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Introduction

Brain Tumor Segmentation and Registration from healthy to pathological 
subject treated separately

• Fuzzy boundaries

• inhomogeneous 
appearances 

• Various shapes 

• intensity overlap with 
healthy tissue

Methods

• Classification techniques + pairwise 
smoothing
Lee et al. MICCAI 2008

• Atlas based segmentation: 
dependent on registration quality
Prastawa et al. Academic Radiology 2003

Methods

• Growth models: computationally 
expensive/user interaction
Cuadra et al. Comput. meth. prog. bio. 2006 
Zacharaki et al. Neuroimage 2009 

• Masking the pathology: 
dependent on segmentation quality
Stefanescu et al. MICCAI 2004

• No correspondences in the tumor area: 
use of common methods impossible
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Unary Term: Segmentation

• Learning of a tumor vs background classifier

• Features extracted from images

• Gentle Adaboost algorithm

Construction of a strong classifier as a combination of weak classifiers 
(decision stumps)

• Any classification technique can be used 

• Nodes with high classification probability of being tumor should be 
labeled accordingly

Vp (lp ) =�Vdef (lp )+ (1�� )Vseg (lp )

Boosting probability map
6



Unary Term: Registration

Vp (lp ) =�Vdef (lp )+ (1�� )Vseg (lp )

Sim I (x),A(x + dlp )( )  if slp = 0,  Background

Ctm  if slp = 1,Tumor 
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Unary Term: Registration

• In the tumor area: No correspondences

Constant cost independent of the displacement

Constant Cost 

Vp (lp ) =�Vdef (lp )+ (1�� )Vseg (lp )

Sim I (x),A(x + dlp )( )  if slp = 0,  Background

Ctm  if slp = 1,Tumor 
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Implementation
• Incremental Approach

• 3 image levels, 4 grid resolutions

• Increasing influence of the segmentation (progressive diminution of � value) 

• Optimization

• Linear programming (Komodakis et al. CVIU, 2008)

• Overall run time: 6 min (matlab implementation) 9
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• Database: 97 T2 FLAIR volumes

• Data likelihood learned on 40 volumes

• Evaluation on 57 volumes

• Segmentation

• Evaluated w.r.t manual segmentations 

• Compared with boosting classification with added pairwise smoothing 
(right on boxplots)

• Median Dice: 77 to 80%, False positives: 30 to 20%, Mean Absolute 
Distance (MAD): 4.8 to 4.2mm

• Registration

• Qualitative evaluation

• Compared with Glocker et al. 2008, with masked pathology
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Experimental Validation
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Red: Ground truth            Blue: Automatic segmentation 11



Original image Glocker et al. 2008
Deformed image

Left:
Glocker 08

Deformation field

Our method
Deformed image

Right
Our method

Deformation field
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Conclusion
• Simultaneous registration and segmentation method

• Modular w.r.t image modality, similarity criterion and classification technique

• Can be adapted to any clinical context

• Fast and efficient optimization (ongoing work to reduce the run time to a few seconds)

• State of the art results

• Future work

• Local spatial position prior information

• Registration uncertainties

• Adaptation to registration/segmentation before and during surgery with tumor resection
13



Thank you for your attention

Questions?
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