply the noise model to the intensity
values. The parameters we use for the noise generation were
chosen after visual inspection of the images to simulate
realistic camera noise for an indoor setting.

3) Algorithm Initialisation: The systems are initialised by
keeping poses fixed and running just the mapping part for
the first 20 frames of the sequence while providing the poses
of the camera coming from the VO part of LSD-SLAM[20].
After this initial short sequence of frames, the tested systems
perform tracking and mapping on their own. We use the next
100 frames for error measurement.

We provide initial estimates of the camera poses for all
subsequent frames. In order to measure the accuracy of the
optimisations rather than the accuracy of different coarse-
to-fine approaches, we only perform optimisation at the
finest level. To provide an initialisation that is close enough
the ground truth for optimal convergence, we advance the
system’s pose estimate TWCm−1 by the difference calculated
by LSD-SLAM VO[20] T̃Cm−1Cm between the last and
new frame m: T̂WCm = T̃Cm−1CmTWCm−1 . This brings
realistic noise into the initial pose estimates.

3We empirically found these settings to give most precision across the
tested systems.

4) Quantifying Error: Quantifying the performance of VO
or any other type of incremental motion estimation must
be carefully performed, and we strongly believe that the
commonly reported measures such as RMSE on a whole
estimated absolute trajectory or ‘percentage drift’ are not
meaningful (the latter because the ratio of drift to distance
travelled will always depend on the distance travelled).
Instead we use a relative measure; the average difference
between estimated and ground truth motion between every
pair of consecutive frames:

Et =
∑

k∈[1..F ]

‖tCk−1Ck
‖/F , (7)

where F = 100 is the number of frames used for mea-
surements and trCk−1Ck

is the translation part of a rela-
tive transform between the last two frames TCk−1Ck

=
TWCk

T−1WCk−1
. We use a similar measure to quantify ori-

entation error:

Er =
∑

k∈[1..F ]

‖rCk−1Ck
‖/F , (8)

where rCk−1Ck
is the rotation component of TCk−1Ck

expressed in angle-axis notation, so that the norm of rCk−1Ck

is the rotation angle in radians. As our results show, these
errors are normally highly correlated.

V. EXPERIMENTAL RESULTS

We first present results on camera pose accuracy for the
dense and sparse methods respectively in terms of the num-
ber of points used by each method. We will then combine
these results with computational cost models in the next
section.

A. Accuracy vs. Number of Points

We vary the number of points over a wide range for
each method to obtain an average relative error measure
for different map densities. The results can be seen in
Figures 2a and 2b. We are mostly interested in the ‘sparse
jointly-optimised’ and ‘semi-dense alternating’ parts of the
graphs. These correspond to the systems that are used in
real applications. The ‘sparse alternating’ and the ‘jointly-
optimised semi-dense’ systems are infeasible in practice
either because of inadequate results, or large computation
requirements, respectively, and are used only to analyse the
relative behaviour of joint and alternating optimisation.

As expected, we measure reduced average errors as the
number of points used increases. Ultimately, both jointly-
optimised systems reach very similar levels of accuracy
slightly below 0.4mm average relative error per frame,
though with the use of very different numbers of points
— around 500 points at 0.38mm accuracy in the sparse
case, and around 10000 points at 0.35mm accuracy in
the semi-dense case. We observe similar behaviour for the
alternating case with a slightly higher errors of 0.45mm and
0.4mm respectively. These figures are reassuringly similar
to the operating points chosen by real sparse and semi-dense
systems.
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Fig. 2: Average relative error against number of points. The
raw results from our experiments (solid lines) are shown
together with fitted curves (dotted lines). We observe that
the joint optimisation method decreases rapidly in both cases,
but as more data are used in the optimisations, the alternat-
ing method slowly catches on. In (a) we observe a curve
similar to [13] for the joint optimisation. The alternating
optimisation error decreases at a slower rate, but we can see
that the difference gets smaller with more data. In (b) the
error rapidly decreases for both methods till around 15,000–
20,000 points. We again observe a slightly steeper decrease
for jointly-optimised minimisation compared to alternating
optimisation, but this difference decreases with more data.

The similar level of accuracy of the two main methods
is an important find, as this confirms our hypothesis that
the greater weight of data used in the semi-dense method
makes up for the simplification made by using alternating
rather than joint optimisation. This can be further backed
up by the fact that the differences between the errors of the
jointly-optimised and alternating methods slightly decreases
with adding more data in both figures.

Direct comparison of the commonly used ‘sparse joint’
and ‘dense alternating’ methods is still not possible, as each
method has a substantially different computational cost per
point. We address this by introducing a computational cost
model in the next section.

B. Accuracy vs. Computational Cost

As we have explained, our software framework is designed
for accuracy analysis, and we do not expect its computational
speed in different configurations to be representative of the
optimised real-time systems that it represents. For this reason
we rely on mathematical models to assess the computational
performance of the competing algorithms tested, anchored
by measurements from real systems.

1) Estimating Computational Cost: The theoretical com-
plexity of the joint optimisation was shown to be linear in
the number of points in [12], [13]. The alternating methods
also perform a constant number of operations on each point
during the tracking and mapping phases. Because we keep
the number of frames fixed in the local sliding window, the
only variable affecting the computation complexity within
each of the methods is the number of points they use.

Theoretical computational cost analysis unfortunately can-
not capture the subtle differences between the two different
methods, as they only differ by a constant factor. They both
scale linearly, but the slope is different due to the different
amount of computation spent on each point. Tuning the
systems or calculating the exact number of operations is
also infeasible in practice, as these would vary widely across
possible implementations.

Therefore, we model the computational cost as a linear
function in the number of points c(N) = aN + b. To get
values for the constants a and b, we use least squares to
compute models that best fit the real timings performed on
the SVO and LSD-SLAM open source real-time systems.
These measurements and our model fits are shown in Figure
3. For SVO, we obtain cSVO(N) = N ∗ 0.0190ms/point −
0.1428ms.4 For LSD SLAM, our model is cLSD(N) =
N ∗ 0.0002ms/point + 11.2653ms. This suggests that LSD
SLAM spends roughly 100 times less computation power
per point than SVO. All timings were done on the same
desktop computer with an Intel Core i7 960 CPU running at
3.20GHz. It should be taken into account that while we do
believe that these models are representative of the relative
performance of sparse and dense approaches, these two real-
time systems both have various types of approximation and
low-level optimisation and other implementations will have
different characteristics. Therefore we should consider the
computational cost models as approximate.

C. Comparative Results on Accuracy as a Function of Cost

Now we can finally plot both systems’ accuracy against
their computational costs. We scale the horizontal axes in
Figures 2a and 2b by the models described in the previous
section, so that number of points can be interpreted in terms
of computational cost. The results can be seen in Figure 4. As
we increase the computational power available in the SLAM
system, semi-dense alternating methods can reach similar
performance as the jointly-optimised sparse methods. (For

4The very small negative constant may seem odd, but it is just a
minor artefact of the best-fit model and does not affect the results of the
comparison.
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Fig. 3: Runtime measurements from open source real-time
systems which we use for computational cost modelling,
where we plot average processing time per frame as a
function of the number of points used. (a) sparse system
SVO [4]; (b) semi-dense system LSD-SLAM [20]. The
straight line fits shown are the processing cost models which
we bring into our comparative results in Section V-C.

completeness, we show the behaviour for rotation estimation
in Figure 5.)

This curve shows relative parity of the methods in the
regimes which are normally used in real-time operation.
We believe that our results strongly suggest that the new
paradigm of semi-dense alternation is well on the way to
being the new norm for VO systems. Our results have
assumed a single serial processing resource, but dense al-
ternation methods benefit more strongly from parallelisation
than sparse methods and the increasing parallelism available
in commodity processors will only aid these approaches
in the future. Dense methods also allow bringing in prior
knowledge about surfaces, which we believe can push the
accuracy of the dense and semi-dense methods further.

VI. CONCLUSION

We have introduced a framework for fair comparison be-
tween sparse joint optimisation and dense-alternation meth-
ods for visual odometry. It keeps implementation details to
a minimum and directly compares the two paradigms. From
our experiments using a synthetic dataset we can see that
both methods are very similar in their peak performance and
that the large amount of data that semi-dense methods use
makes up for the loss in accuracy coming from the efficient
but simplified alternating optimisation.

For future work, we plan to investigate the systems further.
Visual-inertial fusion is now the norm in most deployed
visual odometry systems, in particular where rapid camera
motion is expected. An important extension of this work
would be to see how the addition of an IMU would affect
the conclusions in this paper.

Another direction of this work is evaluating the advantages
that imposing smoothness priors in the case of semi-dense
data can bring. We believe that surface or even object priors
can push the accuracy and efficiency of dense methods ulti-
mately far beyond even a fully jointly optimised approach.
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Fig. 4: Average relative translation error against modelled
computational cost for both dense and sparse approaches.
We can see that while sparse joint optimisation gives better
results at low computational cost, the semi-dense method
catches up when around 15ms per frame of computation time
is available. The two plots show (a) raw results and (b) the
results when the experiment is repeated with ground truth
poses used in the initialisation sequence. More precise ini-
tialisation helps the alternating optimisation achieve slightly
better accuracy and provide results on par with the jointly-
optimised method.
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Fig. 5: Average relative rotation error against modelled
computational cost when the algorithms are initialised using
(a) LSD-SLAM[20] or (b) ground truth. The shape of these
plots are almost identical to those for translation error.
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