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ABSTRACT
Using pluginsasa mechanismfor extendingapplicationsto pro-
vide extra functionality is appealing,but currentimplementations
arelimited in scope.We have designeda framework to allow the
constructionof flexible andcomplex systemsfrom plugin compo-
nents. In this paperwe describehow the useof modelling tech-
niqueshelpedin the exploration of designissuesand refine our
ideasbefore implementingthem. We presentboth an informal
modelandaformalspecificationproducedusingAlloy. Alloy’sas-
sociatedtoolsallowedusto analysetheplugin system’s behaviour
statically.
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1. INTRODUCTION
Maintenanceis a very importantpartof thesoftwaredevelopment
process.Almost all softwarewill needto go throughsomeform of
evolution over thecourseof its lifetime to keeppacewith changes
in requirementsandto fix bugsandproblemswith thesoftwareas
they arediscovered.

Traditionally, performingupgrades,fixesor reconfigurationson a
software systemhasrequiredeither recompilationof the source
codeoratleaststoppingandrestartingthesystem.Highavailability
andsafetycritical systemshavehighcostsandrisksassociatedwith
shuttingthemdown for any periodof time[14]. In othersituations,
althoughcontinuousavailability maynotbesafetyor businesscrit-
ical, it is simply inconvenientto interrupttheexecutionof a piece
of softwarein orderto performanupgrade.

Unanticipatedsoftware evolution tries to allow for the evolution
of systemsin responseto changesin requirementsthat werenot
known at the initial designtime. Therehave beena numberof
attemptsatsolvingtheseproblemsatthelevelsof evolving methods
andclasses[5, 7], components[11] andservices[15]. In thispaper
we consideranapproachto softwareevolution at thearchitectural
level, in termsof plugin components.

We believe thatit is possibleto engineera generalisedandflexible
pluginarchitecturewhichwill allow applicationstobeextendeddy-
namicallyat runtime.Herewepresentamodelof how components
may be assembledin suchan architecturebasedon the interfaces
that they present. This modelwill be usedat run-timeby a plu-
gin framework to determinetheconnectionsthatcanandshouldbe
madebetweenplugins(our implementationof sucha framework is
detailedin [3]).

Thebenefitsof building softwareoutof a numberof moduleshave
long beenrecognised.Encapsulatingcertainfunctionality in mod-
ules and exposingan interfaceevolved into componentoriented
softwaredevelopment[2]. Componentscanbecombinedto create
systems.An importantdifferencebetweenplugin basedarchitec-
turesandothercomponentbasedarchitecturesis that pluginsare
optionalratherthanrequiredcomponents.Thesystemshouldrun
regardlessof whetheror not plugin componentshave beenadded,
but offer varyingdegreesof functionalitydependingon whatplug-
insarepresent.Pluginscanbeusedto addressthefollowing issues:

� theneedto extendthefunctionalityof a system,� thedecompositionof largesystemssothatonly thesoftware
requiredin a particularsituationis loaded,� the upgradingof long-runningapplicationswithout restart-
ing,� incorporatingextensionsdevelopedby third parties.

Pluginshave previously beenusedto addresseachof thesedif-
ferentsituationsindividually, but the architecturesdesignedhave
generallybeenquitespecificallytargetedandthereforelimited. In
existingsystems,eitherthereareconstraintsonwhatcanbeadded,
or creatingextensionsrequiresalot of work onthebehalfof thede-
veloper, for examplewriting architecturaldefinitionsthatdescribe
how componentscanbecombined[13]. Webelieve thatit is possi-
ble to engineera moregeneralisedandflexible plugin architecture
not requiringtheconnectionsbetweencomponentsto beexplicitly
stated.

Herewedescribehow formal specificationtechniqueshelpedusin
developingageneralisedpluginmodelthatcanbeusedto dealwith
any of thesituationsdescribedabove. Unlike otherplugin models
(for examplethat usedby Eclipe [13]), in our modelcomponents
arematchedpurelybasedon informationthatis availablefrom the
code,ratherthanusingmeta-datasuchasan IDL description. In
the remainderof thepaperwe presentour modelboth informally,
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Figure1: Somepossibleconfigurationsof plugins

basedon a familiar analogy, and formally usingthe specification
languageAlloy.

2. AN INFORMAL MODEL
We think of theway thatcomponentsfit togetherin a plugin archi-
tectureasbeingsimilar to theway thatpiecesof a jigsaw puzzlefit
together. As long asa jigsaw piecehastheright shapedpeg, it can
connectto anotherpiecethathasa correspondinghole.

Themainapplicationprovidesanumberof holes,into whichcom-
ponentsproviding extrafunctionalitycanplug. Pluginsareoptional
componentscontainingcollectionsof classesandinterfaces. The
holes representan interfaceknown to the main application,and
thepegsrepresentclassesin theplugincomponentsthatimplement
this interface. The interfacedefinesthe signaturesof methodsin
theclass.If anapplicationhasaninterfacethatallows othercom-
ponentsto extendit, anda plugin containsa classthat implements
this interface,a connectioncanbe madebetweenthem. The peg
will fit into thehole.Thissituation,addingcomponentsto acentral
application,is shown in thefirst exampleFigurein 1.

Thinkingaboutpluginsin thisway, it becomesclearthatsomeother
more sophisticatedconfigurationswould be possibleif we allow
plugin componentsto have holesaswell aspegs, i.e. if we allow
pluginsto extendotherpluginsratherthanonly allowing themto
extendthemainapplication.Wecanthenhave chainsof pluginsas
shown in themiddleexamplein Figure1. An exampleof thissitua-
tion mightbeif themainapplicationwereawordprocessor, which
wasextendedby plugging in a graphicseditor, and this graphics
editorwasin turnextendedby pluggingin a new drawing tool.

It is possiblethat a componenthasseveral holesandpegs of dif-
ferentshapes(probablythe mostcommonsituationin traditional
jigsaw puzzles).This canleadto morecomplicatedconfigurations
of components,suchasthoseshown in the rightmostexamplein
Figure1. Suchaconfigurationmightbeusefulin asituationwhere
themainapplicationwas,say, an integrateddevelopmentenviron-
ment,thefirst plugin wasa helpbrowser, andtheseconda debug-
ging tool. Thedebuggingtool plugsinto thethemainapplication,
but alsointo thehelpbrowsersothatit cancontributehelprelevant
to debugging. In this way the help browsercandisplayhelp pro-
vided by all of the differenttools in the IDE, with the help being

storedlocally in eachof theseparatetools. It is clearthatwecannot
representall possibleconfigurationsof pluginsusingthesesimple
planarjigsaw representations,but they provide a usefulmetaphor
for thinking aboutwhatmightbepossible.

If we think onceagainaboutthe first case,thenit seemsthat we
should be able to keep on adding plugins to the applicationas
longasthey implementtheright interface,but theremightbecases
wherewewantto put limits onthenumberof pluginsthatcanbeat-
tached.Thismightbethecasewheneachplugin thatis addedcon-
sumesa resourceheldby themainapplication,of which a limited
quantityis available.Cardinalityconstraintscanalsobeemployed
to constraintheshapesthattheconfigurationcantake.

To seetheeffect of usingcardinalities,considera mainapplication
whichacceptsacertaintypeof plugin,withoutarestrictiononhow
many pluginscanbeadded.If threecompatiblepluginsareadded,
all threewill be loadedandconnectedto thesystem.If, however,
wechangethecardinalityof theinterfaceto be

���
, i.e. any number

upto amaximumof two,aftertwo pluginshavebeenadded,athird
cannotbe. It might be possibleto remove plugin 1 or 2, and to
replaceit with plugin 3, but it is not possibleto plug in all threeat
thesametime. In practicethoughit seemsthatthetwo cardinalities
usedmostoftenwill probablybe

���
and“any number”.

Revisiting thechainingpatternsthatwesaw earlier(seethesecond
examplein Figure 1), but employing cardinalities,we can chain
togethera numberof different componentsof the sametype, by
having eachprovide andacceptonepeg of thesameshape(limit-
ing thenumberof pegsacceptedrequiresa cardinalityconstraint-
seeFigure2). This is almostlike a Decoratorpattern[6] for com-
ponents.A decoratorconformsto theinterfaceof thecomponentit
decoratessothatit addsfunctionalitybut its presenceis transparent
to thecomponent’s clients.Sucha situationmight beusefulif, for
instance,we wantedto chaintogethervideofilters, eachof which
took a videostreamasaninput andprovidedanotherstreamasan
output.Eachfilter couldperformadifferenttransformation(for ex-
ampleconvertingtheimageto blackandwhite,or invertingit) but
thecomponentscouldbecombinedin any order, regardlessof the
numberin thechain. Pluginswould allow this configurationto be
changeddynamicallyover time.
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Figure2: Chaining with cardinality constraints

It is our aim to provide the describedplugin architecturesin self-
assemblingsystems[8]. It shouldbe possibleto introducenew
componentsover time. For eachadditionalcomponentthesystem
shouldmake connectionsto join it to the existing systemin ac-
cordancewith its acceptedandprovided interfaces. It shouldnot
be necessaryfor the useror developer to provide extra informa-
tion abouthow or wherethe componentshouldbe connected,as
they may not have total informationaboutthe currentconfigura-
tion, or they mayjust wantto delegateresponsibilityfor managing
theconfigurationto thesystemitself. Thepluginframework should
be ableto assemblethe componentsaccordingto the typesof the
classesthey contain.

Figure 3 shows a possibleconfigurationof a video replay appli-
cation. The main applicationdisplaysvideo streamswhich are
suppliedby plugin components.Themixer componentmixestwo
video streamsinto one,so canbe usedto addsubtitlesto a film.
In thefigurea mixer anda setof subtitleshave beenaddedto the
application,andafilm sourceis aboutto beadded.Thefilm source
couldconnecteitherto themixer or directly to thevideoplayer. In
the first case,the subtitleswill be appliedto the film, in the sec-
ondcasethefilm andthesubtitleswill bedisplayedseparately. We
would like to be able to ensurethat the behaviour desiredby the
provider of thefilm componentis implementedor at very leastto
predictwhat will happenin this case. We needto know that the
samething will happenif the samecomponentsarecombinedon
differentoccasions.

It is desirablethatthebehaviour of self-assemblingsystemscanbe
madeto bedeterministic:it shouldbepossibleto determinewhat
connectionswill be madewhena certaincomponentis addedto
a certainconfiguration. To ensurethat this is the case,provision
needsto bemadefor definingastrategy to decidebetweendifferent
possiblebindingsin a predictableway. The techniquewe usefor
this is to allow strategies for decidingbetweendifferentpossible
bindingsto beprovidedin theform of preferencefunctionswritten
by plugindevelopers.

3. A FORMAL MODEL
Beforeimplementinga framework to supportapplicationsthatare
extensiblewith plugins, we developeda formal specificationfor
the systemin Alloy [9]. Alloy is a lightweight notationthat sup-
portsthedescriptionof systemsthathaverelationalstructures.The
systemsthatwe wish to describeareconcernedwith setsof linked
components,so Alloy is a particularlyappropriatelanguage.The
notationallows us to write any first-orderlogical expressionplus
transitiveclosure.In additionto providing languageconstructsthat
fit our domain,Alloy hastheadvantagethatspecificationsareable
to be analysedautomatically. Analysisis supportedby, theAlloy
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�

Figure3: Non-determinism

ConstrainAnalyser(ACA) [4]. This tool allows us to checkour
Alloy modelsfor consistency and to generateexamplesituations
which we maynot have considered.Uncovering thepossibilityof
suchunexpectedbehaviour early in the developmentprocessal-
lowsusto refinethespecificationto dealwith it, ratherthanhaving
to do muchmoreexpensive maintenance,aswould be the caseif
problemswerediscoveredafterimplementation.

UsingAlloy allows usto representformally theway in which plu-
gin componentscan fit together, and what happenswhen a new
componentis addedto the system.In thecasethatwe have writ-
ten inconsistentconstraints,the analyserwill report that it could
not generateanexamplethatsatisfiestheconstraintsthatwe have
specified.

The ACA tool provides a visualiserwhich will display example
structuresgraphically. This representationis easyto interpret.We
canseehow the componentshave beenjoined togetherto form a
system.Thefiguresin this paperweregeneratedby this visualisa-
tion tool (with minor handeditingof labelsto make theexamples
easierto understand).Thevisualisationtool is quiteflexible,allow-
ing us to omit partsof themodelandto show labelseitherwithin
an objector with an arrow from the object. In Figure4 we have
usedbothtechniques,purelyfor clarity.

In thetext of thispaperwepresentthemodelin first orderlogic for
readability, andagainin Alloy in theAppendix.

Oneof theideasdescribedin theprevioussectionis that thenum-
ber of eachtype of plugin componentallowed may be explicitly
defined.This is quiteacomplicatedpropertyandsowefirst model
pluginswithout it andthenextendthemodelto includecardinality
constraints.

3.1 A basicmodel
Theartifactswemodelcouldbecreatedby acompilerfor anobject
orientedlanguagewith nameequivalence.Sothey couldbecreated
by a Java or C# compiler.

Classesaredefinedin termsof the interfacesthey implementand
whetheror not they are �
	���
�������
 . The type interface� is atomic.1

Weusethenotation‘ � ’ to mean��	���
�������
 mayoptionallybepresent
1For a declaredtype � , ����� and ���
� will beusedinterchange-
ably.
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in a givenclass.As they have alreadybeensuccessfullycompiled
we know thatclassesmustimplementthe interfacesthey saythey
implement.

DEFINITION 1. A class�! "�$#�% is definedas:�� '&)(�*,+.-
/ 0�+10�23
4�5�$687,�59�:;�
	���
�������
;�<�
=>�4?�@BADCFE
Components# arejust setsof classesandsetsof interfaces.The
classesconstitutewhat thecomponentprovidesandthe interfaces
arewhatthecomponentcanaccept.2

DEFINITION 2. A component�G��# is definedas:�H&I(
-$0�J$���$687K#�%L9�:!M�NO/ 0��P�Q687,�59;E
Componentsneedto beconnectedor boundtogether. Bindings R
connectclassesto interfaces.Thecomponentcontainingtheinter-
facehasto be different from the componentcontainingthe class,
sothatcomponentscannotplug in to themselves.Theneedfor this
constraintwasnot originally apparent.Consideringexamplespro-
ducedby theanalyserthatdid not follow this constraintcausedus
to addit to themodel(seeSection4 for morediscussion).

DEFINITION 3. A binding SG�$R is definedas:S�&I(Q-Q0�JT��#�%U:4
4NV�$#W:!M�NX/ 0G�3��:4Y��ZNX+[�$#>E
such that:7K
�N]\&^Y��ZNO+_9'`a74-Q0�Jb�c
4NXd,-Q0�J��e9'`a74M�NO/ 0G�fY��ZNO+gd,M�NO/ 0��;9

A Systemh consistsof a setof components,a setof bindingsbe-
tweeninterfacesandclassesof thecomponentsanda specialcom-
ponent,designated�i
j�$�,
 . The ��
j�$�,
 componentmust containat
leastoneinterfaceor therewould be no way of ever extendinga
systemcontainingit asthefirst component.All othercomponents
mustcontainsomeclassesin orderthatthey canprovide someex-
tra functionality to thesystem.An interfacecannotbeboundto a
givenclassmorethanonce(thesameclassin adifferentcomponent
is takento beadifferentclass).
2In theimplementationof thismodel,componentsalsoincludesets
of resources,but thesewould addnothingto ourmodelsowehave
omittedthem.

DEFINITION 4. A systemk_�$h is definedas:kG&)(���NX+.-��H�$687K#'9�:�	$*,2�lX*m2�J$�5�$687nRP9�:4��
j�$�,
P��#>E
such that:��
4�$�,
P����NX+.-��o SG�QRHdZ7n��
j�$�,
5&�S�d Y��ZNX+<9qpr7tsu��NO+.-��5& � 9v �G����NX+.-���dZ7n��d,-Q0�J$�.\&�wUpT�U&x�i
j�$�,
;9v S�y!:jS!zG�QRHd�7j7j7nS�y3d Y��ZNO+x&�S!z�d Y��ZNO+_9'`r7nS�y!d,M�NO/ 0H&xS!z�d,M�NO/ 039j`7nS�y!d 
4Ng&�S!z�d 
�N
9q`{7nS�y�dZ-$0�JV&�S3z�d,-$0�JX9j9}|~7nS�yP&�S!z39j9

Figure4 shows a systemwith an applicationanda singleplugin.
In this systemthe startingcomponentis App, which hasa single
interfacewith onemethodheader. Pluginis addedanda bindingis
formedfrom App to PluginbecausePlugincontainsClass,which
implementsInterface.

Classesand interfacescannotexist in isolation. Every classand
every interfaceis associatedwith acomponent.Similarly, bindings
andcomponentsarealwaysassociatedwith systemsandall com-
ponents(with thepossibleexceptionof whenasystemcontainsex-
actly onecomponent)areboundto othercomponents.Thesecon-
straintswerenot thoughtaboutexplicitly beforewe startedmod-
elling ourproposedsystems.Eachpropertyhasto bebuilt into any
framework that implementsour model so that we createsystems
thatbehave in theway predictedby ourmodel.

PROPERTY 1 (NO ORPHANS IN ANY k_�$h ).v @��!�Hd o �_��#WdZ7n@��c��d,M�NO/ 0��;9v �! "��#�%1d o �_��#WdZ7n�! "�f��d,-$0�J$��9v SG�QRHd o k_�$hGdZ7nSU�ak$d,	$*,2�lX*,2�J$��9v �G��k$d ��NO+.-��!dZ7 o S1�QRHd �U&�S�d 
�NUpf�H&�S�d Yi��NX+.9pP7tsbk$d ��NO+.-��L& � 9
The additionof a plugin componentto an existing systemneeds
to be modelled. A componentcanonly be addedif it hasa class
thatis not abstractthatimplementsaninterfacein theexistingsys-
tem.But beforewe look ata functionto adda new componentto a
system,we first will needto testwhethertwo componentswith an
associatedinterfaceandclasscanbeboundatall.

DEFINITION 5 ( ����2��>*,2�l ).����2��>*,2�l���#�%^��#{�u����#����2��>*,2�l�7n�! i:;���t:;@j:j�!9��u|�7n@��c��d,M�NO/ 0��;9q`r7n�! "�f���tdZ-$0�J��!d 9j`7n���L\&��39'`r7B�
	���
�������
4��>�� n9>`T@5�f�! id *,+.-
/ 0�+10�23
��
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Figure5: Several componentsforming a system

If a componentcanbe boundto anothercomponentin a system,
thenit canbeaddedto thatsystem.Otherwisetrying to addsucha
componentwill have no effecton thesystem.

DEFINITION 6 (ADDITION FUNCTIONS).

A function ��l
lu��7Kh1:�#'9L�D��h is an additionfunctioniff��l
lO7tkQ:4�39}&�k � |7 o � � �ak$d ��NX+g-���d o @5�!�Hd o �� "��#�%1d �!�
2��>*,2�lF7n�! t:;��:j@j:j� � 9|�k � &)(�k$d ��NX+g-��"�](3��E
:�k$d,	$*,2�lX*,2�J�����(3�! i:;��:j@j:j� � E
:�k$d ��
j�$�,
eE�9p7 v � � �ak$d ��NX+g-���d �W�!�
2��>*,2�l�7 :j� � : :j�39�|�k � &�k�9
If thereis more than one candidatefor � � then therecould be a
setof possibleadditionfunctionseachcapableof performingthe
appropriateoperation.In orderfor thesystemto bedeterministic,
so that behaviour holdsno surprises,we needto choosea single
additionfunctionanduseit. In section3.3weshow how to dothis.

3.2 ExtendingtheModel with Cardinality Con-
straints

In the modeldescribedso far, the numberof plugins that canbe
boundto a particularinterfacesimultaneouslyis not prescribed.A
given interfacemayhave any numberof classesboundto it. This
is not alwayswhat is required. Sometimesthe numberof classes
that canbe boundto an interfaceis fixed. Perhapsfor a specific
interfaceonly oneclassshouldbeboundto it. At theotherextreme
an interfacemay let any numberof classesbe boundto it. For
this modelthe numberswill be definedto be the naturalnumbers
(including0) extendedwith aninfinite number.3

3In a finite Alloy modela naturalnumberlargerthanthescopefor
which themodelis analysedwill have thesameeffect on binding
asaninfinite numberwould.

DEFINITION 7. Thenumbers � are definedas:

��&��a���'�c(���E
Interfacesneedto beextendedwith thenumberof classesthatcan
beboundto them.

DEFINITION 8. A numinterfaceA�@��3�.� is definedas:

Aq@"&)(�@5�!�H:;Aa�3�xE
Numinterfacesneedto replaceinterfacesthroughoutthedefinitions
andin theNO ORPHANSproperty. Moreimportantly, thedefinition
of ��l
l needsto be changedto take the numberinginto account.
Firstly, a classcanonly beboundto aninterfaceif thenumberas-
sociatedwith thatinterfaceis notzero.Secondly, whenanew com-
ponentis added,thenumberassociatedwith therelevant interface
shouldbedecremented.

DEFINITION 9 ( l
0�� ).
l
0!�G�F7K#W:B�.�L9P�F��#
l
0!�$7n��:37n@j:;A'9j9�&

����� ����
(���d,-Q0�J��!:(3��d,M�NO/ 0��"�G7n@j:;A'9�P7n@j:jAc� � 9;EE �¡ �A¢\&x£� �¡ �A]&x£



DEFINITION 10 (ADDITION FUNCTIONS).

A function ��l
lb�O7KhG:�#'9L���¤h is anadditionfunctioniff��l
l�7tk$:4�39�&�k � |7 o � � �]k$d ��NO+.-��!d o 7n@j:jA'9����.�Ud o �� "��#�%1d �!�
2��>*,2�lF7n�! t:;��:j@j:j� � 9|�k � &)(¥k$d ��NX+g-��>�U(�� � EP�](�l
0!�Q7n� � :37n@j:;A'9j9;EP�](3��E
:k$d,	$*,2�lX*,2�J��q�](3�! i:;��:j@j:;� � E
:k$d ��
4�$�Z
;E�9p7 v � � �]k$d ��NO+.-��!d �}����2��>*,2�lF7 :j� � : :j�39}|¦k � &)k�9
Figure5 wasproducedby theAlloy modelin theAppendix. This
is the Alloy versionof our model including numbers.The figure
shows anapplicationextendedby a chainof components,asin the
secondexamplein Figure1. Wheren : 0 appearsin thediagramit
meansthatnomoreclassescanbeboundto this interfaceandn : 2
meansthattwo moreclassescanbeboundto this interface.

3.3 Removing the Nondeterminism
Thefinal stepin producingamodelthatis suitablefor implementa-
tion is to removethenondeterminismcausedbynothavingaunique
additionfunction.Weneedsomehow to only bind to thebestcom-
ponentif thereis a choiceof severalcomponentsto which thenew
plugin couldbebound.

Only thedesignerof theplugin will know, given two components
that it is possibleto plug in to, which would be the bestchoice.
We needa function -$��0�YK0�� , which theplugin developercanimple-
ment sayingfor every suitablepair of components,which of the
two componentsshouldbeboundto. If thedeveloperdoesnotcare
(it doesnotmatterwhichcomponentaplugin is connectedto) then
they do not needto specifya preferfunction,andthebindingwill
happennon-deterministicallyasin thepreviouscase.

DEFINITION 11 ( -���0�Yn0�� ).-��¡0eYn0��"�F7K#W:4#W:4#'9L���¤#-��¡0eYn0���7n§X¨
¨
��:4�j©O@�k$:4�4©F§
�;9W&«ª �j©O@�k�¬O­�®Q­!¯,°$±D­�² ��³"´eµ °$¶ ´ ­�j©O§��·¬O­�®Q­!¯,°$±D­�² � ³"´eµ °$¶ ´ ­
such that for each �Q¸$¸Q¹r��#�-$��0�YK0�� inducesa total order on the
bindingcandidates.

We next find thesetof componentsthata givencomponentcould
possiblybeboundto.

DEFINITION 12 ( +1�3
j��M ).+1��
4��M.��7KhG:i#'9L�D�¤687K#'9+1��
4��M�7tk$:j�39}&)(�� �Wº � � �ak$d ��NO+.-���d o �! "�$#�%Ud o 7n@;:;A'9L�3�.��d����2��>*,2�lX7n�! i:;��:j@j:j� � 9;E
Given -$��0�YK0�� we can find the bestcomponent,amongstall those
thatarepossible( +1�3
j��M ), to bind thenew plugin to.

DEFINITION 13 ( 	$0���
 ).	Q0���
P��7Kh1:�#'9L���¤#	$0���
�7tk$:j�39}&�����&q| v ��� �>�r+G�3
j��M�7tkQ:��39�d7n��� �5\&x���n9}&q|~7n���D&»-���0�Yn0���7n��:j���t:4��� �K9j9

Given 	$0���
 , we cannow rewrite ��l
l so that it is deterministic.If
thereis no componentto bind to thenew componentthenthesys-
temwithout theplugin is returned.If thereis oneor morecompo-
nentsthatcanbeboundthenthebestoneis chosen.

DEFINITION 14 ( ��l
l ).��l
lb��7Kh1:�#'9L���¤h
��l
l�7tk$:4�!95&

������� ������
(¥k$d ��NO+.-��>�H(�� � E��](�l
0��$7n� � :37n@j:jA'9j9;EH�c(��3E$E
:k$d,	$*,2�lX*,2�J$�D��(��� i:j��:;@j:j���BEQ:k$d ��
j�$�,
E �¡ >¼�?$½k ¾�¿!À>Á�Â�Ãb�KÄ!ÁÃ8À'ÁXÂ�ÁP¼F?$½1& o ���>�]kQd ��NX+.-��!d o 7n@j:jA'9��!�g��d o �� W��#�%Hd7j7n���5\&x�!9'`a7nA�\&x£Q9j`�!�
2��>*,2�lF7n�� i:j��:;@j:j� � 9q`r7n� � &[	Q0��i
!7tk$:j�39j9

4. DISCUSSION
By writing anAlloy specificationincrementally, andusingtheACA
tool to generateexamplesof thesystem’s behaviour at eachstage,
severalsituationswereuncoveredwherewehadnotconstrainedthe
specificationstrictly enough,resultingin undesirablebehaviour.

Initially we hadnot explicitly statedthat pluginscannotfill their
own holes.Theanalyserproducedanexamplewhereonecompo-
nenthada hole andalsoa matchingpeg which wasboundto the
hole. This sparkeda discussionasto whethersuchbehaviour was
desirableor not. As the intentionof holesis that they provide ex-
tensionpointswhereothercomponentscanbebound,we addeda
constraintto the model that the two componentsconnectedby a
binding must not be the samecomponent. In this way, working
with a formal specificationandan analysistool led us to discuss
issuesthatwe hadnotconsideredwhenworking with our informal
model.

Anothersituationthatcameup earlyon,wasonein which several
separategroupsof componentswereproduced. Eachgroupwas
connectedinternally, but not connectedto theothergroups.As ex-
ecutionstartsin the first component,only thosecomponentsthat
aretransitively connectedto thestartingcomponentwill extendthe
baseapplication.We thereforeamendedthe NO ORPHANS prop-
erty, so that therecanbeno componentsin thesystemthatdo not
have a transitive link backto thestartcomponent.

In the model we have presentedhere,we have assumedthat the
languagein which pluginsareimplementedwill be in thestyleof
Java or C# wheretheinterfacesimplementedby a classareexplic-
itly named,andmatchedby name.Thereforein themodela class
canjustcontainasetof interfaceswhich it implements,ratherthan
usmodellingall of themethodsin theclassandthe interface.We
assumethatthecodein pluginshaspassedthrougha compilerand
soany classthatsaysit implementsaninterfacedoesin factdefine
thenecessarymethods.

If wewantedto modeltheimplementationof pluginsin a language
with structuraltyping, whereimplementedinterfacesare not ex-
plicitly named,but classesandinterfacesarematchedbasedon the
methodsthat they contain,we couldsimply changethedefinitions
of classesand interfaces,and write a propertyimplements to
checkoneagainsttheother. Otherwisethebehaviour of themodel
andthesystemshouldbeunaffected.



5. RELATED WORK
ThereÅ are several systemscurrently in existencethat useplugin
componentsasan extensionmechanism.Java Applets [1] allow
codeto bedownloadeddynamicallyandrun in aJava-enabledweb
browser. Thesystemis not particularlyflexible, asall appletshave
to havebederivedfrom aparticularsuperclass,andthesystemcan-
notbeusedfor extendingapplicationsin general.

The Eclipseplatform for IDEs [13] usesplugins to allow for the
additionof extra functionality. However, pluginsareonly detected
on start-upandcannotbeaddedto thesystemwhile it is running.

Thework describedby Mayeron LightweightApplicationDevel-
opment[12] involvesatechniquefor usingpluginswith avarietyof
applications,but only dealswith connectingextensionsdirectly to
themainapplication,ratherthanthemorecomplex configurations
thatwe consider.

The PluggableComponent[16] architecturefeaturesa registry to
managethe different typesof PluggableComponent.The registry
is usedby a configurationtool to provide a list of availablecom-
ponentsthatadministratorscanuseto configuretheir applications,
soconfigurationis humandriven,whereour approachaimsat au-
tomaticconfigurationwithout total knowledgeof the system. As
with Applets,all PluggableComponentsarederivedfrom thePlug-
gableComponentbaseclass,limiting flexibility of whatcanbeused
asa plugin.

Therehave beenvariousattemptsat formalisingcomponentbased
systems,for instanceJacksonand Sullivan’s modelling of COM
in Alloy [10]. ThePACC groupat theSEI have beenworking on
PredictionEnabledComponentTechnologies(PECT[17]). Their
work aimsto enablethe predictionof propertiesof compositions
of componentssuchas latency, and to constrainthe assemblyof
systemsto configurationswherecertainpropertieshold.

6. CONCLUSIONS
We have presenteda model for a systemof plugin components.
Developingandformalisingthe modelcausedus to considersev-
eral issuesrelatingto whatsortsof behaviours andconfigurations
of pluginsshouldandshouldnotbeallowed.UsingtheAlloy anal-
yserhelpedusby allowing us to visualisedifferentconfigurations
that could occurwith our currentmodel. This helpedus to make
designdecisionsandrefinethemodelfurther.

We have implementeda framework in Java thatusesthemodelde-
scribedhere,andusedit to build several applicationsthat canbe
configuredandextendedusingplugin technology. Detailsof the
implementationcanbefoundin [3].

In [14] Oreizyetal identify threetypesof architecturalchangethat
aredesirableat runtime: componentaddition,componentremoval
andcomponentreplacement.In the future we hopeto extendthe
modelpresentedhereto cover all of thesecasesandto implement
sucha system.
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