

Overview

Multi-Scale Spectral Parcellation of the Cortex **Based on Structural Connectivity**

Sarah Parisot Daniel Rueckert

lished by the European Commi

Biomedical Image Analysis Group, Department of Computing, Imperial College London, UK

Introduction

Joint Spectral Decomposition

Context

- Brain connectivity studies can provide key insight into the brain's organisation.
- Parcellation of the cortical surface is essential for the construction of connectivity networks.

Highlights

- Whole cortex parcellation method.
- Captures multi-scale information through a spectral clustering formulation.
- Extension to groupwise parcellation is straightforward.
- Application to tractography-driven parcellation.

We seek to obtain a common parcellation across the different supervertex parcellations.

Inter-scales Edges

- Connect two supervertices if they share vertices on the original mesh.
- Strength of connection: amount of overlap.

Spectral Decomposition [5]

- Inter-scales edges are embedded in a constraint matrix.
- Global affinity matrix: block matrix of all scales' merged affinity matrices.
- Spectral Decomposition of the global matrix subject to the inter-scales constraints.

Results

Database

Data

- Human Connectome Project database [1].
- Cortical surface represented as a 32k vertices mesh.
- Tractography matrix
- Obtained from FSL's bedpostX and probtrackX [2].
- Matrix Row describes how a vertex is connected to the

rest of the cortical surface: Connectivity profile.

Affinity between vertices: Pearsons' correlation between connectivity profiles.

Multi-scale Base Parcellation

Supervertex Parcellation

- Capture local connectivity boundaries at different resolutions.
- High resolution parcellations where the vertices in each parcel or supervertex are very correlated.
- Similar to the SLIC superpixels approach [3].

Iterative approach

Figure 3: Parcellation results for two different subjects and the three different base parcellation scales.

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 319456. Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Figure 1: Convergence of a base parcellation scale. Evolution of the number of seeds reevaluated (left) and the average correlation within a supervertex (right).

Figure 2: Example of a multi-scale base parcellation: from left to right 2000, 1000 and 500 supervertices.

References

- Glasser, M.F. (2013): The minimal preprocessing pipelines for the human connectome project. Neurolmage, vol. 80, pp. 105-124
- [2] Behrens, T. (2007): Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage, vol. 34, no. 1, pp. 144-155
- [3] Achanta, Radhakrishna, et al. "SLIC superpixels compared to state-of-the-art superpixel methods." Pattern Analysis and Machine Intelligence, IEEE Transactions on 34.11 (2012): 2274-2282.
- [4] Peyre, G. (2004): Surface segmentation using geodesic centroidal tesselation. In: 3DPVT. pp. 995-002. IEEE Computer Society
- [5] Yu, S.X. (2004).: Segmentation given partial grouping constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 2, pp. 173-183