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Abstract. Brain connectivity network analysis is a key step towards un-
derstanding the processes behind the brain’s development through ageing
and disease. Parcellation of the cortical surface into distinct regions is
an essential step in order to construct such networks. Anatomical and
random parcellations are typically used for this task, but can introduce
a bias and may not be aligned with the brain’s underlying organisation.
To tackle this challenge, connectivity-driven parcellation methods have
received increasing attention. In this paper, we propose a flexible con-
tinuous flow maximisation approach for connectivity driven parcellation
that iteratively updates the parcels’ boundaries and centres based on
connectivity information and smoothness constraints. We evaluate the
method on 25 subjects with diffusion MRI data. Quantitative results
show that the method is robust with respect to initialisation (average
overlap 82%) and significantly outperforms the state of the art in terms
of information loss and homogeneity.

1 Introduction

Brain connectivity network analysis can provide key insights into the brain’s or-
ganisation and its evolution through disease and ageing. Building these networks
from functional (fMRI) or diffusion (dIMRI) MR imaging is a challenge in itself
due to the high dimensionality of the data. Therefore, network construction re-
quires an initial parcellation stage of the cortical surface into distinct regions.
While anatomical or random parcellations are used in most existing studies,
they do not necessarily represent the brain’s underlying connectivity accurately
and can introduce a strong bias in the constructed network and its subsequent
analysis [14].

In order to address the shortcomings of anatomical and random parcellations,
connectivity driven brain parcellation has received an increasing amount of at-
tention. In addition to providing a sensible basis for constructing connectivity
networks, it can enable the identification of functionally specialised brain regions.
The problem is typically cast as a clustering problem of the cortical surface ver-
tices, where the goal is to maximise the correlation between connectivity profiles
(dAMRI) or time series (fMRI). While common clustering techniques can be used
when parcellating a subset of the brain [1, 8], the problem becomes more difficult
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when the aim is to parcellate the whole cortical surface. Hierarchical [3, 10] and
spectral clustering [5, 13] based methods are the most popular approaches. How-
ever, the latter tends to create homogeneous parcel sizes, which can disagree with
the brain’s structure, while hierarchical clustering implies that regions bound-
aries are the same at different granularity levels. This can propagate errors from
low to high resolution.

A Markov Random Field (MRF) based method for fMRI driven parcellation
was proposed in [7]. It maximises the correlation between nodes and a parcel
centre subject to smoothness constraints. The method considers all nodes (ver-
tices on the cortical surface) as potential parcel centres and adds a penalty term
at the introduction of a new label. The use of all nodes as parcel centres makes
the method sensitive to noise and computationally very demanding. At the same
time, there is no direct control on the number of parcels obtained.

In this paper, we propose an iterative MRF formulation to the parcellation
problem based on the continuous flow-maximisation solver introduced in [15].
Each iteration consists of maximising the correlation between the nodes and
parcel centres, as well as a smart update of the centres based on the cluster’s
homogeneity. A coarse to fine multi-resolution implementation allows to reduce
the influence of noise while efficiently exploring the space for updates of the
parcel centres. The experimental evaluation is performed on 25 subjects from
the Human Connectome Project (HCP) database for AMRI driven parcellation.
We show that the method is robust with respect to initialisation, and signif-
icantly outperforms existing methods in terms of information loss and parcel
homogeneity.

2 Methodology

We consider a subject whose cortical surface is to be parcellated into a set of
K parcels. The surface is represented as a mesh graph & = {V, £}, where V
corresponds to a set of N vertices and & to the edges between neighbouring
vertices. The problem is simplified by inflating the cortical mesh to a sphere
on which computations are performed. The graph is associated with an affinity
matrix describing how dissimilar two nodes are in terms of connectivity. The cor-
relation p between the vertices’ connectivity profiles obtained from tractography
(AMRI-driven) or times series (fMRI-driven) is a commonly employed measure.

2.1 Iterative Markov Random Field Formulation

We cast the connectivity driven parcellation task as a vertex labelling problem,
where each graph node v is to be assigned a label [ € [1, K] based on its affinity
with a predefined parcel centre ¢;. We adopt a coarse to fine multi-level MRF
formulation that iteratively evaluates the label assignments of the vertices and
updates the parcel centres based on the current parcellation configuration.

We initialise each resolution level R with the construction of a regular icosa-
hedron S of constant radius RAD and the smooth resampling of the data term
D to the new resolution.
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Assignment Stage: Given a set of parcel centres C* = {c!, - ,cl.} C V,
the first stage of each iteration ¢t consists of minimising the following energy:
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where S; = {v € V|l(v) = i} corresponds to the subdomain of S assigned to
label I; and D(c;,v) is the distance between a vertex and a parcel centre. The
first term of the equation assigns nodes to the parcel based on how similar they
are to its centre, while the second term enforces smoothness of the parcellation
by minimising the length of the boundary of each subdomain. The strength of
the smoothness term is defined by the position dependent cost a(v).

Centre Update Stage: For each parcel S; obtained during the assignment
stage, the centre is defined based on the correlation between nodes within the
parcel. The parcel centre should have strong connectivity information and be
the most similar to the rest of the parcel:

¢!t = arg max Z p(v,w) (2)
veS;
wesS;

This smart centre update enables to guide the parcels’ position based on con-
nectivity information. The coarse to fine approach enables to explore the centre
space efficiently and to avoid local minima due to the presence of noise. Centres
are propagated from one resolution level to the next by minimising the geodesic
distance d, between the parcel centre and the new resolution’s vertices on the
inflated mesh: ¢! = argmin, c grs1 dy(v, cl?).

i

2.2 Continuous Max-Flow Optimisation

We minimise the assignment stage’s MRF energy using the recently proposed
Continuous MaxFlow (CMF) algorithm [15] that we adapt to triangular spherical
meshes. This solver offers two significant advantages over discrete MRF optimi-
sation approaches. First, it is highly paralellisable, and as a result very scalable
with respect to the mesh size and number of desired parcels. Second, it provides
a continuous labelling, which results in smoother parcel boundaries and a better
exploration of the solution space.

Similarly to discrete s-t-mincut/maxflow MRF optimisation methods [4], the
continuous maxflow model constructs a directed graph through the introduction
of two terminal nodes (source s and sink t). The state of a mesh vertex v is
given by three flows: the source p*(v) and sink flows p’(v) connecting v to both
terminal nodes, and a spatial flow field q(v) connecting neighbouring vertices. In
the multi-label setting, K copies of the surface mesh are constructed in parallel,
each associated with label-wise spatial and sink flows q;(v),pi(v),i € [1, K],
while p*(v) remains unique. The multi-label configuration is illustrated in Fig.1a.
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Fig.1: (a) Configuration of the spherical CMF algorithm with K labels. (b)
Spatial flow computation: from a starting vertex (marked), alternation between
longitudinal (red arrows) and latitudinal (blue arrows) computation.

The three flows are subject to capacity and conservation constraints:

vie [LK], la(v) <a(v), p(v)<Dlcsv)

. S i _ (3)
Vie[1,K], (V-q—p*+p)(v)=0

As a result, the CMF algorithm consists of maximising the total flow p®(v) from
the source under the aforementioned constraints. The optimisation is based on
the augmented Lagrangian method through the introduction of the indicator
function u;(v),i € [1, K], that have been shown to correspond to the optimal
continuous labelling functions [15].

One of the main challenges associated to the new mesh space is to adapt
the spatial flow computation task from a rectangular grid (image pixels and
neighbours) to a triangular mesh with different neighbourhood configurations.
We split the spatial flow into two components (see Fig.1b): a latitudinal and a
longitudinal one (with varying number of components) that are computed alter-
natingly. This ensures that the flow can be computed in parallel in a consistent
flow direction. The CMF optimisation is performed at each iteration until con-
vergence. After convergence, the parcellation is obtained by selecting for each
node the label that maximises the labelling function u;. This iterative process is
then repeated until convergence of the labelling function (minimal label update).

3 Results

We evaluated our method on 25 different subjects from the latest release of HCP,
which were preprocessed following the HCPs minimum processing pipeline [6].
The cortical surfaces are represented as a triangular mesh of 32k vertices per
hemisphere. Vertices corresponding to the medial wall are excluded from par-
cellations due to the lack of reliable connectivity information in this region. We
tested the method on structural connectivity based parcellation obtained from
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Fig.2: (a) Convergence of the labelling update at each resolution level: sum of
absolute differences between the continuous labelling functions u; of two consec-
utive iterations. (b) Associated parcellation after convergence.

20 different random initialisations via Poisson disc sampling, and four different
number of labels (50, 100, 150 and 200 labels). We set the smoothness parameter
a(v) to a constant to 0.1 over all vertices v. Structural connectivity informa-
tion is obtained from dMRI and tractography. The data term D is defined as
D(ci,v) =1 — p(c;,v), where p is the correlation between the vertices’ connec-
tivity profiles. The tractography matrix is obtained using FSLs bedpostX and
probtrackX methods [2,9] which estimate the fibres orientation at each voxel
with a ball and stick model, and perform probabilistic tractography respectively.
Following [9], we fitted three fibre compartments per voxel. 5000 streamlines were
sampled from each of the vertices. Each entry of the tractography matrix counts
the number of streamlines sampled from vertex v that reach vertex q.

Our framework consists of four resolution levels (32k, 16k, 8k and 4k nodes).
The convergence at each level was monitored by computing the sum of absolute
differences between two consecutive labellings functions u;. As illustrated in
Fig.2 for a randomly selected experiment, all four resolution levels converge
through the different centres updates. As expected, the convergence rates vary
with respect to the quality of the initialisation and number of nodes.

The reproducibility with respect to initialisation is evaluated by computing
the Dice similarity coefficient (DSC) between same subject parcellations. De-
pending on the initialisation, certain parcels can be split in several subparcels
but have the same overall boundary. To find correspondences between parcel-
lations, we consider a pair of parcellations P; and P, obtained from different
initialisations. Each parcel of P; is assigned to the parcel in P, that has the
highest overlap. Parcels in P, are merged if they are assigned to the same par-
cel in Py (split parcel case). The same process is repeated for P, with respect
to the updated parcellation P;". The DSC between the matched parcellations is
computed for all subjects, numbers of labels and initialisations. The values are
compared to the DSC between the random initialisations as a baseline. For all
numbers of labels, we consistently obtain an average DSC of 0.82 + 0.01, while
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Table 1: Mean Kullback Leibler divergence (a) and parcel homogeneity (b) for
all tested labels and methods. The best value is shown in bold. Statistically
significant results: “p < 0.01.

(a) Kullback Leibler divergence

Method

50 labels

100 labels

150 labels

200 labels

Random

Spectral
Proposed

Hierarchical

2.67 £ 0.08
2.55 £ 0.08
2.54 £ 0.08

2.50" + 0.09

2.33 £ 0.08
2.15 £ 0.08

2.16 £ 0.1

2.10" + 0.08

2.09 £ 0.08
1.92 + 0.07
1.89 + 0.07
1.87 + 0.09

1.96 £ 0.08
1.80 % 0.06
1.80 + 0.07
1.74" + 0.07

(b) Homogeneity

Method

50 labels

100 labels

150 labels

200 labels

Random
Hierarchical

0.11 £ 0.005
0.11 £ 0.006
0.11 £ 0.006

0.16 £ 0.008
0.16 £ 0.009
0.16 = 0.009

0.19 £ 0.011
0.21 £ 0.013
0.20 &= 0.013

0.22 £ 0.015
0.24 £ 0.016
0.24 £ 0.015

Spectral
Proposed

0.12" 4+ 0.006|0.18" + 0.011/0.22" + 0.015|0.26" + 0.017

random initialisation only reaches 0.64 £+ 0.02 on average. Figure 3 shows the
comparison between example parcellations after matching, and the local average
reproducibility of parcels. We can see that parcels boundaries are very similar
despite different initialisations. Figure 3b shows that some regions have consis-
tently matching boundaries while others are more variable across initialisations.
This could be due to the fact that the connectivity information in these regions
is too weak or that the differences are too subtle to drive the parcellation task.
The quality of the parcellation is evaluated through computation of the av-
erage intra-cluster connectivity homogeneity [5], and the Kullback Leibler diver-
gence (KLD) between the normalised tractography matrix and its approximation
obtained after parcellation. The KLD evaluates the information loss caused by
such approximation. KLD and homogeneity values are compared to the ones
obtained by Poisson disc sampling (random parcellations), multi-scale spectral
clustering (SC) [11], and hierarchical clustering (HC). Both spectral and hierar-
chical clustering are spatially constrained and based on an initial connectivity-
driven oversegmentation of the cortical surface to adjust for the noise (2000
regions for HC; 500, 1000 and 2000 regions for the multi-scale SC). For each
subject, we compute the average KLD for parcellations obtained from the dif-
ferent initialisations. As illustrated in Table la, we can observe that the average
KLD outperforms spectral and hierarchical clustering at most resolutions. Paired
T-tests of our proposed method with the three different methods (random, SC,
HC) show that we obtain significantly better results (p < 0.01) for most label
configurations. Furthermore, homogeneity measures show that we consistently
obtain significantly better values for all label configurations (p < 0.01). Average
homogeneity and KLD results are shown in Table 1b. Correspondences between
our obtained parcel boundaries and cortical myelination are shown in Fig. 3c.
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(a)

Fig.3: (a,b) Reproducibility between initialisations: (a) A parcellation result is
superimposed to the boundaries of a parcellation obtained with a different ini-
tialisation. (b) Local average DSC over all initialisations for the same subject. (c)
Comparison of parcellation borders with cortical myelination. Parcel boundaries
matching high myelin variations are highlighted.

4 Discussion

In this paper, we propose a continuous MRF model for connectivity-driven cor-
tex parcellation. We develop a coarse to fine approach that iteratively updates
parcel centres and the remaining nodes assignments. The inference is performed
using a Continuous MaxFlow algorithm that is adapted to spherical meshes. We
demonstrate the method’s robustness with respect to initialisation and show that
it significantly outperforms state-of-the-art clustering methods both in terms
of information loss and homogeneity for most tested label configurations. The
method is generalisable and can be applied to both fMRI and dMRI data. Fur-
thermore, it is very flexible with respect to the definition of the cost function and
smoothness term. For instance, it is straightforward to implement data-driven or
inter-subject pairwise costs for groupwise parcellation. Other applications could
also be considered, such as MRF based cortical registration [12]. The continuous
solver could prove very useful in this kind of set up for finding a smooth defor-
mation field. In order to show the robustness of the method, we have presented
parcellation results obtained with a poor initialisation that has no correlation
with the underlying connectivity. A smart centre initialisation would provide
faster convergence, and potentially better consistency in less reproducible re-
gions where the information from the tractography matrix is not strong enough.
Identifying the regions that are the most reproducible also enables to identify
where the connectivity information can be relied upon. This could provide in-
teresting insight into multi-modal analysis of functional and structural data.
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