Modelling a Framework for Plugins

Robert Chatley
Department of Computing
Imperial College London
180 Queen’s Gate, London
SW7 2AZ

rbc@doc.ic.ac.uk

ABSTRACT

Using plugins as a mechanisnfor extendingapplicationsto pro-

vide extra functionality is appealing but currentimplementations
arelimited in scope.We have designeda framework to allow the

constructiorof flexible andcomplex systemsrom plugin compo-

nents. In this paperwe describehow the use of modellingtech-

nigueshelpedin the exploration of designissuesand refine our

ideasbefore implementingthem. We presentboth an informal

modelandaformal specificatiorproducedisingAlloy. Alloy’s as-

sociatedools allowed usto analysethe plugin systems behaiour

statically

Keywords

plugins,componentsmodelling,specification

1. INTRODUCTION

Maintenances a very importantpart of the software development
processAlmostall softwarewill needto go throughsomeform of
evolution over the courseof its lifetime to keeppacewith changes
in requirementg&ndto fix bugsandproblemswith the softwareas
they arediscovered.

Traditionally, performingupgradesfixesor reconfiguration®n a
software systemhas requiredeither recompilationof the source
codeor atleaststoppingandrestartinghesystem High availability
andsafetycritical systemdave high costsandrisksassociatedvith
shuttingthemdown for ary periodof time [14]. In othersituations,
althoughcontinuousavailability maynotbe safetyor busines<rit-
ical, it is simply incorvenientto interruptthe executionof a piece
of softwarein orderto performanupgrade.

Unanticipatedsoftware evolution tries to allow for the evolution

of systemsin responsdo changesn requirementghat were not

known at the initial designtime. There have beena numberof

attemptsatsolvingtheseproblemsatthelevelsof evolving methods
andclasseg[5, 7], component§l1] andserviceq15]. In this paper
we consideran approachto software evolution at the architectural
level, in termsof plugin components.

Susan Eisenbach
Department of Computing
Imperial College London
180 Queen’s Gate, London
SW7 2AZ

sue@doc.ic.ac.uk

Jeff Magee
Department of Computing
Imperial College London
180 Queen’s Gate, London
SW7 2AZ

jnm@doc.ic.ac.uk

We believe thatit is possibleto engineeta generalisedndflexible
pluginarchitecturevhichwill allow applicationgo beextendedly-
namicallyat runtime.Herewe presenamodelof how components
may be assembledn suchan architecturebasedon the interfaces
that they present. This modelwill be usedat run-time by a plu-
gin framework to determinghe connectionghatcanandshouldbe
madebetweemlugins(ourimplementatiorof suchaframework is
detailedin [3]).

Thebenefitsof building softwareout of anumberof moduleshave
long beenrecognised Encapsulatingertainfunctionalityin mod-
ules and exposing an interface evolved into componentoriented
softwaredevelopment2]. Componentganbecombinedto create
systems.An importantdifferencebetweenplugin basedarchitec-
turesand other componenbasedarchitecturess that pluginsare
optionalratherthanrequiredcomponentsThe systemshouldrun
regardlesof whetheror not plugin component$ave beenadded,
but offer varying degreesof functionalitydependingon whatplug-
insarepresentPluginscanbeusedto addresshefollowing issues:

e theneedto extendthefunctionality of a system,

o thedecompositiorof large systemsothatonly the software
requiredin a particularsituationis loaded,

o the upgradingof long-runningapplicationswithout restart-
ing,

e incorporatingextensiongdevelopedby third parties.

Plugins have previously beenusedto addresseachof thesedif-
ferentsituationsindividually, but the architecturesiesignechave
generallybeenquite specificallytargetedandthereforelimited. In
existing systemseitherthereareconstraint®nwhatcanbeadded,
or creatingextensiongequiresalot of work onthebehalfof thede-
veloper for examplewriting architecturaddefinitionsthat describe
howv componentganbe combined13]. We believe thatit is possi-
ble to engineerm moregeneralise@ndflexible plugin architecture
notrequiringthe connectiondbetweencomponentso be explicitly
stated.

Herewe describehow formal specificatiortechnique$ielpedusin
developingageneralisegluginmodelthatcanbeusedto dealwith
ary of the situationsdescribedabore. Unlike otherplugin models
(for examplethatusedby Eclipe [13]), in our modelcomponents
arematchedpurely basedn informationthatis availablefrom the
code,ratherthanusingmeta-datasuchasan IDL description. In
the remainderof the paperwe presentour modelbothinformally,

L L

2

|

TF’

> ¢
[)

extendingthemainapplication

extendingpluginsto form achain

a

connectingo multiple components

Figure 1: Somepossibleconfigurations of plugins

basedon a familiar analogy andformally usingthe specification
languageAlloy.

2. AN INFORMAL MODEL

We think of theway thatcomponentdit togetherin a plugin archi-
tectureasbeingsimilarto theway thatpiecesof ajigsawv puzzlefit
together As long asajigsaw piecehastheright shapedeg, it can
connecto anothempiecethathasa correspondindnole.

Themainapplicationprovidesa numberof holes,into which com-
ponentgproviding extrafunctionalitycanplug. Pluginsareoptional
componentgontainingcollectionsof classesandinterfaces. The
holesrepresentan interface known to the main application,and
thepegsrepresentlassesn the plugincomponentshatimplement
this interface. The interfacedefinesthe signaturesof methodsin
the class.If anapplicationhasaninterfacethatallows othercom-
ponentso extendit, anda plugin containsa classthatimplements
this interface,a connectioncan be madebetweenthem. The pey
will fit into thehole. This situation,addingcomponentso a central
application,is shavn in thefirst exampleFigurein 1.

Thinkingaboutpluginsin thisway; it becomeglearthatsomeother
more sophisticatecconfigurationswould be possibleif we allow

plugin componentgo have holesaswell aspeggs, i.e. if we allow

pluginsto extend other pluginsratherthanonly allowing themto

extendthemainapplication.We canthenhave chainsof pluginsas
shavn in themiddle examplein Figurel. An exampleof this situa-
tion mightbeif themainapplicationwereaword processqrwhich

was extendedby pluggingin a graphicseditor, andthis graphics
editorwasin turn extendedby pluggingin a new drawing tool.

It is possiblethata componenhasseveral holesand pegs of dif-
ferentshapeqprobablythe most commonsituationin traditional
jigsaw puzzles).This canleadto morecomplicatedconfigurations
of componentssuchasthoseshavn in the rightmostexamplein
Figurel. Sucha configuratiormight be usefulin a situationwhere
the mainapplicationwas, say anintegrateddevelopmentenviron-
ment,thefirst plugin wasa help browser andthe seconda dehug-
ging tool. Thedeluggingtool plugsinto the the mainapplication,
but alsointo thehelpbrowsersothatit cancontribute helprelevant
to delugging. In this way the help browser candisplay help pro-
vided by all of the differenttoolsin the IDE, with the help being

storedocally in eachof theseparatéools. It is clearthatwe cannot
represengll possibleconfigurationf pluginsusingthesesimple
planarjigsaw representationdyut they provide a usefulmetaphor
for thinking aboutwhatmight be possible.

If we think onceagainaboutthe first case thenit seemshatwe
should be able to keep on adding plugins to the applicationas
long asthey implementheright interface but theremightbe cases
wherewe wantto putlimits onthenumberof pluginsthatcanbeat-
tached.Thismightbethecasewheneachpluginthatis addedcon-
sumesa resourceneld by the mainapplication,of which a limited
quantityis available. Cardinalityconstraintcanalsobe emplored
to constrainthe shapeghatthe configurationcantake.

To seetheeffect of usingcardinalities considera mainapplication
which accepts certaintypeof plugin, withoutarestrictionon how

mary pluginscanbe added.If threecompatiblepluginsareadded,
all threewill beloadedandconnectedo the system.If, however,

we changehecardinalityof theinterfaceto be< 2, i.e. any number
upto amaximumof two, aftertwo pluginshave beenaddedathird

cannotbe. It might be possibleto remorve plugin 1 or 2, andto

replaceit with plugin 3, but it is not possibleto plugin all threeat
thesametime. In practicethoughit seemghatthetwo cardinalities
usedmostoftenwill probablybe < 1 and“any number”.

Revisiting thechainingpatternghatwe saw earlier(seethesecond
examplein Figure 1), but emplgying cardinalities,we can chain
togethera numberof differentcomponentof the sametype, by
having eachprovide andacceptone peg of the sameshape(limit-
ing the numberof pegs acceptedequiresa cardinalityconstraint
seeFigure?2). Thisis almostlike a Decoratomattern[6] for com-
ponentsA decoratoiconformsto theinterfaceof thecomponentt
decoratesothatit addsfunctionalitybut its presencés transparent
to the componens clients. Sucha situationmight be usefulif, for
instancewe wantedto chaintogethervideofilters, eachof which
took a video streamasaninput andprovided anotherstreamasan
output.Eachfilter couldperformadifferenttransformatior{for ex-
ampleconvertingtheimageto blackandwhite, or invertingit) but
the componentgould be combinedin ary order regardlesf the
numberin the chain. Pluginswould allow this configurationto be
changediynamicallyovertime.

Figure 2: Chaining with cardinality constraints

It is our aim to provide the describedpblugin architecturesn self-

assemblingsystemg[8]. It shouldbe possibleto introducenew

component®ver time. For eachadditionalcomponenthe system
should make connectiongo join it to the existing systemin ac-
cordancewith its acceptedand provided interfaces. It shouldnot

be necessaryor the useror developerto provide extra informa-
tion abouthow or wherethe componenshouldbe connectedas
they may not have total information aboutthe currentconfigura-
tion, or they mayjust wantto delegateresponsibilityfor managing
theconfiguratiorto thesystemitself. Thepluginframevork should
be ableto assemblehe componentsaccordingto the typesof the

classeshey contain.

Figure 3 shaws a possibleconfigurationof a video replay appli-

cation. The main applicationdisplaysvideo streamswhich are
suppliedby plugin componentsThe mixer componenmixestwo

video streamsinto one, so canbe usedto add subtitlesto a film.

In the figure a mixer anda setof subtitleshave beenaddedto the
application,andafilm sourceis aboutto beadded.Thefilm source
couldconnectitherto themixer or directly to thevideoplayer In

the first case,the subtitleswill be appliedto the film, in the sec-
ondcasethefilm andthe subtitleswill bedisplayedseparatelyWe

would like to be ableto ensurethat the behaiour desiredby the
provider of the film componenis implementecbr at very leastto

predictwhat will happenin this case. We needto know thatthe
samething will happenif the samecomponentsre combinedon

differentoccasions.

It is desirablehatthe behaiour of self-assemblingystemsanbe
madeto be deterministic:it shouldbe possibleto determinewhat
connectionswill be madewhen a certaincomponents addedto

a certainconfiguration. To ensurethat this is the case,provision

needdo bemadefor definingastrat@y to decidebetweerdifferent
possiblebindingsin a predictableway. The techniquewe usefor

this is to allow stratgjiesfor decidingbetweendifferent possible
bindingsto beprovidedin theform of preferencdunctionswritten

by plugin developers.

3. AFORMAL MODEL

Beforeimplementinga framework to supportapplicationghatare
extensiblewith plugins, we developeda formal specificationfor
the systemin Alloy [9]. Alloy is a lightweight notationthat sup-
portsthedescriptionof systemghathave relationalstructuresThe
systemshatwe wish to describeareconcernedvith setsof linked
componentsso Alloy is a particularlyappropriatdanguage.The
notationallows us to write ary first-orderlogical expressionplus
transitive closure.In additionto providing languageconstructghat
fit ourdomain,Alloy hasthe advantagethatspecificationsreable
to be analysedautomatically Analysisis supporteddy, the Alloy

Film

!

Video Player

Subtitles

Figure 3: Non-determinism

ConstrainAnalyser(ACA) [4]. This tool allows usto checkour
Alloy modelsfor consisteng andto generateexamplesituations
which we may not have considered Uncovering the possibility of

suchunexpectedbehaiour early in the developmentprocessal-

lows usto refinethespecificatiorto dealwith it, ratherthanhaving

to do much more expensve maintenanceaswould be the caseif

problemswerediscoreredafterimplementation.

UsingAlloy allows usto represenformally theway in which plu-
gin componentsan fit together and what happensvhen a new
componenis addedto the system.In the casethatwe have writ-
ten inconsistentconstraintsthe analysemwill reportthatit could
not generatean examplethat satisfiesthe constraintdhatwe have
specified.

The ACA tool provides a visualiserwhich will display example
structuregyraphically This representatiois easyto interpret. We
canseehow the component$ave beenjoined togetherto form a
system.Thefiguresin this paperweregeneratedy this visualisa-
tion tool (with minor handediting of labelsto make the examples
easierto understand)Thevisualisatiortool is quiteflexible, allow-

ing usto omit partsof the modelandto shav labelseitherwithin

an objector with an arrav from the object. In Figure 4 we have

usedbothtechniquespurelyfor clarity.

In thetext of this paperwe presenthe modelin first orderlogic for
readability andagainin Alloy in the Appendix.

Oneof theideasdescribedn the previous sectionis thatthe num-
ber of eachtype of plugin componentallowed may be explicitly
defined.Thisis quiteacomplicatedoropertyandsowe first model
pluginswithout it andthenextendthe modelto includecardinality
constraints.

3.1 A basicmodel

Theartifactswe modelcouldbecreatedby acompilerfor anobject
orientedanguagevith nameequivalence.Sothey couldbecreated
by aJava or C# compiler

Classesaredefinedin termsof the interfacesthey implementand
whetheror notthey areabstract. ThetypeinterfaceZ is atomic?
We usethenotation'?’ to meanabstract mayoptionallybepresent

'Foradeclaredype7,t € 7 andt : T will beusedinterchange-
ably.

System
start: App

T

i npl enent s

I nterface

to: Plugin

Bi ndi ng from App

Figure 4: One componentadded

in agivenclass.As they have alreadybeensuccessfullycompiled
we know that classesnustimplementthe interfacesthey saythey
implement.

DEFINITION 1. Aclasscl : CL is definedas:

cl = {implements : P(Z), abstract? : String}

Component& arejust setsof classesand setsof interfaces. The
classesonstitutewhatthe componenprovidesandthe interfaces
arewhatthe componentanaccept

DEFINITION 2. Acomponent : C is definedas:
¢ = {pegs : P(CL), holes : P(Z)}

Componentsieedto be connectedr boundtogether Bindings B

connectclassedo interfaces. The componentontainingthe inter

facehasto be differentfrom the componentontainingthe class,
sothatcomponentgannotplugin to themseles. Theneedfor this
constraintwasnot originally apparent Consideringexamplespro-
ducedby the analysetthatdid not follow this constraintcausedius
to addit to themodel(seeSection4 for morediscussion).

DEFINITION 3. Abindingbd : B is definedas:
b= {peg:CL,to: C,hole: Z,from:C}

sud that:
(to # from) A (peg € to.pegs) A (hole € from.holes)

A SystemS consistsof a setof componentsa setof bindingsbe-
tweeninterfacesandclasseof the componentanda specialcom-
ponent,designatedstart. The start componentmust contain at
leastoneinterfaceor therewould be no way of ever extendinga
systemcontainingit asthefirst componentAll othercomponents
mustcontainsomeclassesn orderthatthey canprovide someex-
tra functionality to the system.An interfacecannotbe boundto a
givenclassmorethanonce(thesameclassin adifferentcomponent
is takento be adifferentclass).

2In theimplementatiorof thismodel,componentsisoincludesets
of resourceshut thesewould addnothingto our modelsowe have
omittedthem.

DEFINITION 4. Asysters : S is definedas:
s = {comps : P(C), bindings : P(B),start: C}

sud that:

start € comps

3b : B.(start = b.from) V (#comps = 1)

Ve € comps.(c.pegs # @ V ¢ = start)

Vb1, b2 : B.(((b1.from = ba.from) A (b1.hole = ba2.hole)A
(b1.to = ba.to) A (b1.peg = ba.peg)) = (b1 = b))

Figure4 shaws a systemwith an applicationanda single plugin.
In this systemthe startingcomponenis App, which hasa single
interfacewith onemethodheaderPluginis addedanda bindingis
formedfrom App to Plugin becauséPlugin containsClass,which
implementdnterface.

Classesand interfacescannotexist in isolation. Every classand
every interfaceis associateavith acomponentSimilarly, bindings
andcomponentsare alwaysassociatedvith systemsandall com-
ponentqwith the possibleexceptionof whena systencontainsex-
actly onecomponentareboundto othercomponentsThesecon-
straintswere not thoughtaboutexplicitly beforewe startedmod-
elling our proposedsystemsEachpropertyhasto bebuilt into ary
framevork thatimplementsour model so that we createsystems
thatbehae in theway predictedoy our model.

PROPERTY 1 (NO ORPHANSIN ANY s: §).

Vi:Z.3c: C.(i € c.holes)

Vel : CL.3c : C.(cl € c.pegs)

Vb : B.3s: S.(b € s.bindings)

Ve : s.comps.(3b: B.c = b.toV ¢ = b.from)
V(#s.comps = 1)

The addition of a plugin componento an existing systemneeds
to be modelled. A componentanonly be addedif it hasa class
thatis not abstracthatimplementsaninterfacein the existing sys-
tem. But beforewe look ata functionto adda new componento a
systemwe first will needto testwhethertwo componentsvith an
associatedhterfaceandclasscanbeboundatall.

DEFINITION 5 (canBind).

canBind CCLxCxZIxC

canBind (cl,¢,4,c) <= (i € c.holes) A (cl € ¢'.pegs.)A
(c' # ¢) A (abstractgcl) A i € cl.implements

System
start: App
Bi ndi ng2 Bi ndi ngl
to: Ext2 e Ext 1 to: Extl o
from Extl from App
peg pegs pegs peg
hol e @ hol es /hol es @ hol e hol es
i mpl ement s i mpl enent s

Figure5: Several componentsforming a system

If a componenttan be boundto anothercomponenin a system,
thenit canbe addedo thatsystem.Otherwisetrying to addsucha
componenwill have no effectonthe system.

DEFINITION 6 (ADDITION FUNCTIONS).

Afunctionadd : (§,C) — § is anadditionfunctioniff

add(s,c) = s' =
(3" € s.comps.Fi : Z.3cl : CL.canBind(cl, ¢, 1, ')
= s’ = {s.comps U {c}, s.bindings U {cl, c, i, '}, s.start})
\Y
(Ve' € s.comps.~canBind(_, ¢, ,c) = s’ = s)

If thereis more than one candidatefor ¢’ thentherecould be a
setof possibleaddition functionseachcapableof performingthe
appropriateoperation.In orderfor the systemto be deterministic,
so that behaiour holds no surpriseswe needto choosea single
additionfunctionanduseit. In section3.3we shov how to dothis.

3.2 Extendingthe Modelwith Cardinality Con-

straints

In the model describedso far, the numberof pluginsthatcanbe
boundto a particularinterfacesimultaneouslys not prescribed A
giveninterfacemay have ary numberof classedboundto it. This
is not alwayswhatis required. Sometimeghe numberof classes
that canbe boundto an interfaceis fixed. Perhapdor a specific
interfaceonly oneclassshouldbeboundto it. At theotherextreme
an interface may let ary numberof classese boundto it. For
this modelthe numberswill be definedto be the naturalnumbers
(including 0) extendedwith aninfinite number

3In afinite Alloy modela naturalnumberargerthanthe scopefor
which the modelis analysedwill have the sameeffect on binding
asaninfinite numbemwould.

DEFINITION 7. Thenumbes A are definedas:

N = Nat U {oo}

Interfacesneedto be extendedwith the numberof classeghatcan
beboundto them.

DEFINITION 8. Anuminterfaceni : N7 is definedas:

ni={i:Z,n: N}

Numinterfacesneedto replacenterfaceghroughouthedefinitions
andin theNo ORPHANS property Moreimportantly thedefinition
of add needsto be changedo take the numberinginto account.
Firstly, a classcanonly be boundto aninterfaceif the numberas-
sociatedwith thatinterfaceis notzero. Secondlywhenanew com-
ponentis added the numberassociatedavith the relevantinterface
shouldbedecremented.

DEFINITION 9 (dec).

dec: (C,NI) — C

{ cpess,
{c.holes \ (¢, n)
dec(c, (i,m)) = u(i,n —1)}
ifn#0
c ifn=0

DEFINITION 10 (ADDITION FUNCTIONS).

Afunctionadd : (§,C) — S is anadditionfunctioniff

add(s,c) =s' =
(3" € s.comps.A(i,n) : NZ.3cl : CL.canBind(cl, ¢, i,c’)
= s ={ s.comps\ {c'}U{dec(c, (4,n))}U{c},
s.bindings U {cl, ¢, %, c'},
s.start})
\
(V' € s.comps.mcanBind(_, ¢, _,c) = s’ = s)

Figure5 wasproducedby the Alloy modelin the Appendix. This
is the Alloy versionof our modelincluding numbers. The figure
shavs anapplicationextendedby a chainof componentsasin the
secondxamplein Figurel. Wheren : 0 appearsn the diagramit
meanghatno moreclasse€anbeboundto this interfaceandn : 2
meanghattwo moreclassesanbe boundto thisinterface.

3.3 Removing the Nondeterminism

Thefinal stepin producinga modelthatis suitablefor implementa-
tionistoremorethenondeterminisncausedy nothaving aunique
additionfunction. We needsomehw to only bind to the bestcom-

ponentif thereis a choiceof severalcomponentso which the new

plugin couldbebound.

Only the designerof the plugin will know, giventwo components
thatit is possibleto plug in to, which would be the bestchoice.
We needa function prefer, which the plugin developercanimple-
mentsayingfor every suitablepair of componentswhich of the
two componentshouldbeboundto. If thedeveloperdoesnotcare
(it doesnot matterwhich componeng pluginis connectedo) then
they do not needto specifya preferfunction, andthe binding will
happemon-deterministicallyasin the previous case.

DEFINITION 11 (prefer).
prefer : (C,C,C) — C

. / .
prefer(addc, this, that) = { this developer's choice

that developer’s choice

sud that for eath addc € C prefer inducesa total order on the
bindingcandidates.

We next find the setof componentshata given componentould
possiblybeboundto.

DEFINITION 12 (match).
match : (§,C) — P(C)
match(s,c) = {c' | ¢' € s.comps.3cl : CL.3(,n) : NT.
canBind(cl, ¢, i,c')}

Given prefer we canfind the bestcomponentamongstall those
thatarepossible(match), to bind the new pluginto.

DEFINITION 13 (best).
best: (§,C) — C
best(s,c) =c = Vc" € match(s,c).
(" #)= (' = prefer(c,c, "))

Given best, we cannow rewrite add sothatit is deterministic. If

thereis no componento bind to the nev componenthenthe sys-
temwithout the pluginis returned.If thereis oneor morecompo-
nentsthatcanbe boundthenthe bestoneis chosen.

DEFINITION 14 (add).

add: (5,0) — 8

{ s.comps\ {c'} U{dec(c, (i,m))} U{c}},
s.bindings U {cl, ¢, 4,c'},

s.start
add(s,c) = } if pre
s otherwise
where pre = 3¢’ € s.comps.3(¢,n) : NZ.3cl : CL.

((#)A(n#0)A
canBind(cl, ¢, 4,c') A (¢ = best(s, ¢))

4. DISCUSSION

By writing anAlloy specificatiorincrementallyandusingtheACA
tool to generateexamplesof the systems behaiour at eachstage,
severalsituationsvereuncoreredwherewe hadnotconstrainedhe
specificatiorstrictly enoughresultingin undesirabldehaiour.

Initially we had not explicitly statedthat plugins cannotfill their

own holes. The analysemproducedan examplewhereonecompo-
nenthada hole andalsoa matchingpey which wasboundto the

hole. This sparled a discussiorasto whethersuchbehaiour was
desirableor not. As theintentionof holesis thatthey provide ex-

tensionpointswhereothercomponentganbe bound,we addeda

constraintto the modelthat the two componentsonnectedy a

binding mustnot be the samecomponent. In this way, working

with a formal specificationand an analysistool led us to discuss
issueghatwe hadnot consideredvhenworking with ourinformal

model.

Anothersituationthatcameup early on, wasonein which several
separatggroupsof componentavere produced. Eachgroupwas
connectednternally but not connectedo the othergroups.As ex-
ecutionstartsin the first componentonly thosecomponentghat
aretransitively connectedo the startingcomponentvill extendthe
baseapplication. We thereforeamendedhe No ORPHANS prop-
erty, sothattherecanbe no componentsn the systemthat do not
have atransitive link backto the startcomponent.

In the modelwe have presentechere, we have assumedhat the
languagen which pluginsareimplementedwill bein the style of

Jaraor C#wheretheinterfacesmplementedy a classareexplic-

ity named,andmatchedby name. Thereforein the modela class
canjustcontaina setof interfaceswhich it implementsratherthan
usmodellingall of the methodsn the classandthe interface. We
assumehatthe codein pluginshaspassedhrougha compilerand
soary classthatsaysit implementsaninterfacedoesin factdefine
thenecessarynethods.

If we wantedto modeltheimplementatiorof pluginsin alanguage
with structuraltyping, whereimplementednterfacesare not ex-
plicitly namedput classesandinterfacesarematchedasednthe
methodsthatthey contain,we could simply changethe definitions
of classesand interfaces,and write a propertyi npl enent s to
checkoneagainsthe other Otherwisethe behaiour of the model
andthe systemshouldbe unafected.

5. RELATED WORK

There are several systemscurrently in existencethat use plugin
componentsas an extensionmechanism.Java Applets [1] allow
codeto be downloadeddynamicallyandrunin a Jasa-enabledveb
browser The systemis not particularlyflexible, asall appletshave
to have bederivedfrom aparticularsuperclassandthesystencan-
not be usedfor extendingapplicationdn general.

The Eclipseplatform for IDEs [13] usespluginsto allow for the
additionof extra functionality However, pluginsareonly detected
on start-upandcannotbe addedto the systemwhile it is running.

Thework describedby Mayeron Lightweight Application Devel-
opmen{12] involvesatechniquéor usingpluginswith avarietyof
applicationsput only dealswith connectingextensionddirectly to
the mainapplicationratherthanthe morecomplex configurations
thatwe consider

The PluggableComponenji6] architecturefeaturesa registry to

managethe differenttypesof PluggableComponenfThe registry

is usedby a configurationtool to provide a list of availablecom-

ponentghatadministratorg£anuseto configuretheir applications,
so configurationis humandriven, whereour approactaimsat au-

tomatic configurationwithout total knowvledge of the system. As

with Applets,all PluggableComponengsederivedfrom the Plug-

gableComponeriiaseclass/imiting flexibility of whatcanbeused
asaplugin.

Therehave beenvariousattemptsat formalisingcomponenbased
systemsfor instanceJacksonand Sullivan’s modelling of COM
in Alloy [10]. The PACC groupat the SEI have beenworking on
PredictionEnabledComponenfTechnologiePECT[17]). Their
work aimsto enablethe predictionof propertiesof compositions
of componentsuchaslateng, andto constrainthe assemblyof
systemso configurationsvherecertainpropertieshold.

6. CONCLUSIONS

We have presenteca modelfor a systemof plugin components.
Developing andformalisingthe model causedusto considerses-
eralissuesrelatingto what sortsof behaiours andconfigurations
of pluginsshouldandshouldnotbeallowed. Usingthe Alloy anal-
yserhelpedus by allowing usto visualisedifferentconfigurations
that could occurwith our currentmodel. This helpedusto make
designdecisionsandrefinethe modelfurther

We have implementeda framework in Javathatusesthe modelde-
scribedhere,and usedit to build several applicationsthat canbe
configuredand extendedusing plugin technology Details of the
implementatiorcanbe foundin [3].

In [14] Oreizyetal identify threetypesof architecturathangehat
aredesirableat runtime: componentddition,componentemoval
andcomponenteplacement.n the future we hopeto extendthe
modelpresentedereto cover all of thesecasesandto implement
suchasystem.

7. ACKNOWLEDGMENTS

We gratefullyacknavledgethe supportof the EuropeariJnion un-
der grant STATUS (IST-2001-32298).We would alsolike to ac-
knowledgethe SLURP group at Imperial College London, espe-
cially SophiaDrossopoulowandMatthev Smithfor their helpwith

theformal model,andMatthev againfor his helpin producingthe
diagramghatappeain this paper

8. REFERENCES

[1] Applets.Technicalreport,SunMicrosystemsinc.,
java.sun.com/applets1995-2003.

[2] C.SzyperskiComponensoftwae: BeyondObject-Oriented
Programming Addison-Wesley PubCo, 1997.

[3] R.Chatley, S.EisenbachandJ. Magee.PainlessPlugins.
Technicalreport,Imperial College London,
www.doc.ic.ac.uk/tbc/writings/pp.pdf2003.

[4] D. Jackson|. Schechterandl. ShlyakhterAlcoa: the Alloy
Constaint Analyzer pagesr30—733 ACM Press|imerick,
Ireland,May 2000.

[5] M. Dmitriev. HotSwap Client Tool. Technicalreport,Sun
Microsystems|nc.,
www.experimentalstifcom/Technologies/
HotSwapTool/index.html, 2002-2003.

[6] E.GammaR. Helm, R. JohnsonJohnVlissides.Design
Patterns: Elementf ReusabléObject-OrientedSoftwae.
Addison-Weésley PubCo, 1995.

[7] P. S.G.Bierman,M. Hicks andG. Stoyle. Formalising
dynamicsoftwareupdating.In Secondnternational
Workshopon UnanticipatedSoftwae Evolutionat ETAPS
‘03, 2003.

[8] D. Garlan,J.Kramer andA. Wolf, editors.Proc. of the First
ACM SIFGOSFTWbrkshopon Self-HealingSystemsACM
PressNovember2002.

[9] D.JacksonMicromodelsof Software: Lightweight
Modelling andAnalysiswith Alloy. Technicalreport,M.I.T.,
sdg.lcs.mit.edudng/,February2002.

[10] D. JacksorandK. Sullivan.COM Revisited: Tool Assisted
Modelling andAnalysisof SoftwareStructuresin In proc.
ACM SIGSOFTConf Foundationsof Softwae Engineering
2000.

[11] J.KramerandJ.Magee.Theevolving philosophergroblem:
DynamicchangemanagementEEE TSE
16(11):1293-1308November1990.

[12] J.Mayer, I. Melzer, andF. SchweiggertLightweight
plug-in-basedpplicationdevelopment 2002.

[13] ObjectTechnologyinternational)nc. EclipsePlatform
TechnicalOverview. Technicalreport,IBM,
www.eclipse.og/whitepapers/eclipseverview.pdf, July
2001.

[14] P. Oriezy N. Medvidovic, andR. Taylor. Architecture-based
runtimesoftwareevolution. In ICSE’98, 1998.

[15] M. Oriol. Luckyj: anasynchronousvolution platformfor
component-baseapplicationsln Secondnternational
Workshopon UnanticipatedSoftwae Evolutionat ETAPS
‘03, 2003.

[16] M. Volter. PluggableComponent A Patternfor Interactve
SystemConfigurationin EuroPLoP’99, 1999.

[17] K. C.Wallnau.A technologyfor predictableassemblyfrom
certifiablecomponentgpacc).Technicalreport,Software
Engineeringnsitute,
http://www.sei.cmu.edu/pacc/publications.hti2003.

