

Evaluation Methods for Diffusion-driven Parcellation

Biomedical Image Analysis Group, Department of Computing, Imperial College London, UK

European Research Council Established by the European Commission

Introduction

Context

- Brain connectivity studies can provide key insight into the brain's organisation
- Parcellation of the cortical surface is essential for the construction of connectivity networks
- Parcellation evaluation is very challenging due to the absence of ground truth

Highlights

Two quantitative brain parcellation evaluation measures
Evaluate group consistency and fidelity to the connectivity matrix

Results

Compared methods

Connectivity independent:

- Anatomical parcellations (Destrieux atlas [5])
- Poisson disk sampling random parcellations

Tractography driven:

- Hierarchical clustering
- Multi-scale spectral clustering
- Group-wise multi-scale spectral clustering

- Tested on 5 different methods
- Measures follow what is expected intuitively

Database

Data

- 50 different subjects of the Human Connectome Project database [1]
- Cortical surfaces represented as 32k vertices meshes
- Sulcal mesh registration yields vertex correspondences across subjects

Tractography matrix

- Obtained from FSL's bedpostX and probtrackX [2]
- A row of the matrix describes how a vertex is connected to the rest of the cortical surface: Connectivity profile
- Affinity between vertices: Pearsons' correlation between connectivity profiles

Parcellation methods

- Connectivity independent
- Connectivity driven: regroup vertices with a high affinity

Anatomical

Random

Hierarchical

Quantitative results

Boxplot comparison of all methods:

Information Loss: Kullback-Leibler Divergence

Connectivity Matrix Merging After Parcellation

- Assign a merged connectivity profile to each parcel by averaging the parcels' vertices' connectivity profiles
- ► For N vertices and K parcels:

Kullback-Leibler Divergence

- Evaluate the information loss caused by approximating the tractography matrix χ with the merged matrix χ_m reverted to the original N imes N space.
- Compute the KL divergence between χ and χ_m , normalised to be probability mass functions.

Evolution of the two measures with respect to the number of parcels:

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 319456. Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

The KL divergence should be minimal when the parcellation is the most faithful to the data

Group Consistency: Sum of Absolute Differences

- Inspired from the Minimum Description Length concept
- Single-subject parcellations matching based on the number of shared vertices
- Compute a group average merged tractography matrix
- Compute the SAD between each subject's merged tractography matrix and the average
- Evaluates how close the group is to the average representation
- Compares network similarity rather than parcel boundaries

References

- [1] Glasser, M.F. (2013): The minimal preprocessing pipelines for the human connectome project. NeuroImage, vol. 80, pp. 105-124
- [2] Behrens, T. (2007): Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage, vol. 34, no. 1, pp. 144-155
- [3] Peyre, G. (2004): Surface segmentation using geodesic centroidal tesselation. In: 3DPVT. pp. 995-002. IEEE Computer Society
- [4] Yu, S.X. (2004).: Segmentation given partial grouping constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 2, pp. 173-183
- [5] Destrieux, C., (2010): Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, vol. 53, no 1, pp. 1-15