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Abstract

In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework.

Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse

grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration

is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two

problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and

high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate

sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement

set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal

energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our

proposed approach shows maintained performance and strongly reduced complexity of the model.
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1. Introduction

Gliomas are the most common type of primary brain tu-

mors and arise from glial cells. They are classified in 4 grades

by the World Health Organization (WHO), grade I correspond-

ing to benign tumors with excellent prognosis and Grade IV

gliomas (Glioblastoma Multiforme) being the most common

and lethal. WHO grade II Low Grade Gliomas (LGG) are a

specific kind of glioma that represent about 30% of the brain

tumors and can affect younger patients (Soffietti et al., 2010).

They are characterized by a continuous slow growth and yield

mild symptoms. They generally undergo anaplastic transfor-

mation into a fast growing malignant tumors and therefore have

to be monitored closely via frequent MRIs. Knowing the size

and extent of a brain tumor is of extreme importance in order to

evaluate its growth, its reaction to therapy and for surgery plan-

ning. Currently, the physicists compute the main tumor diame-

ters and approximate it as an ellipsoid, a highly imprecise mea-

sure that tends to overestimate the volume of the tumor (Pallud

et al., 2012). The current gold standard is manual segmenta-

tion, which on top of being a tedious and time consuming task,
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is also subject to a high inter and intra operator variability. Au-

tomatic tumor segmentation is thus an active research field that

aims at obtaining fast and robust segmentations. It is a particu-

larly difficult subject due to the extreme heterogeneity between

the tumors in appearance, shapes and size and their overlapping

intensities with the healthy tissue. LGG are diffusively infil-

trative tumors with extremely irregular and fuzzy boundaries,

rendering the segmentation task even more difficult.

Fuzzy clustering and knowledge based methods were amongst

the first considered for tumor segmentation with limited suc-

cess (Clark et al., 1998; Fletcher-Heath et al., 2001). Level sets

and Active Contours have been a popular approach (Ho et al.,

2002; Cobzas et al., 2007; Taheri et al., 2010), but suffer from

their strong sensitivity to initialization. The idea is to model the

tumor boundary as a parametric curve that evolves depending

on the image properties and curvature constraints. Statistical

classification methods offer an efficient way of detecting tumor

voxels. The voxels are treated independently and separated by

a classifier that is learned from a set of training samples. Ex-

amples refer to the Support Vector Machines (SVM) (Verma

et al., 2008; Zhang et al., 2004; Garcı́a and Moreno, 2004),

Boosting (Xuan and Liao, 2007) or the Decision Forests (Zi-

kic et al., 2012). Despite promising performance, those meth-

ods are plagued by the i.i.d assumption that treats each voxel

independently, leading to irregular segmentations. Morpholog-

ical filtering (Zhang et al., 2004) or neighborhood dependent
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features (Zikic et al., 2012) offer limited improvement on the

local consistency of the segmentation. Notable improvement

is observed when coupling the statistical classification with lo-

cal neighborhood dependencies (Lee et al., 2008; Görlitz et al.,

2007; Wels et al., 2008; Bauer et al., 2011), modeled by a ran-

dom field (Markov Random Field (MRF), Conditional Random

Field (CRF)) (Wang et al., 2013) based spatial prior. In this con-

text, the segmentation is locally smoothed by penalizing neigh-

bors that are assigned different segmentation labels, but still

lacks global information regarding the tumor’s position and the

brain boundaries. Stronger dependencies can be modeled via

a hierarchical approach. Gering et al. (2002) proposed a multi

layer MRF approach where the tumor is detected as an out-

lier from manually selected training voxels. At each layer, the

segmentation is refined based on higher level information and

the previous layer’s segmentation. Corso et al. (2008) combine

Bayesian classification using Gaussian Mixture Models with a

hierarchical graph affinity model, where the spatial dependen-

cies are modeled by assigning an affinity to each graph edge.

Atlas-based segmentation methods rely on the registration

of an annotated volume to the subject in order to segment the

structures of interest. The use of a brain atlas allows for struc-

tural spatial prior information, but the task is more difficult

when the structure to segment is a tumor since it cannot be

matched in the atlas. That is often addressed through a model

for tumor detection. Kaus et al. (2001) alternate kNN classifica-

tion based on intensity and anatomical location with a registra-

tion step based on the structures’ segmentation, the tumor being

labeled as white matter in the registration process. In (Prastawa

et al., 2003) a probabilistic atlas is affinely registered to the pa-

tient, enabling to define prior probabilities on the expected in-

tensities of the structures. The atlas is modified to account for

tumor presence (detected by contrast enhancement) and edema.

Similarly to Gering et al. (2002), the tumor voxels can be de-

tected as outliers from the healthy voxels (Menze et al., 2010;

Prastawa et al., 2004). The healthy structures’ features are es-

timated from a registered healthy atlas. Additional local spa-

tial constraints are modeled via Markov Random Fields (Menze

et al., 2010) or level sets (Prastawa et al., 2004).

Atlas based methods depend on the quality of the registra-

tion. Rigid or affine registration methods are not sufficient to re-

cover the inter patient anatomical differences, while traditional

non-rigid registration methods fail in this context by attempt-

ing to find correspondences between the tumor and the healthy

voxels. An efficient atlas based segmentation thus requires a

registration scheme that accommodates for the presence of the

tumor.

Despite extensive work in deformable image registration

(Zikic et al., 2010; Ou et al., 2011; Berendsen et al., 2013; Soti-

ras et al., 2013), there has been limited work dedicated to regis-

tration with missing correspondences. Such a registration task

is of high interest for the study of brain tumors through statis-

tical atlases and longitudinal studies. A tumor specific proba-

bilistic atlas, constructed through affine registration of a large

database to the same reference coordinates, was notably pro-

posed in (Parisot et al., 2011). It enabled the identification of

preferential locations for the tumors and could lead to unravel-

ing position dependent behaviors and origins. Deformable reg-

istration would enable to go further and study the interactions

between the tumors and the brain structures and functional ar-

eas. Understanding the tumors growth patterns and their impact

on the brain’s functional organization is of key importance for

therapy and surgery planning.

We can distinguish two groups of methods for registration

in the presence of a tumor. The first relies on modeling the

tumor growth to evaluate the tumor induced deformation (Kyri-

acou et al., 1999; Mohamed et al., 2006; Zacharaki et al., 2008;

Cuadra et al., 2004). Kyriacou et al. (1999) proposed a biome-

chanical finite element model to simulate the tumor induced de-

formation while assuming a radial uniform growth of the tumor.

Using the tumor growth model, a healthy brain was simulated

by contracting the tumor, allowing for a normal registration pro-

cess. Cuadra et al. (2004) also assumed radial growth of the

tumor. The registration is performed using the demons algo-

rithm (Thirion, 1998) between healthy voxels and is based on

the distance from a manually selected seed in the tumor area

(that has been segmented prior to the registration process). Mo-

hamed et al. (2006) decomposed the deformation as inter sub-

ject and tumor induced deformations. The latter was modeled

via a biomechanical finite element model whose parameters are

learned by statistical learning. The tumor growth is then sim-

ulated in the healthy atlas, enabling normal registration. This

method was extended in (Zacharaki et al., 2008) towards a com-

putationally efficient biomechanical model taking into account

the potential infiltrative parts of the tumor by limiting the tumor

growth. Growth models require either user interaction or ex-

tensive computations to evaluate the model parameters and are

mostly adapted to space occupying lesions. Low grade gliomas

are infiltrative tumors with little to no mass effect and edemas.

The limited amount of deformation caused by the tumors ren-

ders the use of growth model not adapted and possible prone to

errors assuming the tumor pushes tissue instead of infiltrating

it. The second group of methods (Brett et al., 2001; Stefanescu

et al., 2004) adopts a simpler approach and masks the pathol-

ogy towards excluding it during registration. The tumor area is

discarded during the computation of the similarity criterion and

deformed by interpolation. This kind of approach offers a better

modularity with respect to the pathology since no assumption

is made about the pathological area nor the progression of the

tumor. Both approaches require a reliable segmentation of the

tumor, making the registration dependent on the quality of the

segmentation of the tumor.

Registration and tumor segmentation appear as two funda-

mentally correlated problems, where one could benefit from the

other if performed simultaneously. The idea of coupling seg-

mentation and registration is not a new concept. Yezzi et al.

(2003) used an active contour framework, estimating the regis-

tration parameters and reference volume’s segmentation curve

by minimizing a joint energy depending on both images. The

floating image is segmented by registering the reference’s seg-

mentation. A maximum a posteriori framework was presented

in (Wyatt and Noble, 2003) where the segmentation and rigid

registration parameters are determined alternatively. The seg-

mentation relies on Gaussian Mixture Models coupled with an
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MRF prior, while the registration relies on the segmentation by

minimizing the joint class histogram between both images. Ma-

hapatra and Sun (2012) proposed an MRF based framework

where each voxel of the image has to be assigned a displace-

ment and segmentation label. The different classes are sepa-

rated based on the intensities in both images while the registra-

tion relies on minimizing conventional similarity metrics. The

registration and segmentation fields are smoothed by enforc-

ing similar displacement among voxels of the same class. Ash-

burner and Friston (2005) proposed a statistical model, where a

probabilistic atlas plays the part of a spatial prior for segmen-

tation and bias field correction. The different classes are sepa-

rated via a mixture of Gaussians, allowing for several modes per

class. The atlas is globally registered by affine registration then

locally deformed. Last but not least, Pohl et al. (2006) devel-

oped an Expectation Maximization (EM) Bayesian framework,

alternatively estimating the segmentation probabilities and the

rigid registration and bias field parameters.

All those methods rely on the concept that the structures

to be segmented appear in both images. The joint segmenta-

tion and registration problem becomes far more challenging in

the presence of a pathology due to the absence of a match in

the second image. Most methods alternatively estimate the reg-

istration and segmentation maps. Chitphakdithai and Duncan

(2010) proposed an EM Bayesian framework in the context of

a surgical tumor resection. The resection area was detected by

statistical learning on a training set based on the intensity val-

ues and deformed by interpolation (constant registration cost in

the resection area). In the same clinical context, Risholm et al.

(2009) coupled the demons algorithm with level sets. They al-

ternate segmentation of the resected area by evolving a level set

based on the image gradient and intensities disagreements, with

a demons based registration that accommodates the resection

by only allowing displacement towards the area. The problem

is more challenging in the context of tumors that have complex

intensity profiles. Gooya et al. (2011), inspired from the work

of Zacharaki et al. (2008) and Pohl et al. (2006) introduced a

method to to deal with the presence of a tumor. The tumor is

simulated in a probabilistic atlas via a biomechanical model of

tumor growth. The EM algorithm is used to iteratively estimate

segmentation posterior probabilities and the tumor growth and

registration parameters. While growth models are able to simu-

late the mass effect, they suffer from the computational burden

of estimating the model parameters and are hardly generalizable

to other pathologies. Furthermore, the quality of the registra-

tion directly depends on the quality of the model which implies

extended knowledge on the pathology.

In (Parisot et al., 2012), we introduced a concurrent seg-

mentation and registration framework that exploits the depen-

dencies between the two problems in order to adapt the regis-

tration task to the presence of the tumor as well as increase the

segmentation quality. The concurrent registration and segmen-

tation framework is embedded in a discrete graphical model,

where a sparse grid is superimposed to the volume domain and

each node will be simultaneously displaced and classified. The

registration term is relaxed in the tumor area that is detected by

statistical classification. Pairwise constraints ensure the smooth-

ness of the segmentation and deformation fields. This discrete

approach raises the problem of defining the discrete displace-

ment set and resolution of the sparse grid that have to be high

enough to capture small details and remain computationally ef-

ficient. In this paper, we extend the proposed method through

a novel content-driven hierarchical coarse to fine approach ex-

ploring segmentation and registration uncertainties as determined

by the min-marginal energies. The displacement set sampling

relies on the local structures anisotropy while the grid refine-

ment is controlled by the local homogeneity of the region and

the segmentation uncertainties. This yields non uniform high

resolution grids with a much lower complexity. The proposed

MRF based individual tumor detection and registration frame-

work and their coupling is described in Section 2 while the un-

certainty driven adaptive sampling method is introduced in Sec-

tion 3. The experimental validation is part of Section 4 and is

carried out on a large low-grade glioma database as well as the

publicly available BRATS dataset. Discussion and future direc-

tions conclude the paper.

2. Concurrent Tumor Segmentation and Registration

2.1. Statistical Classification based Tumor Segmentation

Let us consider a volume V featuring a tumor that we seek

to segment. The tumor can be efficiently detected via the con-

struction of a classifier separating tumor voxels from healthy

voxels. We adopt the Gentle Adaboost algorithm (Friedman

et al., 2000) that builds a strong classifier as a linear combi-

nation of weak classifiers. Let us consider a set of N training

samples {xi, yi}, i ∈ {1,N}, where xi is a voxel extracted from

a tumor bearing volume, and yi is its corresponding label (tu-

mor or background). To each pair is associated a feature vector

Π(xi) and a weight Wi =
1
N

.

At each iteration t, the algorithm selects a feature and a

threshold, in order to build a weak classifier ht(xi) as a deci-

sion stump that minimizes the classification error:

err =

N∑

i=1

Wi|ht(xi) − yi| (1)

The weights Wi are then updated as Wi = Wi exp(−yiht(xi)) in

order to give more importance to misclassified voxels at the next

iteration. The strong classifier H(x) is obtained by summing

the weak classifiers, and yields a classification score that can be

converted to probabilities as:

ptm(x) =
1

1 + exp(−2H(x))

pbg(x) = 1 − ptm(x)

(2)

The key element of the boosting algorithm is the selection of

the feature vector. We adopt a high dimensional space explor-

ing visual, phase and geometric properties. First, we rely on

the intensity values using patches (9 × 9 × 5) centered on the

sample voxel xi. Median, entropy and standard deviation val-

ues are extracted from another set of patches of sizes k × k ×

3, where k = {7, 9, 11}. Second, we compute Gabor features
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(Manjunath and Ma, 1996) on 2 scales and 10 orientations.

We adopt the method of Zhan and Shen (2003) that approxi-

mates the 3D Gabor filters by computing two orthogonal 2D

filter banks. Eventually, we compute a symmetry based fea-

ture, since the presence of the tumor will introduce an asymme-

try between the hemispheres of the brain. Assuming a sym-

metry plane is known, the symmetry feature is computed as

S ym(xi) =
1
n

∑

xj∈N(xi)
I(xj)−

1
n

∑

xj,s∈N(xi,s) I(xj,s). N(.) is a neigh-

borhood introduced to compensate the approximate symmetry

plane, xi,s is the symmetric of voxel xi and I(.) is the intensity

value.

Spatial dependencies are introduced through an MRF model

on a graph where each voxel of the image is a node and the

edges connect the node to its 6 immediate neighbors. In this

model, we define a binary label set Ls = {0, 1}. Each node x

(i.e image voxel) is to be assigned one label, tumor (lx = 1)

or background (lx = 0). The optimal labeling is recovered by

minimizing the MRF energy (Boykov and Funka-Lea, 2006):

Eseg(l) =
∑

x

Vx(lx) +
∑

x

∑

y

Vx,y(lx, ly) (3)

The unary potentials Vx(.) correspond to the classification like-

lihoods, seeking the most probable label according to the boost-

ing classification decisions:

Vx(l) = −lx log(ptm(x)) − (1 − lx) log(pbg(x)) (4)

And the pairwise term plays the part of a smoothing prior on

the segmentation field, and is defined as a Potts model that pe-

nalizes neighboring nodes labeled differently:

Vxy(l) = β(1 − δ(lx, ly)) (5)

where β is a constant parameter describing the amount of smooth-

ing.

The main drawback of this approach is the lack of global in-

formation on the brain structure, the spatial dependencies being

encoded in a strictly local manner. Coupling segmentation with

registration adds global information, but requires an efficient

registration scheme.

2.2. Graph based Registration

Let us consider a source image A and a target image V de-

fined on a domain Ω. In our case, the source image is a healthy

brain and the target image is a diseased brain featuring a tumor.

In the task of image registration, we want to find the geometric

transformation T that will map the source image to the target

image:

V(x) = A ◦ T (x) (6)

We adopt the Free Form Deformation (FFD) approach (Rueck-

ert et al., 1999), where a sparse grid G ⊂ Ω is superimposed to

the volume. The transformation will be evaluated on the grid’s

control points, and then on the whole volume by interpolation.

T (x) = x +
∑

p∈G

η(‖x − p‖)dp (7)

where dp is the displacement of control point p and η(.) is the

projection function that describes the influence of each control

point on voxel x.

The most likely displacement should minimize the differ-

ences between the deformed image A(T (x)) and target image

V(x), evaluated by a similarity measure ρ(.):

T opt(x) = arg min
T

∑

p∈G

∫

Ω

η̄(‖x − p‖)ρ(V(x), A(T (x))) dx (8)

The similarity measure is evaluated on the whole domain Ω.

This information is back projected on the control points via the

function η̄(.).

In order to recover the optimal control points’ displace-

ments, we adopt a discrete MRF model (Glocker et al., 2008a,

2011). Let us consider a discrete set of labels L = {1, ..., n},

and a set of discrete displacements ∆ = {d1, ..., dn}. We seek to

assign a label lp to each grid node p, where each label corre-

sponds to a discrete displacement dlp ∈ ∆. In this setting, the

deformation field is rewritten as:

T (x) = x +
∑

p∈G

η(|x − p|)dlp (9)

In order to recover the optimal labeling, we need to minimize

the MRF energy:

lopt = arg min
l

Ereg(l) (10)

where

Ereg(l) =
∑

p∈G

Vp(lp) + λ
∑

p∈G

∑

q∈N(p)

Vp,q(lp, lq) (11)

where N(.) represents the neighborhood system, defined here

as a 6-neighbors configuration. Vp,q(.) is a pairwise potential,

that imposes certain smoothness on the deformation.

The unary potential Vp(.) is only dependent on node p’s

configuration and represent the likelihood of the node being as-

signed a label. To preserve the independence assumption, we

can approximate the unary potentials as:

Vp(lp) ≈

∫

Ω

η̄(‖x − p‖)ρ(V(x), A(x + dlp )) dx (12)

This approach shows great performance for the registration

of healthy brains (Glocker et al., 2008a), but performs poorly in

the tumor area where the similarity metric is not reliable. The

most straightforward solution is to mask the pathology and not

take the tumor voxels into account during the evaluation of the

similarity criterion ρ(.). This requires a very reliable segmenta-

tion map and would introduce a bias for the registration.

2.3. Concurrent Tumor Segmentation and Registration

Our approach aims at simultaneously performing tumor seg-

mentation and atlas to diseased subject registration. The cou-

pling of the segmentation with the registration of an atlas in-

troduces global information on the brain structure, while the

registration quality is improved by acknowledging the presence
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of the tumor and treating it differently than healthy tissue dur-

ing registration. The registration and segmentation energies are

coupled in a single MRF framework, where the tumor is de-

tected concurrently to the registration. In this combined frame-

work, we seek to recover the optimal transformation T (x) and

the segmentation map S(x).

Let us consider a sparse gridG superimposed to the volume,

a discrete set of labels Lc = {1, ..., 2n}, a predefined discrete

set of displacements ∆, and the tumor ptm(x) and background

pbg(x) prior probabilities learned via boosting. Each label l ∈

Lc is associated to a pair segmentation/displacement {sl, dl} ∈

{0, 1} × ∆, where we define:

dlp = dk where k = lp (mod n)

slp =

⌈
lp

n

⌉
(13)

We seek to assign a label lp to each control point p of G,

simultaneously displacing the grid node and characterizing it

as tumor or background. The segmentation and deformation

fields are then evaluated on the whole volume by interpolation:

T (x) =x +
∑

p∈G

η(|x − p|)dlp

S(x) =
∑

p∈G

η(|x − p|)slp
(14)

The MRF energy consist of segmentation and registration

terms that are interdependent:

Ereg,seg(l) =
∑

p∈G

αVreg(lp) + (1 − α)Vseg(lp)
︸                            ︷︷                            ︸

Unary terms

+
∑

p∈G

∑

q∈N(p)

αVpq,reg(lp, lq) + (1 − α)Vpq,seg(lp, lq)
︸                                          ︷︷                                          ︸

Pairwise terms

(15)

where α is a parameter balancing the importance of the segmen-

tation and registration terms.

The pairwise costs ensure that the segmentation and regis-

tration are locally smooth. They are set as:

Vpq,seg(lp, lq) =
|slp − slq |

‖p − q‖
(16)

Vpq,reg(lp, lq) = λ

(

(dlp − dlq
)2

‖p − q)‖
(17)

The strength of the pairwise cost depends on the distance be-

tween the connected nodes, taking into account a possible anisotropy

as the distance between nodes would then differ. The closer the

nodes are, the stronger the penalty imposing similar labels. The

registration regularization’s role is to preserve the anatomical

structure of the brain. Important deformations can occur in and

around the tumor area, requiring a relaxation of the pairwise

cost to allow for those strong deformations.

Let us now proceed with the definitions of the unary po-

tentials. Outside the tumor area (slp = 0), the registration term

seeks correspondences between the atlas and the target’s healthy

tissues via the similarity metric ρ(.). However, this metric is not

reliable in the tumor area (slp = 1) since there are no existing

correspondences. We use instead a constant cost Ctm that is in-

dependent of the chosen displacement:

Vreg(lp) =

∫

Ω

η̄(‖x − p‖)

(

slpCtm(x) + (1 − slp )ρ(V(x), A(x+ dlp ))
)

dx

(18)

The tumor probabilities and the similarity metric are evaluated

on the whole volume and back projected on the control points.

The use of a constant cost causes the displacement within the

tumor area to be determined by interpolation with the neighbor-

ing nodes at the tumor boundary, through the pairwise regular-

ization term. While the main role of this potential is registra-

tion of the two volumes, it allows detection of part of the tumor

through the similarity measure. Indeed, if a strong dissimilarity

between voxels is observed, it is likely that the area belongs to

the tumor.

This potential alone is however not sufficient for a precise

segmentation of the tumor, due to the fact that the tumor’s local

appearance can be similar to healthy tissue and that dissimilar

voxels do not necessarily correspond to tumors. Additional in-

formation on the position of the tumor is introduced by coupling

this registration term with a segmentation unary term. This term

relies on the prior probabilities introduced in section 2.1, im-

posing the label that has the maximum likelihood probability:

Vseg(lp) =

∫

Ω

η̄(‖x − p‖)

(

−slp log(ptm(x + dlp )) − (1 − slp ) log(pbg(x + dlp ))
)

dx

(19)

The tumor segmentation will therefore be determined taking

into account anatomical prior knowledge based on the healthy

reference (introduced through the registration term) and the clas-

sification decisions. The segmentation is determined on the

sparse grid associated to the moving target image, it is there-

fore dependent on the registration as the probability maps are

not aligned with the target image at the start of the process. The

position of the node after its displacement corresponds to the

area that is segmented. As the registration improves, the seg-

mentation quality does as well.

The optimal labeling is recovered using a linear program-

ming based optimization method (Komodakis et al., 2008) that

offers a great compromise between speed and accuracy.

3. Uncertainty-driven Adaptive Resampling

The main drawback of discrete approaches is the trade-off

between precision and computational complexity. The search

space (displacement label set) for registration would ideally

cover the entire area, while a high grid resolution is required

to register fine details and most importantly, to detect the tu-

mor’s irregular boundary. However, both are limited in order to

maintain the computational burden manageable.

These drawbacks are usually dealt with using a hierarchical

approach through the use of coarse to fine grid resolutions. This
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enables to cover large and precise deformations with a limited

search space, and makes the segmentation more robust by prop-

agating segmentation decisions that are less sensitive to small

variations in the image. In this context, several grid resolutions

G j are considered, with a series of iteration t at each resolution.

At level {G j, t}, the new MRF energy is computed, based on the

deformed source image, evaluated at iteration t-1:

l
opt
t = arg min

l
Ereg,seg(l|V, A ◦ T t−1) (20)

The displacement information is propagated from one level to

the next by composing the new displacement field with the one

obtained at iteration t−1. There are two main challenges in this

approach: (i) the sampling of the discrete deformation space at

each iteration and (ii) the grid resolutions. The most straight-

forward approach is a uniform refinement of the label set and

grid resolution. This allows for precise results but ignores the

local anisotropy of the structures. Furthermore, quasi voxel-

level resolutions are necessary for segmentation, which cannot

be considered in the context of uniform grids. Shi et al. (2012)

proposed the Sparse Free Form Deformations: the multi-level

grids are optimized simultaneously with a sparsity constraint

across levels, ensuring that nodes in high resolution levels are

given more importance in areas with discontinuities, and low

importance otherwise.

Relying on local segmentation and registration uncertainties

offers an alternative and enables to define an adaptive content-

driven grid refinement. Such measurements can lead to compu-

tationally efficient voxel level resolutions while capturing the

local anisotropy of the structure for a more efficient registra-

tion. The min-marginals measure the variations of the energy

under different constraints (Kohli and Torr, 2008) and have been

considered in the context of a discrete registration framework

(Glocker et al., 2008b) to evaluate the local uncertainty and

adapt the displacement sampling accordingly. We are inspired

by this approach that we combine with segmentation uncer-

tainty in order to define an adaptive displacement and node sam-

pling.

3.1. Min-marginals and Displacement Sampling

Let us consider a control point cj ∈ G j at iteration t, and

its corresponding optimal labeling l
opt
c j

. We aim at defining the

displacement sampling at the next iteration as well as the res-

olution of the next grid level G j+1 based on the volumes’ local

properties.

Our approach exploits the min-marginal energies (Kohli and

Torr, 2008) that evaluate the minimum value of the MRF en-

ergy under different constraints. By imposing a label k, dif-

ferent from the optimal label l
opt
c j

, to control point cj, the min-

marginals indicate how much a label swap costs.

Ψcj,k,t = min
l,lc j
=k

Ereg,seg(l|V, A ◦ T t−1) (21)

Let us recall that the label lc j
corresponds to a pair {d

lcj , s
lc j },

therefore, both segmentation and registration uncertainties can

be extracted from the min-marginals. If the segmentation label

is constant (sk = s
lc j ), a label swap represent a local perturba-

tion from the optimal displacement. A small energy variation

means that displacement dk is almost as likely as the optimal

displacement d
l
opt
cj , highlighting the uncertain labeling with re-

spect to that direction. Inversely, the labeling is quite certain in

a direction where a perturbation yields a high increase of en-

ergy. By normalizing the min-marginals over all the possible

displacements associated to the same segmentation label, we

can compute the registration uncertainty:

Ureg(cj, k) =
exp(−Ψcj,k,t)

∑

l∈Lc ,sl=s
l
opt
c j

exp(−Ψcj,l,t)
(22)

The highest Ureg(.) correspond to the most likely labels. The

registration uncertainty computed over all the possible displace-

ments can be approximated to a Gaussian distribution (see Fig.[1]),

whose covariance evaluates the local anisotropy. The search

space is resampled following the covariance matrix main axes

and scales, allowing for a more thorough evaluation of the de-

formation space in the uncertain areas. The registration uncer-

tainty is not taken into account for the tumor label and when the

parameter α is low where the deformation is mostly driven by

the pairwise cost, yielding a spherical covariance matrix.

3.2. Uncertainty-driven Graph Refinement

Consider a uniform grid G j,max of resolution M × N × P,

and A j : G j,max → {0, 1} an activation function describing the

resolution of the current adaptively sampled grid G j ⊂ G j,max.

At the next resolution level,G j,max is refined as a gridG j+1,max of

resolution 2M − 1× 2N − 1× 2P− 1, splitting all existing edges

in two. The grid G j+1,max represents the new level’s maximal

resolution, corresponding to a uniform sampling. The new grid

G j+1 resolution is determined by activating relevant nodes while

ignoring the ones that are not necessary to increase the quality

of the registration or segmentation.

A node p ∈ G j+1,max can be activated (A j+1(p) = 1) if it

satisfies at least one of those three conditions: (i) the node has

a direct correspondent cj ∈ G j,max (same coordinates) that is

activated (A j(cj) = 1), (ii) it is connected to nodes in G j that

have a high segmentation uncertainty (segmentation activation),

(iii) it is connected to nodes in G j that have a high registration

uncertainty (registration activation). The registration and seg-

mentation activations are determined via the definition of two

activation terms Ar(p) and As(p) respectively, both taking value

in {0, 1}. To propagate the min-marginals and activation infor-

mation, we define an inter level neighborhood system Ni(.) by

connecting cj ∈ G j,max to its 27 closest neighbors (based on

the image’s spatial coordinates) in G j+1,max. The neighborhood

system is shown in Fig.[2]

The registration activation criterion relies on the idea that

small and precise displacements are necessary around salient

structures, while increasing the resolution on homogeneous re-

gions is not necessary. A node should be activated if it is at the

interface of adjacent structures. Considering a node cj ∈ G j,

it covers an image region delimited by its maximum displace-

ment. If the region is not homogeneous, there will be strong
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Figure 1: Registration uncertainty and displacement set resampling for one control point: (a) Min-marginal values per displacement label (blue: low, red: high

energy) associated covariance matrix centered at the optimal label, (b) Min marginals visualization on a 2D slice, (c) Original isotropic displacement set and (d)

Uncertainty driven displacement set, following the brain boundaries.

Figure 2: Visual representation of the grid refinement from level j (left) to level

j+1 (right). Grid resampling: the nodes that have direct correspondences appear

in white, and the new nodes are red. The edges connecting the 2 grids represent

the nodes’ neighborhood. The grid is shown in 2D for increased visibility.

min-marginal energies variations with respect to the displace-

ment label. The activation criterion is based on the node’s en-

ergy range and is defined as:

Ar(p) = H





∑

cj∈Ni(p)

1

N





max
k∈Lc ,

sk=s
l
opt
c j

Ψcj,k,t − min
k∈Lc ,

sk=s
l
opt
c j

Ψcj,k,t





− µ





(23)

µ is the mean value over all activated nodes in G j, H(.) is the

heaviside step function, and N is the number of nodes in the

neighborhood of p. The node p will be activated if the mean

energy range among its neighbors in G j is higher than the mean

range over all nodes.

Similarly, the segmentation node activation is based on the

segmentation uncertainty that can be evaluated by measuring

the energy variation when the segmentation label changes. The

uncertainty with respect to one segmentation label S can be

computed by normalizing over all labels:

Useg(cj|S ) =

∑

l∈Lc,s
l=S exp(−Ψcj,l,t)

∑

l∈Lc
exp(−Ψcj,l,t)

(24)

In the case of a binary segmentation, we can simply reformulate

the uncertainty as:

U(cj) = 1 − |Useg(cj|S ) − 0.5| (25)

This term measures how certain the chosen label is. A low value

of U(cj) infers a highly reliable labeling. We seek to propagate

the segmentation decisions to the next grid level G j+1 based on

their reliability, so that the focus is on uncertain areas. This

is achieved by adding an inter-level pairwise potential to the

global energy :

Vucy(l
opt
c j
, lp) =






0 if s
l
opt
c j = slp

−log(U(cj)) Otherwise
(26)

where cj is a control point in G j in the neighborhood of p. This

potential penalizes nodes in G j+1 that are assigned a label differ-

ent than their neighbor in G j. The amount of penalty depends

on how certain the labeling of G j is. In this neighborhood con-

figuration, a node in G j+1 can be influenced by several nodes in

G j, so that there is no penalty when the nodes labels are differ-

ent and equally likely, the new node being situated at the tumor

boundary. The segmentation activation criterion is controlled

by the strength of the penalty and defined as:

As(p) = H





∣
∣
∣
∣
∣
∣
∣
∣

∑

cj∈Ni(p)

(−1)slp

Vucy(l
opt
c j
, lp)

∣
∣
∣
∣
∣
∣
∣
∣

− tsh




(27)

Where N is the number of nodes inNi(p), tsh is a threshold pa-

rameter and H(.) is the Heaviside step function. This term mea-

sures how strong the penalty is on node p, taking into account

the fact that there is no penalty if its neighbors are labeled dif-

ferently with equally confident labels. Nodes with a low overall

penalty will be activated.

Eventually, we can rewrite the MRF energy at resolution

level j and iteration t:

Ereg,seg(l|V, A ◦ T t−1,G j) =
1

|G j|

∑

p∈G j

Vp(lp|V, A ◦ T
t−1)

+
∑

p∈G j

∑

q∈N(p)

Vpq,(lp, lq) +
∑

p∈G j

∑

c∈Ni(p)

1

N
Vucy(l

opt
c , lp)

(28)

where N is the number of nodes inG j that are connected to node

p ∈ G j+1, andNi(p) is the corresponding neighborhood.

4. Experimental Validation

Our data set consisted of 110 3D FLAIR MRI volumes of

different patients featuring a low-grade glioma prior any treat-

ment. The complete tumors have been manually segmented in
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all volumes by experts. Although additional modalities would

have offered increased segmentation quality, there were not sys-

tematically available and provided by our clinical partners. We

therefore focused on the FLAIR modality.

36 volumes were randomly selected for boosting learning.

We tested our joint segmentation and registration framework on

the 74 remaining volumes. The reference pose for registration

was a 3D FLAIR MRI volume of a single healthy subject of size

256×256×24 and resolution 0.9×0.9×5.5 mm3. The absence

of existing multi subject healthy atlases of FLAIR modality has

motivated the use of a single subject as reference pose to eval-

uate the algorithm.

We ran an additional set of experiments on the 10 real low-

grade gliomas cases of the BRATS training database for an

easier comparison with existing methods. We segmented the

complete tumors (including active tumor, necrotic core and oc-

casional edema). The results can be compared for the low-

grade glioma case (complete tumor) with the results presented

on the training set in the BRATS proceedings. In order to main-

tain consistency with our FLAIR database, only FLAIR images

were considered for boosting training which was carried out

through leave one out cross validation experiments. Registra-

tion was performed using the T2-weighted images due to the

insufficient quality of the FLAIR images. Furthermore, this al-

lows the use of the T2-weighted MNI-ICBM multi subject atlas

(Fonov et al., 2009) of size 193 × 229 × 193 and resolution

1 × 1 × 1 as reference for registration, which is more adapted

to anatomical differences between subjects than a single subject

reference pose. This results in exploiting two of the four avail-

able modalities for segmentation and the T2-weighted modality

for registration. The reference poses for registration are shown

in Fig. [3].

As preprocessing, all volumes were skullstripped and rigidly

registered to their reference pose (Ourselin et al., 2000). Their

intensity was regularized by simply setting all volumes to the

same median and interquartile range as the reference pose. Since

all volumes are rigidly registered, an approximate symmetry

plane of the reference pose is used for all volumes to evaluate

the boosting symmetry feature. We compared the joint registra-

tion and segmentation framework with a sequential approach,

where the tumor is segmented using the single boosting based

MRF method and the segmentation is used as a mask for regis-

tration (not taking into account the segmented area). To demon-

strate the potential of the adaptive resampling framework, we

compared the results without uncertainties where the segmenta-

tion is propagated from one resolution to the next using a man-

ually set penalty cost:

V t
pen(lp) =

∫

Ω

η̄(‖x − p‖)slpSt−1(x)
2

exp( j)
dx (29)

where j is the resolution level and t the current iteration. The

uncertainty based framework was compared with this approach

at the maximal and same final grid resolution.

4.1. Implementation

The same set of parameters were used for all volumes in

the FLAIR database and were determined heuristically in or-

der to obtain the best possible results over the whole database.

Our coarse to fine hierarchical approach consisted of 3 image

levels and 4 grid levels, where the resolution of the image in-

creases with the grid resolution. The maximal grid resolution

increased from 9 × 9 × 5 to 65 × 65 × 37. In accordance with

the Free Form Deformation framework, the projection function

used was cubic B-splines. We set the parameter α so that the

presence of the tumor has an increasing impact on the registra-

tion. It is progressively diminished from 1 to 0.015, the focus

being on segmentation at the finest level. This setting enables

to focus on aligning the main brain structures at coarse resolu-

tions where the tumor is only roughly detectable then progres-

sively increase the segmentation precision. The constant cost

Ctm for registration is progressively increased, initially set to 5

and 6 times the mean value of the similarity criterion without

and with uncertainties respectively. The parameter λ describing

the influence of the registration smoothing was set to 20 and

relaxed in the tumor area to allow for the potentially important

displacements induced by the tumor. The threshold tsh for node

activation was set to 1.6.

We perform 3 iterations at each grid level. Without exploita-

tion of the uncertainty information, the displacement sampling

is sparse (31 labels, sampled along the main axes) and refined

at each iteration by reducing the maximum displacement. We

adopt a dense sampling (1331 labels) to compute the local un-

certainties at the first iteration, and a sparse sampling at the 2

remaining iterations, the labels being sampled along the covari-

ance matrix main axes. This enables to exploit the uncertainty

information with limited impact on the run time. When α is

low, the local anisotropy cannot be captured efficiently by the

min marginals. A sparse sampling is adopted for all iterations

at the last 2 grid levels.

The parameters were adapted to the BRATS dataset, setting

the maximal grid resolution from 11×12×11 to 81×96×81, the

constant cost to 6 and 7 times the mean value of the similarity

criterion and progressively increased and the threshold for grid

activation as the mean penalty value over all active nodes. The

same parameters were used for the 10 volumes. Experiments

were only carried out with sparse sampling.

4.2. Uncertainty based Grid Nodes Activation

The percentage of activated nodes, with respect to the max-

imum uniform resolution is shown in Fig.[4]. The complex-

ity of the framework is considerably reduced, only activating

less than 20 % of the nodes at the last level for both datasets.

Our current implementation associates changes of labels of in-

active nodes with infinite costs and runs for less than a minute

(sparse sampling) or 2 to 4 minutes (sparse/dense sampling) on

the FLAIR database, and 3 to 8 minutes on the BRATS database

of higher resolution. A direct construction of the grid would

significantly impact the run time and memory cost. Consider-

ing an MRF with L, E and N being respectively the number

of labels, edges and nodes, we provide a complexity analysis

(excluding the time required to build the data term potentials):

• Computational cost:

O
(

L × O
(

E × N2
))

∼ O
(

L × E × N2
)

per iteration
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Figure 3: Healthy reference poses used for registration. FLAIR (First row) and T2 MNI-ICBM atlas (second row). Bottom row: MNI atlas Probability maps, from

left to right: White Matter, Gray Matter and CSF.

• Memory cost: O (L × O (N + E))

Reducing the number of nodes to approximately 20% at the

finer resolution scale leads to:

• Computational cost:

O
(

L × O
(

0.2E × (0.2N)2
))

∼ O
(

0.008L × E × N2
)

When taking into account the number of iterations, we

can obtain a complexity that is approximately 3-4 orders

of magnitude lower.

• Memory cost: O (L × O (0.2(N + E))), approximately one

order of magnitude lower.

Fig. [11] shows visual examples of the last two grid levels’

resolution. Nodes are activated around the brain’s structures

and the tumor’s boundary, demonstrating the adequacy of the

registration and segmentation activation terms.

4.3. Segmentation Evaluation

The segmentation results were evaluated by comparing the

automatic segmentation AS to the manual segmentation M. To

this end, we compute the Dice score Dc =
2‖M∩AS ‖

‖M‖+‖AS ‖
, the rate

of false positives FPR =
‖AS ‖−‖M∩AS ‖

‖AS ‖
and the rate of true posi-

tives T PR =
‖M∩AS ‖

‖M‖
and mean absolute distance between con-

tours (MAD). Segmentations were evaluated after reverting to

the patient’s space (before rigid registration) where the manual

segmentations were performed. Segmentations of higher qual-

ity are obtained using the joint framework on the FLAIR dataset

(especially highlighted by the MAD score), and are equivalent

with a high resolution uniform grid and an adaptively sampled

low resolution grid, while the low resolution uniform grid yields

poor tumor detection. Among the test set, 27 volumes have

been manually segmented by 2 different experts. The inter ex-

pert Dice score reaches 89 % in median and gets as low as 76 %,
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Figure 4: Mean percentage of activated nodes per level. (a) FLAIR database,

(b) BRATS database.

which highlights the high inter expert variability with respect to

the manual segmentations of tumors and is close to the obtained

automatic segmentations (81% median over the 27 volumes).

Error bars of the different scores are shown in Fig.[5].

Segmentation results on the BRATS dataset are on par with

results obtained by the BRATS 2012 challenge winners, (mean

Dice score 70-72 %, median 72-73 % with and without uncer-

tainties respectively), while a strong increase of quality is ob-

tained with respect to the regularized boosting results (mean

Dice score 65 %). The tumors are poorly detected using a low

uniform resolution (mean Dice score 64 %, reduction of the

true positive rate of 7% (with uncertainties) and 11% (without

uncertainties)). Error bars of the different scores are shown in

Fig.[6].

Visual segmentation results for both datasets are shown in

Fig.[8].

4.4. Registration Evaluation

The registration was evaluated mostly qualitatively. For

quantitative analysis, the ventricles where manually segmented

for 33 volumes of the FLAIR dataset and the Dice score, False

and True Positive rate, and MAD were computed between the

registered source image and the target image outside the tumor
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Figure 5: Quantitative Segmentation Results, FLAIR database: Error bars

(mean and standard deviation) of the Dice score, False Positive (FPR) and True

Positive (TPR) rates and MAD score (in millimeters) for the joint framework

with low (JSRLow) and high resolution (JSRHigh), the individual segmentation

framework (SegMRF) and the uncertainty based approach (Ucy).
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Figure 6: Quantitative Segmentation Results, BRATS database: Error bars

(mean and standard deviation) of the Dice score, False Positive (FPR) and True

Positive (TPR) rates and MAD score (in millimeters) for the joint framework

with low (JSRLow) and high resolution (JSRHigh), the individual segmentation

framework (SegMRF) and the uncertainty based approach (Ucy).

area and are shown in Fig.[7]. Fig.[9] shows visual registra-

tion results comparing the joint registration and segmentation

framework to the individual registration where the pathology

has been masked. Quantitative results show equivalent perfor-

mance outside the tumor area, while visual examples show a

high increase in quality of registration in and around the tumor

area, in cases where the individual framework fails. Quantita-

tive results also highlight the maintained performance outside

the tumor area using an adaptively sampled grid, and a lower

quality registration considering a uniform grid of equivalent

low resolution.

Visual examples of registration results on the BRATS dataset

are shown in Fig. [10]. Cases where the individual framework

and low resolution registration fail are illustrated, as well as the

obtained complete segmentation of an image.

5. Conclusion and Discussion

In this paper we have presented a concurrent registration

and tumor segmentation framework that exploits the interde-

pendencies between the two problems. We adopt a discrete

graphical model on a sparse grid superimposed to the image do-

main. Each grid node is simultaneously classified and displaced
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Figure 7: Quantitative Registration results, FLAIR database: Error bar graphs

of the Dice, True Positives (TPR), False Positives (FPR) and MAD scores (in

millimeters) obtained for the joint framework with low (JSRLow) and high res-

olution (JSRHigh), the individual registration framework with masked pathol-

ogy (RegMask) and the uncertainty based approach (Ucy)

based on a boosting classifier and image similarity. The de-

tected tumor area is registered by interpolation with the neigh-

boring nodes. The progressive impact of the tumor segmen-

tation on the registration allows to deal with the presence of

the tumor without the introduction of an initial bias that can

lead to registration errors, while the introduction of spatial in-

formation on the brain structures significantly reduces the false

detections. The inclusion of uncertainties enables to deal with

the main drawback of discrete approaches, that is the trade off

between precision and computational complexity. Adaptive re-

finement of the sparse grid yields a much lower complexity

framework. While our current implementation simply discards

inactive nodes, direct construction of the non uniform grid would

lead to significant diminution of the run time.

The framework offers great modularity with respect to the

similarity measure for registration, the segmentation prior prob-

abilities estimation, the image modality and the clinical context.

We presented the method in the context of diffuse low-grade

gliomas and registration/segmentation of a healthy subject/atlas

to a subject with a tumor. Aside for enhanced segmentation

quality through the healthy brain’s anatomical information (ob-

tained segmentation results are close to the inter expert vari-

ability), this offers the possibility to build statistical atlases of

tumor appearances in the brain and to evaluate the impact of the

tumors on the brain’s functional organization. Furthermore, the

method’s modularity allows easy adaptation to different prob-

lems where correspondences are missing, such as registration

between pre operative and intra/post operative images with tu-

mor resection for surgical guidance.

The choice of pathology masking (instead of growth mod-

els) is justified by the infiltrative nature of the low-grade gliomas,

and coupled with the discrete formulation and adaptive sam-

pling, results in a fast algorithm that shows great performance.

It is however not adapted to fast growing and space occupy-

ing tumors that yield strong deformation that would have to be

modeled accordingly.

One limitation of the method is its dependency on the boost-

ing classification output. It is progressively refined through in-

creasing resolution levels and segmentation propagation/penalty

Figure 11: Visual examples of the activated nodes for the last 2 levels of the

incremental approach. The nodes are superimposed to the target image.

across levels but still constitutes the baseline of the obtained

segmentation. Two natural extensions of the algorithm are the

inclusion of multimodal information and multiclass segmenta-

tion (to separate tumor core, necrosis and edema). Both can eas-

ily be introduced in the model through the boosting feature vec-

tor and by increasing the number of labels (both during boost-

ing classification and construction of the MRF model). Such

extensions are likely to increase the quality of the detection and

segmentation.

Last but not least, a drawback of the method is its require-

ment for manual setting of important model parameters that can

have a strong impact on the results. Optimal learning of the

weights ( (Komodakis, 2011) of the graphical model being con-

sidered in this paper from training data will allow to eliminate

the need of manual parameter setting.
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(a) (b) (c)

Figure 8: Visual Segmentation results on the FLAIR database (first two rows) and the BRATS database (bottom row, T2 volume). (a) individual framework, (b)

Joint framework, high resolution, (c) Joint framework, with adaptive sampling. Automatic segmentations (blue) are compared to the manual segmentation (red)
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(a) (b) (c) (d)

Figure 9: Visual Registration results, FLAIR dataset. (a) Target image, (b) individual framework, (c) Joint framework, high resolution, (d) Joint framework, with

adaptive sampling.

15



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 10: Visual Registration results, BRATS dataset. First row: comparison with the individual registration scheme. (a) Target image, (b) individual framework,

(c) Joint framework, high resolution, (d) Joint framework, with adaptive sampling. Second row: close up comparison with low uniform resolution. (e) Target image,

(f) Joint framework, high resolution, (g) Joint framework, with adaptive sampling, (h) Joint framework, low uniform resolution. Errors in registration can be seen

with respect to the cross lines. Bottom row: example segmentation using the registered MNI-ICBM probabilities. (i) Target image, (j) Segmented image.
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