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Abstract

The delineation of functionally and structurally distinct regions as well as their

connectivity can provide key knowledge towards understanding the brain’s be-

haviour and function. Cytoarchitecture has long been the gold standard for

such parcellation tasks, but has poor scalability and cannot be mapped in vivo.

Functional and di↵usion magnetic resonance imaging allow in vivo mapping of

brain’s connectivity and the parcellation of the brain based on local connectivity

information. Several methods have been developed for single subject connec-

tivity driven parcellation, but very few have tackled the task of group-wise

parcellation, which is essential for uncovering group specific behaviours. In this

paper, we propose a group-wise connectivity-driven parcellation method based

on spectral clustering that captures local connectivity information at multiple

scales and directly enforces correspondences between subjects. The method is

applied to di↵usion Magnetic Resonance Imaging driven parcellation on two in-

dependent groups of 50 subjects from the Human Connectome Project. Promis-

ing quantitative and qualitative results in terms of information loss, modality

comparisons, group consistency and inter-group similarities demonstrate the

potential of the method.
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1. Introduction

The delineation and identification of structurally and functionally distinct

brain regions has been an ongoing and prominent objective for understand-

ing the brain’s function and organisation for over a century (Zilles and Amunts,

2010). Traditional approaches have built parcellation maps from anatomical mi-5

crostructure (cytoarchitecture, myeloarchitecture) from histological sections of

the brain. While there is still no universally accepted parcellation of the cortex,

Brodmann’s cytoarchitectural map (Brodmann and Garey, 2007) is arguably

the most commonly used reference map. Cytoarchitecture based parcellations

are unfortunately poorly scalable and cannot be mapped in vivo.10

In vivo macro-scale connectivity data provides complementary information

to anatomical microstructure. Advances in medical imaging such as di↵usion

(dMRI) and functional Magnetic Resonance Imaging (fMRI) have provided

means of identifying in vivo structural and functional connections within the

brain. dMRI allows estimation of structural connections within the brain by15

measuring the anisotropy of the di↵usion of water molecules in the brain, which

is constrained by the white matter’s fibres connecting di↵erent regions of the

gray matter. In constrast to this, fMRI measures the increase of oxygenation

due to brain activity over a specific time period. Functional connections can be

established by evaluating the temporal correlation between the fMRI signals in20

di↵erent brain regions.

Cortical areas can be seen as regions in the brain that di↵er based on mi-

croarchitecture (cyto or myeloarchitecture), connectivity and function (Eickho↵

et al., 2015). In particular, local microstructure and connectivity are believed to

conjointly enable locally specific neurological computations (Passingham et al.,25

2002), i.e. determine the functionality of a region in the brain. As a result, mi-

crostructure and connectivity provide partially overlapping and complementary

information, and are both necessary to study in order to increase our under-
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standing of the brain’s organisation. Connectivity-driven parcellation, while

not providing actual cortical areas on their own, can therefore provide essential30

information for mapping the functions of the brain.

Furthermore, it provides a sensible basis for the construction of brain con-

nectivity networks or connectome at the macro-scale, which can provide key

knowledge towards understanding neurological processes and diseases. Due to

the high dimensionality of connectomic data, building such connectivity net-35

works requires the parcellation of the cortical surface into distinct regions, where

each brain region constitutes a node in the network. The most commonly used

parcellations are random parcellations or cortical folding based parcellations

(Tzourio-Mazoyer et al., 2002; Destrieux et al., 2010) derived from anatomical

landmarks. However, those parcels do not necessarily reflect the underlying con-40

nectivity of the brain and can therefore introduce a bias and a loss of information

in the constructed network (Sporns, 2011).

Connectome construction and functional or cortical mapping have both mo-

tivated the development of dMRI and fMRI driven parcellation methods, the

aim being to regroup regions of the cortical surface that have similar functional45

or structural connectivity profiles. The problem is typically cast as a clustering

problem driven by the correlation between tractography connectivity profiles or

fMRI time series. Several approaches have focused on a specific subregion of the

brain (Anwander et al., 2007; Johansen-Berg et al., 2004; Jbabdi et al., 2009;

Mars et al., 2011), which allows the application of common clustering meth-50

ods such as k-means clustering. The problem becomes more complicated when

a complete cortex parcellation is sought due to the increased dimensionality

and noise. Several approaches have been considered for fMRI and dMRI-driven

parcellation with di↵erent levels of success: anatomical parcellation refinement

(Clarkson et al., 2010), Markov Random Fields (Ryali et al., 2013; Honnorat55

et al., 2015), and edge detection (Cohen et al., 2008). However, clustering re-

mains the most natural way of tackling the parcellation task, as we are seeking

to regroup regions sharing similar connectivity patterns based on pairwise a�n-

ity. Gaussian Mixture Models (Yeo et al., 2011; Lashkari et al., 2010), Spectral
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clustering (Craddock et al., 2012; Shen et al., 2013) and Hierarchical clustering60

(Moreno-Dominguez et al., 2014; Blumensath et al., 2013) have attracted most

attention.

When performed independently, finding correspondences between single sub-

ject parcellations can be a challenge. Indeed, the parcels’ boundaries can be very

di↵erent from one subject to the next, the di↵erences being exacerbated by the65

influence of noise. Group-wise parcellation can potentially handle better noisy

and locally unreliable individual data while at the same time providing an av-

erage parcellation representative of the similarities between subjects in a group.

In addition, building group averages are also essential in order to understand

group specific connectivity behaviours and disruptions.70

Few approaches have tackled the task of finding group-wise parcellations.

We can distinguish two di↵erent kinds of approaches: the first one directly

estimates a group parcellation from averaging the connectivity data of all sub-

jects (Roca et al., 2010; Clarkson et al., 2010), the second approach estimates

single-subject parcellations where parcel correspondences between subjects are75

established (Shen et al., 2013; Parisot et al., 2015; Arslan et al., 2015). The for-

mer is attractive due to its simplicity, but can lead to a loss of information and

does not yield individual parcellations. The method proposed by Arslan et al.

(2015) relies on a joint spectral decomposition of the surface mesh with connec-

tivity weighted edges. One drawback of this approach is the strong influence of80

the mesh structure on the final parcellation.

Shen et al. (2013) proposed an iterative method for fMRI driven parcellation

that alternates between the estimation of a group parcellation and minimising

the di↵erences between single subject parcellations and the group in the spectral

domain. The method requires an initialisation which influences the run time85

as well as the obtained parcellations and implies spatial alignment between

subjects.

Group-wise parcellation tasks strongly depend on the alignment of connec-

tomic data between subjects. Unless they are specifically coupled to an actual

registration task, parcellation methods require an anatomical alignment of brain90
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surfaces (typically volumetric or cortical folding based alignment). While this

provides a rough alignment of the connectomic data, it does not imply that it is

registered locally. This fact must be taken into account when seeking correspon-

dences between subjects and when evaluating the similarities between di↵erent

subjects’ parcellations.95

In this paper, we propose a group-wise parcellation method that is inspired

by the concept of co-segmentation in computer vision (Kim et al., 2012). We

simultaneously estimate coherent parcellations across resolutions and subjects

through a spectral clustering formulation. For each subject, we capture con-

nectivity boundaries at di↵erent resolutions through the construction of a set of100

high resolution parcellations. Correspondences between the di↵erent resolutions

and subjects are enforced through links between subjects and parcellations res-

olutions that are based on localisation and connectivity similarity. The common

parcellation is then estimated through a joint decomposition of the global a�n-

ity matrix that encodes intra-subject a�nities and inter-subjects connections.105

The proposed method was introduced in Parisot et al. (2015). Here, we extend

the method through a refined estimation of inter-subjects links that makes the

method more robust to the quality of the registration of the connectomic data.

We present an extended experimental evaluation of the parcellation method, no-

tably through comparisons to cytoarchitectonic and fMRI data. We apply the110

method on di↵usion MR data from two groups of 50 subjects. Qualitative and

quantitative experiments show a good reproducibility between the two groups

as well as strong local similarities with Brodmann, myelin and task activation

maps. The fundamental issues and implications associated with connectivity

driven parcellation and tractography are then discussed on the basis of these115

results.

2. Material and Methods

The proposed method is summarised in Fig.1. In this section, we first detail

the dataset and preprocessing steps used, followed by the construction of a multi-
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resolution base parcellation. Edges between the base parcellation resolutions120

and subjects are then introduced. They are constructed based on overlap on

the original surface mesh and similarities in connectivity respectively. Finally,

we describe the quantitative measures used for evaluation.

2.1. Notations

We summarise here the notations used throughout the paper for increased125

clarity. We refer to the cortical surface of a subject S
i

as a mesh M = {V, E}.

N
v

is the number of vertices and K is the number of sought parcels. Vertices

on the mesh are referred to as v 2 V. The cortical surface is parcellated into

a set of L high resolution parcellations. A supervertex V
s

at scale s 2 J1, LK

refers to a whole parcel (an ensemble of vertices). The number of supervertices130

or parcels at scale s is N
s

.

�Si is the structural connectivity matrix of subject S
i

obtained from trac-

tography, of size N
v

⇥N
v

. We call �Si(v) the row of the connectivity matrix at

vertex v. WSi
s

is the a�nity matrix of subject S
i

at scale s, of size N
s

⇥N
s

. It is

computed by averaging the values of of �Si associated with vertices in the same135

supervertex and by computing the correlation between the rows of this low res-

olution connectivity matrix. WSi is concatenation of the a�nity matrices WSi
s

and is introduced in section 2.3. Its size is (
P

s

N
s

) ⇥ (
P

s

N
s

). Similarly to

�Si , we call WSi(V
s

) the row of the a�nity matrix at supervertex V
s

.

XSi is the parcellation matrix of a subject S
i

, introduced in section 2.4 and140

of size (
P

s

N
s

) ⇥ K. CSi
s,s+1 is the constraint matrix of subject S

i

between

the supervertex parcellation scales s and s + 1 introduced in section 2.4. Its

size is N
s+1 ⇥ N

s

. CSi is the concatenation of the resolution wise constraint

matrices. Finally, W , C and X are the concatenations of the a�nity, constraint

and parcellation matrices for all subjects in the group. D is the degree matrix145

of W , i.e. the diagonal matrix which contains the sum of each row of W at the

corresponding row.
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Figure 1: Overview of the group-wise parcellation method. Each subject Si is associated

with a connectivity matrix �Si that drives the construction of a multi-scale base parcellation.

Intra-subject edges (between base parcellation resolutions) and inter-subject edges (between all

pairs of subjects at the coarsest parcellation resolution) are built to allow a common spectral

decomposition of the a�nity matrix (Pearson’s correlation between the tractography connec-

tivity profiles).

2.2. Dataset and Preprocessing

We perform our experiments on 100 subjects randomly selected from the 500

subjects release (November 2014) of the Human Connectome Project1 (HCP)150

database. We randomly separate the database in two distinct groups of 50

subjects each and test the method independently on the two groups.

The structural and di↵usion data have been preprocessed following the HCP’s

minimal preprocessing pipelines (Glasser et al., 2013). The cortical surface is

represented as a triangular mesh made of 32k nodes M = {V, E}, where the155

nodes have a 2mm spacing. V represents the set of N
v

= 32k nodes, while E

describes the connections or edges between neighbouring nodes. An essential

preprocessing stage to our approach is the registration of all cortices to a com-

mon reference space. We are using here the HCP’s provided registration, which

registers the sulcal depth information of all surfaces following an MRF based160

method (Robinson et al., 2014). This yields matching mesh nodes across all

1Human Connectome Project Database, https://db.humanconnectome.org/
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subjects.

The di↵usion MR images have been acquired using a multi-shell approach,

with three shells at b-values 1000, 2000, and 3000 s/mm2 and 90 gradient di-

rections per shell. The tractography matrix is obtained from the preprocessed165

dMRI data using FSL’s bedpostX and probtrackX methods (Behrens et al.,

2007; Jbabdi et al., 2012). The former estimates the orientation of the fibres

passing through each voxel of the brain volume while the second performs prob-

abilistic tractography based on the estimated fibre orientations. The proba-

bilistic tracking is done on the native mesh (before registration) representing170

the gray/white matter interface. 5000 streamlines are seeded from each of the

surface vertices and the obtained tractography matrix records the number of

streamlines that reached the rest of the mesh.

One issue associated with tractography, especially with probabilistic trac-

tography, is the bias towards short range connections. Indeed, long range con-175

nections are weakened or even missed due to the accumulation of uncertainty

along the tract. As a result, there can be a strong discrepancy between the short

and long range connectivity strengths even though the actual connections have

the same strength. This can have a strong impact on the obtained parcellation.

This issue is often accounted for by thresholding the shortest fibres (Roca et al.,180

2009). However, the value of this threshold is typically decided heuristically and

it is very di�cult to estimate what threshold value yields an appropriate repre-

sentation of the connectivity between vertices of the mesh. Another approach,

which we adopt here, is to compute the element-wise log transform of the trac-

tography matrix (Jbabdi et al., 2009; Moreno-Dominguez et al., 2014). The185

log transform reduces the dynamic range of fibre counts and therefore reduces

the strong discrepancy between short range connections fibre counts and the

long range ones. This parameter free option greatly reduces the bias towards

short connections while not losing any information from a thresholding process.

This approach remains a suboptimal way of handling tractography’s bias with190

respect to the lengths of the connections. Investigating a more principled ap-

proach approach that is integrated in the tractography process (Girard et al.,
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2014) would yield more accurate results. It is however, a di�cult challenge for

tractography that is beyond the scope of this paper.

In the remainder of this paper, we call �Si the log-transformed tractography195

matrix of a subject S
i

and �Si(v) the row of this matrix corresponding to the

mesh node v (i.e. the vertex’s connectivity profile).

2.3. Supervertex Parcellation

The first step of our multi-scale approach is the construction of a set of

high resolution parcellations where all vertices in the same parcel are highly200

correlated. The objective of this step is two-fold: first, the aim is to reduce

the noise and high dimensionality of the data at the vertex level. Second,

through the construction of this multi-scale parcellation, we aim to capture

local connectivity information at di↵erent resolutions. This objective relates

to the work of Mota et al. (2014), where the authors aim to derive statistics205

that are coherent across a set of random parcellations. Our aim is slightly

di↵erent here though, as we aim to identify consistent parcel boundaries rather

than parcel-wise information. Due to the similarity of this parcellation concept

with the superpixel approach (Achanta et al., 2012), we refer to those highly

correlated parcels as supervertices in the remainder of this paper.210

In order to construct each supervertex level - or resolution -, we are inspired

by the work of Peyré and Cohen (2004) who employ the Fast Marching algorithm

to evaluate feature weighted geodesic distances on surface meshes. In our case,

minimising a correlation weighted geodesic distance with respect to a super-

vertex centre allows the construction of spatially contiguous parcels that agree215

with the correlation information. While the most straightforward option would

be to follow the SLIC superpixel methodology (Achanta et al., 2012), the Fast

Marching approach allows the construction of spatially contiguous supervertices

without having to tune a parameter that relatively weights contiguity and con-

nectivity. Indeed, the Fast marching method allows integration of connectivity220

information in the computation of the geodesic distance.

Considering a seed vertex v0 (which will be the centre of the supervertex),
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we seek to compute the geodesic distance d(v0,v) = U(v) from that vertex to

the all remaining nodes v 2 V. This problem can be cast as a front propagation

problem, where U follows the Eikonal equation krUkF = 1. Here, F is the225

so-called speed function that characterises the front propagation and allows to

control the evolution of the front with a specific feature. We design the speed

function so that the front propagates faster towards regions that have highly

correlated connectivity profiles:

F (v) = exp
�
µ⇢(�Si(v0),�

Si(v))
�
. (1)

Where ⇢(., .) is the Pearson’s correlation coe�cient and µ is a weighting pa-230

rameter.

The correlation weighted geodesic distance can be computed for each seed by

solving the aforementioned Eikonal equation using the Fast Marching algorithm

(Sethian, 1996).

Next, we build our supervertex map through an iterative process. Given a235

set of N
s

seeds uniformly sampled on the cortical surface, we first assign all

the remaining nodes to a supervertex by minimising their geodesic distance to

all seeds. The supervertex centre is then recomputed as the node that has the

highest average correlation with the rest of the nodes in the supervertex. This

process is then repeated until convergence. We construct three supervertex240

parcellations at three di↵erent resolutions for N
s

= {3000, 2000, 1000}. The

supervertex parcellation scheme is illustrated in Fig.2, while an example base

parcellation is shown in Fig.3.

Each supervertex parcellation level is associated with a N
s

⇥ N
s

merged

connectivity matrix that is computed by averaging the fibre counts in the trac-245

tography matrix of the vertices within the same supervertex. The correlation

between the rows of this merged tractography matrix yields the a�nity matrix

WSi that will drive our spectral clustering based parcellation approach. Spatial

contiguity of the parcellations is later enforced by removing edges (i.e. entries

in WSi) between supervertices that are not immediate neighbours.250
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A nity Matrix

N uniformly 
sampled seeds

Correlation-weighted 
geodesic distance 
from each seed

Fast Marching
Algorithm

Distance 
Minimisation

Supervertex Assignment

Supervertices 
Centres update

Converged? 

Maximal correlation 
with the 

supervertex

YES

Supervertex 
Parcellation

NO

Figure 2: Overview of the supervertex parcellation method. After initialisation with a uni-

formly sampled set of seeds, we alternate until convergence between minimising the geodesic

distance of all nodes to the seeds to obtain the parcellation, and reevaluating the seeds.

(a) (b) (c)

Figure 3: Visual example of the three resolutions of the supervertex parcellation.

2.4. Single-subject Parcellation

The multi-scale supervertex parcellation captures connectivity information

at di↵erent resolutions. We seek to exploit this knowledge in order to recover

a coherent parcellation for a given subject S
i

across all resolutions. This can

be done by constructing inter-resolution edges between supervertices that are255

embedded in a constraint matrix. In the spectral clustering framework, this

forces connected supervertices to be assigned to the same cluster.

A supervertex V

s

at a given scale s is connected to the supervertex V

s+1

at the coarser scale s + 1 that shares the largest amount of vertices on the

original mesh. The strength of the edge is set as the amount of overlap between260

both supervertices so that the strongest correspondences in terms of parcel

assignments are enforced to supervertices in the most similar locations. The
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Figure 4: Illustration of the inter-resolutions links. Connections links are constructed be-

tween two supervertices at the di↵erent resolutions if they share vertices on the original mesh.

The strength of the edge is established by the number of shared vertices.

inter-resolution edges are therefore written as follows:

CSi
s,s+1 =

|V
s

\V

s+1|
|V

s

| (2)

Where |V
s

| is the number of vertices in the supervertex V

s

. The construction

of inter-resolutions links is illustrated in Fig.4.265

These links allow simultaneous clustering of the three base parcellation levels

into a coherent K clusters parcellation represented at di↵erent levels of precision

(based on the size of the supervertices). This is done following the multi-scale

normalised cut method (Yu and Shi, 2003). In this setting, we seek to recover for

each scale s a N ⇥K parcellation matrix that describes the cluster assignments270

of the supervertices:

XSi
s

(V
s

, j) =

8
><

>:

1 if V
s

2 parcel j

0 otherwise
(3)

All resolutions can then be parcellated simultaneously by concatenating all

parcellation and a�nity matrices into global multi-scale parcellation and a�nity

12



matrices:275

XSi =

0

BBB@

XSi
1

...

XSi
L

1

CCCA
, WSi =

0

BBB@

WSi
1 0

. . .

0 WSi
L

1

CCCA
(4)

Here W
i

is the merged a�nity matrix associated with the resolution level i.

Coherence of the parcellations between the di↵erent resolutions is enforced by

the inter-resolution links that are encoded in the following constraint matrix:

CSi =

0

BBB@

CSi
1,2 �I

N2 0

. . .
. . .

0 CSi
L�1,L �I

NL

1

CCCA
(5)

Here I
N

is the N ⇥N identity matrix.

This matrix controls the obtained parcellation over all scales through an280

imposed constraint on the parcellation matrix:

CSiXSi = 0 (6)

Spectral decomposition of the multi-scale a�nity matrix WSi subject to equa-

tion 6 yields a parcellation that captures variations in connectivity profiles at

di↵erent scales. At each resolution, the supervertices are assigned to a particular

parcel. This results in parcellations at di↵erent degrees of precisions in terms285

of boundaries, depending on the supervertex resolution.

A limitation of the proposed multi-scale parcellation is the absence of corre-

spondences between subjects, which is essential if one is aiming to identify group

specific connectivity features. Parcel boundaries can substantially vary across

subjects, due to noise and anatomical di↵erences. Group-wise parcellation can290

provide parcellations that are more robust with respect to locally unreliable

data on the subject level, while at the same time ensuring that correspondences

are enforced across subjects.

2.5. Group-wise Parcellation

It is straightforward to rewrite the N models (one per subject) into a joint295

optimisation problem. This can be done very easily by concatenating all the
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subjects’ a�nity and inter-scale constraint matrices, which results in the esti-

mation of a joint parcellation matrix defined as follows:

X =

0

BBB@

XS1

...

XSN

1

CCCA
(7)

while the joint a�nity and constraint matrix can be defined as:

C =

0

BBB@

CS1 0

. . .

0 CSN

1

CCCA
, W =

0

BBB@

WS1 0

. . .

0 WSN

1

CCCA
(8)

In this setting however, all the subjects’ parcellations are estimated indepen-300

dently and no correspondences are enforced. Obtaining a meaningful matching

parcellation across subjects requires the definition of inter-subject connections

that describe which regions should be assigned to the same label.

For this task, we cannot solely rely on the cortical surface registration for

two reasons. First, anatomical/sulcal alignment does not imply that structural305

connections are registered as well, i.e. connectivity patterns can di↵er locally

across subjects. The same parcellation should not be imposed on subjects who

have di↵erent local connectivity profiles. Second, the registration itself is likely

imperfect, and local errors could a↵ect the structural correspondences between

subjects. For those reasons, direct vertex to vertex comparisons across subjects310

are not reliable enough to obtain meaningful matches. Carrying comparisons

on the supervertex scale (Parisot et al., 2015) can decrease the impact of a poor

alignment. However, the connections remain subpar and biased with anatomical

information since our data is only aligned in terms of cortical folding. These

possible errors and biases are likely to get stronger if we increase the resolution315

of our supervertex parcellations as we get closer to a vertex to vertex comparison

set up.

We are tackling these issues with a two-fold approach. When seeking to

match a supervertex V

Si
L

in subject S
i

(supervertex belonging to the coarsest

14



resolution) with a supervertex in another subject S
j

, we first follow the approach320

in Parisot et al. (2015) and find the supervertexV

Sj

L

that has the highest overlap

(in terms of number of original mesh vertices) with V

Si
L

. We then consider all

the supervertices that are immediate neighbours of V
Sj

L

and seek the one with

the most similar connectivity pattern with the rest of the brain. As connectivity

profiles can di↵er from one brain to the next, we do not directly compare the325

connections across the brain, but the correlation of connectivity profiles of one

supervertex with all the others. In other words, we compare if two supervertices

are similar in terms of connectivity to the same cortical regions, even though

the actual connectivity profiles of these supervertices can di↵er.

Inter-subject edges are created between the matched supervertices VSi
L

and330

V

opt,Sj

L

and weighted as the correlation between the low dimensional merged

connectivity profiles associated with each supervertex:

R
i,j

(VSi
L

,V
opt,Sj

L

) = ↵⇢
⇣
WSi(VSi

L

),WSj (V
opt,Sj

L

)
⌘

(9)

Here ↵ is a weighting parameter that controls the influence of the inter-subjects

weights and ⇢(.) is the Pearson’s correlation coe�cient. Weighting the edges

with the correlation between the matched supervertices allows control of how335

similar two parcellations are expected to be locally, based on the similarity of

the two subjects’ underlying data.

The inter-subject anatomical and connectivity variability is further accounted

for by limiting the connection between subjects to the coarsest supervertex par-

cellation resolution. This allows more di↵erences between parcellations at the340

higher resolution (i.e. parcellations that are more faithful to the subject’s con-

nectivity information) while at the same time ensuring correspondences between

the parcellations.

The inter-subject edges are incorporated in the framework by updating the
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group-wise a�nity matrix (Eq. 8) as follows:345

W =

0

BBBBBB@

WS1 R1,2 · · · R1,N

R2,1 WS2 · · · R2,N

...
...

. . .
...

R
N,1 R

N,2 · · · WSN

1

CCCCCCA
(10)

2.6. Optimisation

The next step is the joint spectral decomposition of this a�nity matrix

subject to the inter-layer constraints to recover the group’s parcellation matrix.

The group-wise parcellation can be recovered by optimising the following multi-

scale normalised cut objective criterion:

maximise E(X) =
1

K

KX

l=1

XT

l

WX
l

XT

l

DX
l

(11)

subject to X 2 {0, 1}N⇥K , (12)

X1
k

= 1
N

, (13)

CX = 0 (14)

This problem is unfortunately NP-complete, but a near global-optimal solu-

tion can be estimated in a two-step approach (Cour et al., 2005). The first step

is to solve the relaxed continuous problem Z⇤ derived from problem 11. This is350

done using the Rayleigh-Ritz theorem (Yu and Shi, 2004) by computation and

normalisation of the K largest eigenvector of a matrix QPQ, defined as:

P = D� 1
2WD� 1

2

Q = I �D� 1
2CT (CD�1CT )�1CD� 1

2

(15)

Matrix P is the normalised a�nity matrix obtained by multiplication with the

degree matrix D of W . Q is the so-called projector matrix, that ensures we are

seeking a solution that respects constraint 14.355

The second optimisation step consists of discretising the global solution of

Z⇤ (Yu and Shi, 2003) so as to find the closest solution to the relaxed problem

that satisfies the discrete problem.
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The group average parcellation can then be obtained from the individual

subjects parcellation through majority voting. Our objective using the simple360

majority voting approach is to identify which brain regions are in agreement

between subjects, i.e. to find the regions that best summarise the similarities

between subjects.

2.7. Evaluation: Quantitative Measures

The evaluation of brain parcellation tasks is a challenge in itself since there365

is no ground truth to compare to. In order to provide a quantitative evaluation

of our approach, we compute measures that intuitively should be characteristic

of a good parcellation.

2.7.1. Information Loss

Our first objective is to obtain parcellations that represent the data as well370

as possible. A parcel’s average connectivity profile should be as close as possible

to all the connectivity profiles of the vertices within the parcel. We evaluate the

faithfulness of our parcellations to the data by evaluating the information that

is lost by approximating the vertices’ connectivity profiles with the parcels’

averages. This is done by creating a N
v

⇥ N
v

matrix �
av

from the merged375

connectivity matrix, by assigning the same merged profile to all vertices in the

same parcel (see Fig.5). We then compute the Kullback-Leibler Divergence

(KLD) between this matrix and the original tractography matrix � that are

normalised to be probability mass functions. The KLD measures how much

information is lost by approximating the tractography matrix � with �
av

. A380

low KLD therefore corresponds to a faithful parcellation.

2.7.2. Silhouette Index

We further evaluate the quality of our clustering using the Silhouette index

(Rousseeuw, 1987), which is a commonly used cluster validity measure. It has

notably been used several times for evaluation of brain parcellations (Craddock385

et al., 2012; Eickho↵ et al., 2014). The Silhouette index computes for each
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Figure 5: Illustration of the merging process in order to build a merged connectivity matrix

and the Nv ⇥Nv matrix.

vertex a score of confidence with respect to its cluster assignment.

s(v) =
b(v)� a(v)

max(a(v), b(v))
(16)

Here a(v) is the average dissimilarity between v and all vertices within the same

parcel. b(v) is the average dissimilarity between v and all elements in the cluster

that has the highest similarity. The Silhouette index takes values between -1390

and 1, where -1 suggests that the vertex has been misclassified. A value close

to zero suggest that the vertex is equally similar to two di↵erent clusters. Here,

we define the dissimilarity between vertices as the opposite of the correlation

matrix.

2.7.3. Group Consistency395

We evaluate the quality of our group-wise constraint through a group con-

sistency measure that is inspired by the Minimum Description Length principle

(Rissanen, 1978). After a group parcellation, we compute an average connectiv-

ity matrix by averaging all subjects’ merged connectivity matrices. The group

average is then compared to each individual subject’s connectivity matrix, the400

idea being that the distance should be minimal if the average is representative

of all subjects. The measure we compute is the Sum of Absolute Di↵erences
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(SAD) between the normalised connectivity matrices. Normalisation allows fair

comparisons across varying numbers of parcels. In addition, this measure has

the potential to identify outliers within a group that will strongly di↵er from405

the group average.

2.7.4. Overlap Between Parcellations

Parcels are quantitatively compared and matched using the measure of spa-

tial overlap proposed in Bohland et al. (2009). This measure is non symmetric,

and evaluates the proportion of one region i that is contained in another region410

j. We refer to r
i

and r
j

as the ensembles describing the vertices that belong to

regions i and j respectively. The similarity measure P
ij

is then defined as:

P
ij

=
|r

i

\ r
j

|
|r

j

| (17)

where |r| is the number of voxels in ensemble r. When applied on di↵erent

subjects, this measure relies on the vertex correspondences obtained from the

sulcal registration. A symmetric measure is also defined as O =
p

P
ij

P
ji

.415

We match two parcellations by selecting the parcels that have the highest

similarity scores. It should be noted that several parcels can be matched to

the same one and therefore merged into a larger parcel. We use the symmetric

measure O as a measure of overlap for quantitative evaluation. This is more

flexible than the commonly used Dice Similarity Coe�cient as it does not search420

for perfect overlap but also for inclusion of a parcel in another. Furthermore,

this approach allows to compare parcellations with a very di↵erent number

of parcels, which can be very useful when comparing to other methods and

modalities.

2.7.5. Bayesian Information Criterion425

The proposed measurements used to evaluate single subject parcellations

cannot be used for comparing group parcellations since our group-wise parcel-

lation is not directly derived from a joint connectivity matrix. We compute

instead the Bayesian Information Criterion (BIC) as described in Thirion et al.

(2014) for evaluating group-wise parcellations.430
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We evaluate how well the parcellations agree with the underlying brain struc-

ture by comparing to task fMRI activation maps. Each vertex is associated with

the concatenated task activation maps of all subjects within the group consid-

ered. The signal y(concatenated activation maps) within each parcel is modelled

using a probabilistic model as:435

y ⇡ N (µ1,�1INs + �2XX

T ) (18)

Here, µ is the average signal within a parcel, X is a known matrix that identify

which subject the vertex value corresponds to. The estimation of the parame-

ters (µ, �1, �2) is carried out in each parcel using the Expectation Maximisation

algorithm. Parameters �1 and �2 respectively express the variance within and

between subjects. The BIC criterion then evaluates the goodness of fit by pe-440

nalising the negative log likelihood by the complexity of the model (number of

parcels).

3. Results

3.1. Parameter Selection

The parameter µ for the construction of the supervertices is set heuristically445

to 3. The parameter ↵ that control the strength of the connections between the

subjects has a more important impact on the obtained parcellation. ↵ should

be high enough to impose consistency between subjects but also allow local dif-

ferences between them to remain faithful to the underlying data. Furthermore,

isolated supervertices tend to appear when ↵ is too high.450

We make use of the KLD and SAD measures to optimise the parameters

as they provide complementary information. We compute the KLD to make

sure the parcellation remains faithful to the data, while the SAD evaluates if

group consistency is imposed. We optimise ↵ on one group of 50 subjects for

both hemispheres. We compute the KLD and SAD for 20 to 250 parcels and ↵455

ranging from 0.01 to 3.5.

The first observation is that the measures follow what is expected intuitively

with respect to the number of parcels: the KLD decreases with the number of
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(a) (b)

Figure 6: Evolution of the KLD (a) and SAD (b) value of ↵ for the right hemisphere.

parcels. This is expected since a high resolution reduces the amount of averaging

necessary during the construction of the merged matrix. In contrast, the SAD460

progressively increases with the number of parcels. This is due to the fact that

more anatomical di↵erences are conserved when the resolution increases.

As shown in Fig. 6, both measures follow similar trends, sharply decreasing

when increasing ↵, then stabilising or slowly increasing. The strong improve-

ment of the measures at low ↵ values can be explained by the fact that par-465

cellations are not imposed to be similar if the connections are too weak, as a

result, the number of parcels selected is spread across all subjects, resulting in

very low parcellation resolutions for all subjects. This increases the value of the

KLD (low resolution) and the value of the SAD (no agreement imposed between

subjects).470

The SAD measure has a tendency to increase after reaching a minimum. Iso-

lated supervertices tend to appear when the correspondences between subjects

are set too high, which decreases the quality of the parcellation. We essentially

seek parcellations that are faithful to the underlying connectivity data while

preventing the appearance of isolated supervertices. Therefore, we select for475

each parcellation resolution the optimal value of ↵ as the closest value that

both stabilises the KL divergence and minimises the SAD. We observe for both

21



Figure 7: Evolution of the optimal value of ↵ for both hemispheres.

hemispheres that the value of ↵ has to be increased regularly with the number

of parcels (Fig.7).

All our remaining experiments are carried out on our second group of 50480

subjects that have not used for parameter optimisation with the optimal value

of ↵.

3.2. Methods comparison

After parameter optimisation, we perform the group-wise parcellation scheme

on our second group. The first observation, as shown in Fig. 8, is that we ob-485

tain parcellations that have direct correspondences yet remain subject specific

(i.e. the shape and location of parcels can di↵er from one subject to the next).

Isolated supervertices may appear, which can be due to links that are too strong

or too numerous.

The proposed group-wise method was then quantitatively compared to gyral490

(Destrieux et al., 2010) and random (Poisson disk sampling) parcellations, as

well as connectivity driven parcellations from k-means, hierarchical and spectral

clustering (Sec. 2.4 and normalised cuts (Craddock et al., 2012)). Hierarchical

clustering is performed using the spatially constrained linkage method as de-
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(a) (b) (c)

Figure 8: Visual example of single subject parcellations obtained from the group-wise scheme

(100 parcels). Identical colours between di↵erent subjects indicate corresponding parcels (there

is no inter-hemispheric matching).

scribed in Moreno-Dominguez et al. (2014). We are using the average linkage495

method as we have observed that it yields the best quantitative results. This

has also been observed by Moreno-Dominguez et al. (2014) for dMRI driven

parcellation. All clustering methods are initialised from the finest superver-

tex resolution so as to reduce the impact of noise. Hierarchical and spectral

clustering methods are spatially constrained (we only preserve neighbouring500

connections) to obtain contiguous parcels. The spatial contiguity of k-means

clusterings is artificially enforced by only keeping the connections with the 10

closest neighbours. This yielded compact parcels of similar sizes. Poisson Disk

Sampling generates regions of approximately equal size by ensuring that two

region centres are not closer than a given threshold which controls the number505

of obtained parcels. For single subject parcellations, correspondences between

the di↵erent parcellations have to be established to compute the SAD. The

matching is suboptimal since boundaries can be very di↵erent across subjects.

This biases the values of the SAD but also highlights the main issue associated

with single-subject parcellations which is the di�culty to find correspondences510

between subjects.

We compute the KLD, SAD and Silhouette index for all methods. Figure

9 shows boxplots of the measures for all methods and subjects in the group.

We observe that spectral methods tend to show better performance for all mea-
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surements and that the group-wise approach yields very similar KL values as515

the single subject approach. In other words, the obtained parcellations remain

as faithful to the data despite the group constraint while achieving the best

results in terms of group consistency. The same behaviour can be observed for

Silhouette index computations.

Interestingly, k-means clustering yields the best performance for KLD mea-520

surements, but the lowest score amongst connectivity driven methods for both

Silhouette index and SAD. On the one hand, the di↵erent spatial constraint

(keeping the 10 closest neighbours rather than the nearest neighbour) could al-

low to construct parcellations that follow connectivity patterns more precisely.

On the other hand, this limited constraint yields irregular clusters that are525

sensitive to noise, which reduces the quality of the parcellation and its repro-

ducibility. This assumption is supported by the low performances obtained for

the Silhouette index and SAD (quality of clustering and group consistency).

Furthermore, we also observe an increase in performance for all measurements

using our multi-scale approach compared to Normalised cuts. This highlights530

the added value of using multiple scales for the parcellation task. The gap in

performance is particularly striking for Silhouette index computations.

Since the surfaces have been registered based on sulcal information, we ex-

pect strong similarities between subjects regarding the gyral parcellation. This

is confirmed by the low values of the SAD, which are on par with the ones535

obtained from the group-wise parcellation. The performance in terms of infor-

mation loss and cluster validity indices is on the other hand the worst across all

methods.

3.3. Inter-modality Comparisons

We then compared the boundaries of our parcellations with myelin maps,540

Brodmann’s areas and fMRI task activation maps. All modalities are obtained

from the HCP dataset (myelin, Brodmann) Glasser et al. (2013) or using the

HCP processing scripts (task fMRI). Myelin maps are calculated as the ratio of

T1-weighted and T2-weighted MRI (Glasser and Van Essen, 2011). The Brod-
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(a) (b)

(c)

Figure 9: Boxplots of the values of the KLD (a), SAD (b) and Silhouette index (c) for all

parcellation methods.

mann parcellation was mapped onto the Conte69 brain surface atlas (Van Essen545

et al., 2012). It was then mapped onto each subject’s surface using the cortical

folding driven registration’s deformation field.

The task fMRI data is preprocessed following the HCP preprocessing pipelines

(gradient unwarping, motion and distortion correction, registration to the MNI

space and projection to the cortical surface). Task activation maps are then550

obtained using standard FSL tools (FEAT) that use general linear modelling to

construct activation maps (Barch et al., 2013). The analysis is carried out across

sessions (single subject activation maps) and then across subjects (group-wise

activation map).
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Observations are made on the group average level, as well as the individual555

subject level. Our aim is to show that we obtain sensible average maps as well

as faithful individual maps. All modalities provide complementary information,

and therefore a complete match cannot be expected in any of the cases. How-

ever, we can expect local correlation between our parcel boundaries and other

modalities.560

For all resolutions, we observe strong correspondences between our parcels’

boundaries and strong variations of myelination, specifically in the motor areas,

both on the average map and the single subject level. This is illustrated in

Fig.11 for randomly selected subjects and the average maps.

Furthermore, single subject parcellations appear to have similar boundaries565

with Brodmann’s cytoarchitectonic motor areas (BA 1, 2, 3a-b, 4a-b and 6).

Quantitative comparisons are proposed on the basis of the atlas concordance

measure of Bohland et al. (2009). For all parcellation resolutions, we compute

the overlap O between all Brodmann areas and our parcels. Due to the small

size of these regions, areas BA 1, 3 and 4 are merged into a single parcel. We570

compare the quantitative results obtained with the other considered parcellation

methods (spectral, hierarchical and random). In particular, random parcella-

tions show how our results relate to chance. Figure 10 shows boxplots of the

average overlap scores over all subjects for all resolutions, Fig. 11 shows visual

examples of the overlap for di↵erent subjects, while Fig. 12 shows a spatial575

comparison to random parcellations overlap scores. On average over all parcel-

lation resolutions, we obtain very good overlap measurements with the motor

areas (BA 1-6), and outperform other methods. Interestingly, we observe that

good overlap scores are only obtained around the motor area for all connectivity

driven methods. The fact that results can be significantly lower than the overlap580

with random parcellations for all subjects and methods in some areas could sug-

gest that either the structural connectivity di↵ers with cytoarchitecture, or that

the Brodmann map and structural connectivity data are not properly registered.

Our average parcellation is also compared to the composite parcellation pro-

posed in Van Essen et al. (2012) where each region is derived from reliable585
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(a) (b)

Figure 10: Boxplots of the average overlap over all subjects between our parcels and Brod-

mann areas for all computed resolutions. (a) left hemisphere, (b) right hemisphere.

local parcellations. Parcels are derived from di↵erent modalities such as cy-

toarchitecture and rhetinotopy. Given the size of most regions, we compare the

parcellation to a high resolution connectivity driven parcellation (200 regions).

Visual comparisons are shown in Fig. 11c and comparisons with the perfor-

mance of random parcellations are shown in Fig. 12b. Here again, we compute590

overlap scores between our group average and the composite parcellation and

compare it to the performance of random parcellations. We again obtain good

performance around the motor area, and worse results in other regions, no-

tably around the visual cortex. In addition to data quality and disagreement

of dMRI with other modalities, these results could be linked to the size of the595

groups used to build the composite and group parcellations, which could be too

small to fully correspond. Another explanation could be that some regions have

too much inter-subject variability and cannot be summarised properly without

a dMRI driven registration step.

Task activations are only compared on the group level due to the fact that600

individual task activation maps can be very noisy. We are therefore only com-

paring our average parcellation to average activation maps. Visual comparisons

are proposed in Fig. 13 between the boundary of our average parcellations and

activation maps for di↵erent tasks.
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(a) Subject 1 (b) Subject 2 (c) Group Average

(d) Subject 1 (e) Subject 2 (f) Group Average

Figure 11: Visual examples of the overlap between our parcels’ boundaries (black lines) and

Brodmann areas (a,b), myelin maps (d-f), the composite parcellation Van Essen et al. (2012)

(c) for two randomly selected subjects and the group average map.

3.4. Group-wise Parcellation Evaluation605

While a set of 50 subjects remains limited, group parcellations at this level

should start showing consistency across di↵erent groups and are less sensitive to

inter-subject variability. We evaluate the reproducibility between two di↵erent

groups by comparing our average parcellations obtained from our two groups of

50 subjects. The average parcellations are computed through majority voting610

from all 50 individual parcellations, while the average connectivity map is simply

the average of all subjects’ merged connectivity maps.

We computed the overlap between our di↵erent parcels after matching them,

as well as the SAD in order to compare the built connectivity networks. Those
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0

(a) Brodmann areas

0

(b) Composite parcellation

Figure 12: Comparison of the performance of the group-wise parcellation w.r.t random par-

cellations for (a) the Brodmann map and (b) the composite parcellation Van Essen et al.

(2012). Values higher than zero (red to yellow) have a higher overlap than random parcella-

tions, worse overlaps are shown in blue. (a) For each parcel, we count the number of times

a parcel overlaps better (+1) or worse (-1) for all subjects and parcellation resolutions. (b)

Overlaps are compared for 200 parcels, and averaged over the 50 random parcellations. Yel-

low and cyan parcels have an overlap di↵erence of more than 20 % between both parcellations,

other cases are shown in red and blue.

values are compared to the ones obtained between two independent single sub-615

ject parcellations and the overlap between two subjects parcellated within the

same group. The evolution of the overlap with respect to the number of clusters

is shown in Fig. 14.

After matching the parcels, we also computed the SAD between the two av-

erage maps. As expected, the value tends to increase with the number of parcels620

and are lower than the intra group SAD scores. However, we consistently obtain

better values than the one obtained between spectral individual parcellations

(where the matching process is identical) and, as illustrated in Fig. 15, very sim-

ilar connectivity maps at low resolutions. Figure 16 shows how reproducible two

regions are within the same group on average over all resolutions. We observe625

a similarity between reproducible regions between the two hemispheres.

Our group-wise parcellations from the second group (not used for param-

eter optimisation) are also quantitatively compared the group-wise parcella-

tions obtained using common clustering methods (k-means, hierarchical (using
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(a) Working Memory (b) Motor: Left Hand

(c) Motor: Tongue (d) Language: Story

(e) Working Memory

Figure 13: Visual examples of the correspondences between average task activation maps

and our average parcels’ boundaries for a group of 50 subjects.
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the average linkage method) and spectral clustering (normalised cuts and our630

multi-scale approach)) on the average connectivity matrix. For all clustering

tasks, the a�nity matrix driving the clustering is the Pearson’s correlation co-

e�cient between the average connectivity profiles over all 50 subjects in the

group. We do not compare to other group averages from single-subject meth-

ods here since the di↵erences between single-subject parcellations are too high635

to construct a meaningful average map. Methods are compared quantitatively

using the BIC criterion (sec. 2.7.5). The same task fMRI contrasts as the ones

proposed in Thirion et al. (2014) are considered here: the faces-shape contrast

of the emotional protocol, the punish-reward contrast of the gambling protocol,

the math-story contrast of the language protocol, the left foot-average and left640

hand-average contrasts of the motor protocol, the match-relation contrast of the

relational protocol, the theory of mind-random contrast of the social protocol

and the two back-zero back contrast of the working memory protocol.

Results are shown in Fig. 17 for both hemispheres and all resolutions con-

sidered (20 to 250 parcels). We can see that the spectral methods yield the645

best results (lower values are better) for both hemispheres and most resolu-

tions. Our group-wise approach tends to yield better results at the highest

resolutions, which could be linked to the fact that the lack of registration be-

tween dMRI connectivity networks (which will impact the average connectivity

matrix) has a stronger impact when more precision is required.650

We also visualise the average intra and inter-subjects variance parameters

of the model (�1 and �2 respectively) in Fig. 18. All methods have similar

behaviour: the intra-subject variance monotonously decreases with the number

of parcels, while the inter-subject variance follows the opposite trend. A similar

behaviour was observed in Thirion et al. (2014). All methods appear to have655

similar variances, with hierarchical and k-means clustering having the largest

inter-subject variance and intra-subject variance respectively.
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(a) Overlap: Left hemisphere (b) Overlap: Right hemisphere

(c) SAD: Left hemisphere (d) SAD: Right hemisphere

Figure 14: Quantitative evaluation of the group consistency, compared to the intra-group

consistency (obtained from a group-wise parcellation) and the inter-group consistency (ob-

tained from single subject parcellations).

4. Discussion

In this paper, we proposed a connectivity-driven parcellation method in-

spired from the concept of cosegmentation. The proposed method simultane-660

ously estimates subject specific parcellations that have direct correspondences

across subjects. Quantitative and qualitative experiments show that group con-

sistency does not reduce the quality of the parcellation on the subject level.

Furthermore, the comparison between two independent groups shows that we

can obtain a good reproducibility despite a relatively small sample size.665

Our comparisons with myelin maps, task fMRI and cytoarchitecture show
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(a) (b) (c)

Figure 15: Visualisation of the absolute di↵erence between connectivity networks: (a, b) dif-

ference between the networks obtained for two subjects using single subject parcellation (a),

and group-wise parcellation (b); (c) di↵erence between the average networks for the two dif-

ferent groups tested. The circle represents the parcels on the cortical surface, connections are

the edges connecting the parcels. The edges and their thickness correspond to the di↵erence in

connectivity strength (probtrackX fibre count) between the compared networks. The di↵erent

colours are used here for visualisation purposes to di↵erentiate the edges.

that we obtain parcel boundaries that reflect other modalities, especially in the

motor area where we observe strong similarities. Inter modality comparisons

should however be considered carefully. First, all di↵erent modalities are ob-

tained after a series of processing steps where several errors could be introduced670

(cortical folding based registration, volume to surface projection, segmenta-

tion...). Furthermore, it is still unclear how much these modalities interact and

how similar they are expected to be. Therefore, complete agreement is not to be

expected. In particular, we have observed that all dMRI driven parcellations we

considered are generally performing worse than random parcellations in terms675

of overlap with Brodmann areas that are not in the motor area. There are sev-

eral facts that can explain this phenomenon. The Brodmann maps are obtained

from a single subject, then projected onto an atlas, which is then registered to

the single subjects based on cortical folding. The registration process is based

on sulcal depth, which focuses strongly on the motor area where the folding pat-680

terns are more consistent between subjects. The observation that dMRI driven
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0.5

0.75

Figure 16: Local overlap between the two group averages, averaged over all resolutions.

parcellations are performing worse than chance suggests that Brodmann areas’

boundaries are not properly aligned with the dMRI data. This is very likely to

be the case for subjects that have very di↵erent folding patterns with respect to

the reference surface. The fact that our comparisons are favourable in the motor685

area supports this theory. Other possible explanations could be that dMRI lo-

cally disagrees with cytoarchitectural boundaries, or that the dMRI processing

steps and noise have introduced some errors that do not allow to recover these

boundaries.

More generally, several facts associated with dMRI driven parcellations should690

be kept in mind when looking at the interpretability of parcellations or aiming at

comparing them with di↵erent modalities (rs-fMRI parcellations for instance).

dMRI and tractography represent the current best way of representing the phys-

ical connections in the brain in vivo. Parcels can therefore naturally be biologi-

cally interpreted as regions that are directly connected to the brain in a similar695

way. Because of this, dMRI is expected to be more robust and interpretable for

longitudinal (ageing or development) connectome analysis than resting-state

fMRI for instance, whose biological interpretation is not as natural (Eickho↵

et al., 2015).
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(a) Left hemisphere (b) Right hemisphere

Figure 17: Comparison of group-wise parcellation methods using Bayesian Information

Criterion scores for both hemispheres. Lower values correspond to better scores.

Nevertheless, the connections inferred from dMRI processing and tractogra-700

phy have to be considered carefully and put in perspective. The connections are

obtained from the indirect measurement of the di↵usion of water molecules in

the brain. Processing the data and inferring the tracts is a tremendous problem

in itself, and many aspects remain problematic. Large fibre bundles are often

predominant, while crossing and kissing fibres are often di�cult to di↵erentiate.705

Long range connection can also often be missed, due to a growing uncertainty

along the tract. This makes tractography data prone to false negatives (inter-

estingly, rs-fMRI is on the contrary prone to false positives). Another di�culty

is to precisely determine the origin of the tracts, tractography having been ob-

served to have a bias with ending tracts in gyri (Van Essen et al., 2013; Ng et al.,710

2013), this could notably a↵ect the location of parcel boundaries and should be

remembered when comparing parcellations to other modalities for instance. De-

spite these encountered di�culties, dMRI remains the best way of evaluating

the physical tracts in vivo. While the obtained tracts could not be completely

accurate, the evaluated similarity between connectivity profiles could still be715

correct (Knösche and Tittgemeyer, 2011), leading to accurate parcellations.

One drawback of spectral clustering approaches is the tendency to create

similarly sized parcels. This size bias could explain why the quality of the
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(a) Left hemisphere - inter subjects (b) Left hemisphere - intra subject

(c) Right hemisphere - inter subjects (d) Right hemisphere - intra subject

Figure 18: Comparison of the intra and inter-subject model variance between group-wise

parcellation methods both hemispheres.

correspondences with cytoarchitectonic regions and task activation maps varies

from one resolution to the next. Indeed, it is possible that some transitions720

in connectivity can only be captured at specific resolutions or degrees of pre-

cision. This phenomenon could prevent from determining an optimal number

of parcels as specific boundaries could be identified at specific resolutions. For

this reason, the main objective of our evaluation was not to find an optimal

number of parcels but rather to compare our approach at a given resolution725

with others. A possible way of exploiting this hierarchy of parcellations would

be to combine the parcellations obtained at di↵erent resolutions, or identifying

the most reliable boundaries over all resolutions. Another issue associated with
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the hierarchical and spectral clustering method considered here is the imposed

spatial constraint to obtain spatially contiguous parcels. Only connections be-730

tween neighbouring vertices are kept, which can lose critical information. On

the other hand, parcel can be subject to noise and irregular, as observed with

k-means clustering results.

One of the main advantages of using a group-wise parcellation method is the

possibility to perform direct comparisons between subjects as well as groups735

(gender, age or diseased base groups). At the single subject level, this allows to

estimate which brain regions are the most consistent (inter-subject variability),

while the group level enables to evaluate the fundamental di↵erences in connec-

tivity and function between two di↵erent groups. This could provide information

about the impact of a disease on the brain for instance. One big challenge would740

be to identify whether the di↵erences are due to noise and processing errors or

actual biological di↵erences. Comparing one subject to the group could be a

way of identifying if a region in a specific subject is governed by noise. Our

method reduces the influence of noise and registration errors by finding local

correspondences at a coarse supervertex parcellation level and carrying a neigh-745

bourhood search. This setting is better suited for identification of similarities

between subjects when working at the subject level. Group di↵erences can then

be considered as noise should be strongly reduced at the group level.

A natural extension of the method would be to run it on much larger groups

in order to evaluate the reproducibility and obtain parcellations that are truly in-750

dependent from inter-subject variability. Consequently we could estimate more

reliably the global di↵erences between di↵erent kinds of groups. A further ex-

ploration of the parameter space on a larger group would also allow a better

design of the inter-subject edges. Finally, inter-modality comparisons could be

performed by applying the method to resting state fMRI. Comparing or combin-755

ing dMRI and rs-fMRI driven parcellations could enable to identify functionally

specialised regions more accurately than by using a single modality.
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Knösche, T.R., Tittgemeyer, M., 2011. The role of long-range connectivity for

the characterization of the functional-anatomical organization of the cortex.

Frontiers in Systems Neuroscience 5.

Lashkari, D., Vul, E., Kanwisher, N., Golland, P., 2010. Discovering structure

in the space of fmri selectivity profiles. Neuroimage 50, 1085–1098.845

Mars, R.B., Jbabdi, S., Sallet, J., O’Reilly, J.X., Croxson, P.L., Olivier, E., Noo-

nan, M.P., Bergmann, C., Mitchell, A.S., Baxter, M.G., et al., 2011. Di↵usion-

weighted imaging tractography-based parcellation of the human parietal cor-

tex and comparison with human and macaque resting-state functional con-

nectivity. The Journal of Neuroscience 31, 4087–4100.850

Moreno-Dominguez, D., Anwander, A., Knösche, T.R., 2014. A hierarchical
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