
Programming II
Introduction to Imperative Programming

Susan Eisenbach
susan@imperial.ac.uk

With thanks to Tristan Allwood and Nicolai Stawinoga

120.2

Autumn Term - 2017

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 1 / 220

Introduction

Textbooks - none required

For beginner programmers:

Java Software Solutions: Foundations of Program Design, John Lewis
and William Loftus, Pearson Education, 2012.

For experienced programmers:

Learning the JavaTMLanguage, online at
http://download.oracle.com/javase/tutorial/java/

Thinking in JavaTM, Bruce Eckel, Prentice Hall, 2006.
Effective JavaTMSecond Edition, Joshua Bloch, Addison-Wesley, 2008.
JavaTMPuzzlers: Traps, Pitfalls and Corner Cases, Joshua Bloch, Neal
Gafter, Addison-Wesley, 2005
Java Language Specification, online at
http://docs.oracle.com/javase/specs/

We use Google’s programming style. You can learn about it at
https://google.github.io/styleguide/javaguide.html.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 2 / 220

Introduction

Assessment - two possibilities

For experienced imperative language programmers

next Friday, 17 November, 14.00 – 16.00
sign up at: https://doodle.com/poll/7qb65tf3hhu3ihmq before Thursday
get over 80% and you get full marks for the assessment for imperative Java
get less and there are important things that you still need to learn
aimed at you

advanced programming lectures
extending the optional parts on the ppt exercises (get the most out of your
UTA)

Main test
Thursday, 14 December, 14.00 – 17.00
for all students who have not got over 80% on the 17 November test

Details about the assessment process will be on Piazza.
(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 3 / 220

Introduction

Declarative vs Imperative Languages

Haskell
declarative language
basic unit - the expression
Say ‘what you want’ and the computer works out how to do it.
similar to mathematical functions and “high level” descriptions of algorithms
horses for courses

Java
imperative language
basic unit - the statement
Say ‘what the computer should do’.
similar to a cooking recipe / step by step instructions
An imperative program executes a sequence of instructions that change the
program’s state to reach a desired result.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 4 / 220

http://download.oracle.com/javase/tutorial/java/
http://docs.oracle.com/javase/specs/

Introduction

From Haskell functions to Java methods
Haskell To Java

Haskell
bigger :: Int -> Int -> Int
-- post: returns the larger of two numbers
bigger a b
| a > b = a
| otherwise = b

Java
public static int bigger(int a, int b) {

// post: returns the larger of two numbers
if (a > b) {

return a;
} else {

return b;
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 5 / 220

From Haskell functions to Java methods
Haskell To Java

Haskell
bigger :: Int -> Int -> Int
-- post: returns the larger of two numbers
bigger a b
| a > b = a
| otherwise = b

Java
public static int bigger(int a, int b) {

// post: returns the larger of two numbers
if (a > b) {

return a;
} else {

return b;
}

}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Introduction

From Haskell functions to Java methods

1. Argument Types
2. Arguments
3. Result Type
4. Method body delimited by {}
5. Predicate (test) must be surrounded by ()s
6. Results are returned using the keyword return
7. Statements (e.g. return), must end in a ;
8. Single line comments start with //

Introduction

From Functions To Methods
Calling Other Methods

Haskell
biggest :: Int -> Int -> Int -> Int
-- post: returns the largest of the 3 values
biggest a b c = bigger a (bigger b c)

Java
public static int biggest(int a, int b, int c) {

// post: returns the largest of the 3 values
return bigger(a, bigger(b, c));

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 6 / 220

From Functions To Methods
Calling Other Methods

Haskell
biggest :: Int -> Int -> Int -> Int
-- post: returns the largest of the 3 values
biggest a b c = bigger a (bigger b c)

Java
public static int biggest(int a, int b, int c) {

// post: returns the largest of the 3 values
return bigger(a, bigger(b, c));

}20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Introduction

From Functions To Methods

1. Called method must be followed by ()s
2. Method arguments are inside the ()s

Introduction

Java Library
Collecting methods together

In BigLibrary.java

public class BigLibrary {

public static int bigger(int a, int b) {
// post: returns the larger of two numbers
if (a > b) {

return a;
} else {

return b;
}

}

public static int biggest(int a, int b, int c) {
// post: returns the largest of the 3 values
return bigger(a, bigger(b, c));

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 7 / 220

Java Library
Collecting methods together

In BigLibrary.java

public class BigLibrary {

public static int bigger(int a, int b) {
// post: returns the larger of two numbers
if (a > b) {

return a;
} else {

return b;
}

}

public static int biggest(int a, int b, int c) {
// post: returns the largest of the 3 values
return bigger(a, bigger(b, c));

}
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Introduction

Java Library

1. Class name matches file name. Java source files end in .java
2. Class is public so it can be used by other Libraries and Programs
3. Methods are public so they can be called by other Libraries and Programs

Introduction

Java Program
A Program expresses precisely what the computer should do

In Big.java

public class Big {

/* Susan Eisenbach
* Prints the largest of 3 typed in numbers
*/
public static void main(String[] args) {
System.out.print("Type in your 3 numbers -> ");

System.out.println(BigLibrary.biggest(IOUtil.readInt(),
IOUtil.readInt(),
IOUtil.readInt ()));

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 8 / 220

Java Program
A Program expresses precisely what the computer should do

In Big.java

public class Big {

/* Susan Eisenbach
* Prints the largest of 3 typed in numbers
*/
public static void main(String[] args) {
System.out.print("Type in your 3 numbers -> ");

System.out.println(BigLibrary.biggest(IOUtil.readInt(),
IOUtil.readInt(),
IOUtil.readInt ()));

}
}20

17
-1
2-
07

Programming II Introduction to Imperative Programming
Introduction

Java Program

1. Java programs always start in a public static void main(String[] args)
method

2. The return type void means the method doesn’t return anything.
3. Multi line comments start with a /* and finish with a */
4. Acknowledge it is your code
5. You can print out using System.out.print(...) and

System.out.println(...)
6. To use static methods from other classes you need to prefix the method with the

name of the class where they were defined.

Introduction

From your code to running code

Integrated development environments (IDE) make developing code easier.
They help with all sorts of thing such as helping you to remember what the
parameters are for a method you are calling to debugging your code.
We have chosen Intellij IDEA amongst the several available IDEs because it
provides the best support.
However, it does hide much of the process and computer scientists should
know what is actually going on.
You should be able to write and execute Java code without having Intellij
around.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 9 / 220

Introduction

Compile and Run
Actually getting your computer to do something...

> ls
BigLibrary.java Big.java IOUtil.java

> javac *.java

> ls
BigLibrary.class BigLibrary.java
Big.class Big.java
IOUtil.class IOUtil.java

> java -ea Big
Type in your 3 numbers -> 5 78 -23
78

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 10 / 220

Compile and Run
Actually getting your computer to do something...

> ls
BigLibrary.java Big.java IOUtil.java

> javac *.java

> ls
BigLibrary.class BigLibrary.java
Big.class Big.java
IOUtil.class IOUtil.java

> java -ea Big
Type in your 3 numbers -> 5 78 -23
7820

17
-1
2-
07

Programming II Introduction to Imperative Programming
Introduction

Compile and Run

1. javac turns Java source (.java) into compiled class files (.class)
2. java runs a compiled class given its name (without the .class extension)
3. The -ea flag enables assertions, which we will shortly see.

Introduction

Exercise 1

Create a library Util.java with a method absolute which takes an int and
returns the absolute value of the int.
Create a program, Absolute.java which reads in an integer and prints out
the absolute value of that number.

Please make sure you use Google style for your Java programs.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 11 / 220

Introduction

Variable Declarations

Variables are names of storage locations.
They can be of many different types, e.g.

boolean char int double String

They must be declared before they are used:
int j;
double cost;
String firstname;

They can be initialised in the declaration:
int total = 0;
char answer = ’y’;
boolean finish = false;

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 12 / 220

Introduction

The Assignment Statement

Initialisation is a form of assignment.
Assignment gives a variable (named storage location) a value.
Variables can have their values changed (re-assigned) throughout a method.

boolean answer = false;
int total = 0;

total = total + 1;
total = total * 2;
answer = total >= 2;

Haskell doesn’t let you change a variable’s value.
(Haskell’s variables are really identifiers).

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 13 / 220

Introduction

Program with Assignment
An example

BigAssignment.java

public class BigAssignment {

public static void main(String [] args) {
System.out.print("Type in a number -> ");
int in = IOUtil.readInt();
int result = BigLibrary.bigger(in, 2 * in);
System.out.println(result);

System.out.print("Type in another number -> ");
in = IOUtil.readInt();
result = BigLibrary.bigger(in / in, in * 10);
System.out.println(result);

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 14 / 220

Program with Assignment
An example

BigAssignment.java

public class BigAssignment {

public static void main(String [] args) {
System.out.print("Type in a number -> ");
int in = IOUtil.readInt();
int result = BigLibrary.bigger(in, 2 * in);
System.out.println(result);

System.out.print("Type in another number -> ");
in = IOUtil.readInt();
result = BigLibrary.bigger(in / in, in * 10);
System.out.println(result);

}
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Introduction

Program with Assignment

1. Declaring and assigning a variable for the input
2. Declaring and assigning a variable for the result
3. Assigning a new input value
4. Assigning a new result value
5. Don’t need new variables for every subexpression

Introduction

Exercise 2

In Util.java write a method sumOrProduct that takes two int arguments and
creates two variables containing the sum and the product of the arguments.
The method should return the largest number of the two arguments, their
sum and their product. (Make use of BigLibrary if it helps).
Write a program SOP.java that asks the user for one number and prints out
the result of sumOrProduct of that number as both arguments.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 15 / 220

Introduction

Summary
We have seen...

Methods (in Haskell, functions), delimited by {}.
Collecting methods into a library using class.
Statement Terminators - ;.
Conditionals - if (predicate) { ... } else { ... }.
Variables, Declarations, Assignments.
Input and Output.
The main method is special as it is the code that Java executes.
The signature of main is public static void main(String[] args).
Compiling (javac) and running (java -ea) a program.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 16 / 220

Recursive Static Methods

Recursive Static Methods

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 17 / 220

Recursive Static Methods

Revision from Haskell

Define the base case(s).
Define the recursive case(s).

Split the problem into simpler subproblems.
Solve the subproblems.
Combine the results to give the required answer.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 18 / 220

Recursive Static Methods

Haskell Function To Java Method
Greatest Common Divisor

Haskell
divisor :: Int -> Int -> Int
-- pre: the arguments are both > 0
-- post: returns the greatest common divisor
divisor a b | a == b = a

| a > b = divisor b (a - b)
| a < b = divisor a (b - a)

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 19 / 220

Recursive Static Methods

Haskell Function To Java Method
Greatest Common Divisor

Java
public static int divisor(int a, int b) {

assert (a > 0 && b > 0):
"divisor must be given arguments > 0";
// post: returns the greatest common divisor
if (a == b) {

return a;
} else if (a > b) {

return divisor(b, a - b);
} else {

return divisor(a, b - a);
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 20 / 220

Haskell Function To Java Method
Greatest Common Divisor

Java
public static int divisor(int a, int b) {

assert (a > 0 && b > 0):
"divisor must be given arguments > 0";
// post: returns the greatest common divisor
if (a == b) {

return a;
} else if (a > b) {

return divisor(b, a - b);
} else {

return divisor(a, b - a);
}

}20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Recursive Static Methods

Haskell Function To Java Method

1. Multiple conditionals:
if (p1) { ... } else if (p2) { ... } else { ... }

2. Preconditions expressed with assert predicate : "message"

Recursive Static Methods

What does assert do?

assert (a > 0 && b > 0) :
"divisor must be given arguments > 0";

If the predicate is true - continue as normal.
If the predicate is false - stop the program with the an error and the
message.
The : "message" part is optional, but strongly recommended.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 21 / 220

Recursive Static Methods

Exercise 3

Write the following as assert statements

/* pre: n is positive */

/* pre: a is not 0 */

/* pre: x and y are different */

/* pre: calling foo(n) returns false */

/* pre: n is false and m is true ,
or n is true and m is false ,
or a > b */

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 22 / 220

Recursive Static Methods

When should you use an assertion?

If you write a method that expects something special of its arguments then
you need a precondition to state what should be true of the arguments.
Where possible, use an assert to express the precondition.
If the user has given method arguments that meet the precondition, and the
code is correct, then the postcondition of the method will hold.
Postconditions are written as comments at the top of the method using
//post:

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 23 / 220

Recursive Static Methods

Haskell Program To Java Method

Haskell
fact :: Int -> Int
-- pre: n >= 0
-- post: returns n!
fact 0 = 1
fact n = n * fact (n - 1)

Java
public static int fact(int n) {

assert n >= 0 : "factorial: n must be >= 0";
// post: returns n!
if (n == 0) {

return 1;
} else {

return n * fact(n-1);
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 24 / 220

Recursive Static Methods

Java Method To Java Program
First put your algorithmic methods in a suitable library.

RecursiveLib.java

public class RecursiveLib {

public static int divisor(int a, int b) {
... as before ...

}

public static int fact(int n) {
... as before ...

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 25 / 220

Recursive Static Methods

Java Method to Java Program
Create a main method for your program.

DivisorFactorial.java

public class DivisorFactorial {

public static void main(String [] args) {
System.out.print("Input two numbers greater than 0 -> ");
int a = IOUtil.readInt ();
int b = IOUtil.readInt ();

int gcd = RecursiveLib.divisor(a,b);
int result = RecursiveLib.fact(gcd);

System.out.println("The gcd of " + a + " and " + b +
" is " + gcd + ".");

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 26 / 220

Java Method to Java Program
Create a main method for your program.

DivisorFactorial.java

public class DivisorFactorial {

public static void main(String [] args) {
System.out.print("Input two numbers greater than 0 -> ");
int a = IOUtil.readInt ();
int b = IOUtil.readInt ();

int gcd = RecursiveLib.divisor(a,b);
int result = RecursiveLib.fact(gcd);

System.out.println("The gcd of " + a + " and " + b +
" is " + gcd + ".");

}
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Recursive Static Methods

Java Method to Java Program

1. You can glue Strings (and other values onto Strings) with +

Recursive Static Methods

Exercise 4

Simple Haskell Fibonacci

simpleFibonacci :: Int -> Int
simpleFibonacci 0 = 0
simpleFibonacci 1 = 1
simpleFibonacci 2 = 1
simpleFibonacci n = simpleFibonacci (n-1)

+ simpleFibonacci (n-2)

Translate the above Haskell fibonacci function into a Java method.
Write a Java program that asks the user to input a number and prints out
The nth fibonacci number is ...

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 27 / 220

Recursive Static Methods

Helper Functions to Helper Methods

Haskell
epsilon :: Float
epsilon = 0.00001

newtonSqrt :: Float -> Float
-- pre: x >= 0
newtonSqrt x = findSqrt (x / 2)

where
findSqrt :: Float -> Float
findSqrt a | abs (x - a * a) < epsilon = a

| otherwise = findSqrt ((a + x / a) / 2)

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 28 / 220

Recursive Static Methods

Helper Functions to Helper Methods
Java Library in Newton.java

public class Newton {

private static final float EPSILON = 0.00001f;

public static float newtonSqrt(float x) {
assert x >= 0 : "newtonSqrt: x should be >= 0";
return findSqrt(x, x/2);

}

private static float findSqrt(float x, float a) {
if (Math.abs(x - a * a) < EPSILON) {

return a;
} else {

return findSqrt(x, (a + x / a) / 2);
}

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 29 / 220

Helper Functions to Helper Methods
Java Library in Newton.java

public class Newton {

private static final float EPSILON = 0.00001f;

public static float newtonSqrt(float x) {
assert x >= 0 : "newtonSqrt: x should be >= 0";
return findSqrt(x, x/2);

}

private static float findSqrt(float x, float a) {
if (Math.abs(x - a * a) < EPSILON) {

return a;
} else {

return findSqrt(x, (a + x / a) / 2);
}

}
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Recursive Static Methods

Helper Functions to Helper Methods

1. You can’t directly nest methods, so the helper method needs the parameter x as
well as a

2. The helper method is private so it can only be seen by methods inside class
Newton

3. EPSILON is declared as a private constant
4. float literals need to end with an f, otherwise they default to being double
5. The built in Math library has lots of helpful methods, e.g. Math.abs

Recursive Static Methods

Exercise 5

Assume the Util.java library below. What would the Main.java programs do on
the following slides? For each, do they compile and why? If they compile and are
run, what do they print out?

Util.java

public class Util {

public static double twice(double x) {
return add(x,x);

}

private static double add(double x, double y) {
return x + y;

}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 30 / 220

Recursive Static Methods

Main1.java

public class Main1 {
public static void main(String [] args) {

System.out.println(Util.twice (3));
}

}

Main2.java

public class Main2 {
public static void main(String [] args) {

System.out.println(Util.add (4 ,3));
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 31 / 220

Recursive Static Methods

Main3.java

public class Main3 {
private static final double MAGIC = 0.2;

public static void main(String [] args) {
System.out.println(Util.twice(MAGIC));

}
}

Main4.java

public class Main4 {
private static void main(String [] args) {

System.out.println(Math.abs(Util.twice (0.2)));
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 32 / 220

Recursive Static Methods

Main5.java

public class Main5 {
private static final double MAGIC = -0.2;
public static void main(String [] args) {

double addResult = add(MAGIC , Math.abs(MAGIC));
System.out.println(Util.twice(addResult));

}

private static double add(double x, double y) {
return x + y;
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 33 / 220

Recursive Static Methods

Methods Summary

Haskell has functions that return values.
Java has methods that can return values.
Java also has methods that don’t return values.

They only execute code.
Their return type is void.
They frequently consume input and/or produce output.

The starting method of a program must have the signature:
public static void main(String[] args).
Java methods can be recursive. It is not wise to make main recursive.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 34 / 220

Recursive Static Methods

A Calculator Program
An excuse to introduce more syntax...

Description
Write a simple calculator that prompts the user for an operation (+, -, *, /,
negation), one or two numbers as appropriate, and prints out the result.

Stages
1 Presenting a menu to the user, and get their response.
2 Some control flow to work out if we need one or two arguments.
3 Implementations for the two argument operations.
4 Implementation for the one argument operation.
5 A main method to start the program.
6 A class to contain all the methods.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 35 / 220

Recursive Static Methods

A Calculator Program
First, a method to present a menu to the user and to get their response

private static void presentMenu () {
// post: Menu appears on the screen .
System.out.println("Enter 0 to quit");
System.out.println("Enter 1 to add");
System.out.println("Enter 2 to subtract");
System.out.println("Enter 3 to multiply");
System.out.println("Enter 4 to divide");
System.out.println("Enter 5 to negate");

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 36 / 220

Recursive Static Methods

A Calculator Program
Second, a method to work out if we need one or two arguments

private static void processOperation() {

int reply = IOUtil.readInt ();
assert (0 <= reply && reply <= 5):

"A number between 0 and 5 must be entered.";

switch(reply) {
case 0: return;
case 1:
case 2:
case 3:
case 4: processTwoArguments(reply); return;
case 5: processOneArgument(reply);

}
}

*Or an enum type, which we’ll see later.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 37 / 220

A Calculator Program
Second, a method to work out if we need one or two arguments

private static void processOperation() {

int reply = IOUtil.readInt ();
assert (0 <= reply && reply <= 5):

"A number between 0 and 5 must be entered.";

switch(reply) {
case 0: return;
case 1:
case 2:
case 3:
case 4: processTwoArguments(reply); return;
case 5: processOneArgument(reply);

}
}

*Or an enum type, which we’ll see later.

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Recursive Static Methods

A Calculator Program

1. Introducing the switch statement
2. An expression of int, byte, short, char or String type*
3. case value: which case to jump to

Recursive Static Methods

A Calculator Program
Third, implementations for the two argument operations

private static void processTwoArguments(int reply) {
assert (1 <= reply && reply <= 4);
System.out.print("Please enter your two integers -> ");
int x = IOUtil.readInt ();
int y = IOUtil.readInt ();

int result;
String op;

switch (reply) {
case 1: result = x + y; op = " + "; break;
case 2: result = x - y; op = " - "; break;
case 3: result = x * y; op = " * "; break;
case 4: result = x / y; op = " / "; break;
default: assert false: "Should be impossible!"; return;

}
System.out.println(x + op + y + " = " + result);

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 38 / 220

A Calculator Program
Third, implementations for the two argument operations

private static void processTwoArguments(int reply) {
assert (1 <= reply && reply <= 4);
System.out.print("Please enter your two integers -> ");
int x = IOUtil.readInt ();
int y = IOUtil.readInt ();

int result;
String op;

switch (reply) {
case 1: result = x + y; op = " + "; break;
case 2: result = x - y; op = " - "; break;
case 3: result = x * y; op = " * "; break;
case 4: result = x / y; op = " / "; break;
default: assert false: "Should be impossible!"; return;

}
System.out.println(x + op + y + " = " + result);

}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Recursive Static Methods

A Calculator Program

1. break leaves the switch (stops fall-through)
2. default is a place to jump to if no other value matches and is optional.

Recursive Static Methods

A Calculator Program
Fourth and Fifth, One argument functions and a main method

public class Calculator {

public static void main(String [] args) {
presentMenu ();
processOperation ();

}

private static void presentMenu () {
... as before ...

}

private static void processOperation () {
... as before ...

}

private static void processTwoArguments (int reply) {
... as before ...

}

private static void processOneArgument (int reply) {
// TODO
System .out. println ("TODO: not implemented yet");

}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 39 / 220

Recursive Static Methods

An aside, Java’s primitive types

Type Size in bits Notation Use in switch
byte 8 0 Yes
short 16 0 Yes
int 32 0 Yes
long 64 0L No
float 32 0.0f No
double 64 0.0d No
boolean 1 false / true No
char 16 ’\u0000’ (or ’A’, ’\n’ etc) Yes

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 40 / 220

Recursive Static Methods

Exercise 6

1 What does switchy return when passed the arguments 0, 1, 2, 3, 4 and 5?
public static String switchy(int x) {

String result = "???";

switch (x) {
case 0: return "A";
case 2: result "B";
case 1:
case 3: result = "C"; break;
case 4: result = "D";
default: return "DEF" + result;

}
return result;

}

2 Complete the Calculator program.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 41 / 220

Recursive Static Methods

Back to Recursion
Important things to remember:

Base Cases
Guard your recursive calls.
Not guarding your recursive calls leads to infinite recursion.

Recurse on simpler inputs.
Make sure there is progress towards the base cases between invocations of the
recursive routine.

Use comments to make things clearer if possible.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 42 / 220

Recursive Static Methods

Morse Code Encoder – Another Example
A recursive function with 10 base cases!

encodeInt(120)

x = 120;
remainder = "−−−−−";
rest = encodeInt(12);

x = 12;
remainder = encodeInt(2);

x = 2;
return "..−−−";

public class Encoder {

public static String encodeInt (int x) {
assert x >= 0 : "Can only encode non - negative integers ";

switch (x) {
case 0: return " -----";
case 1: return ".----";
case 2: return "..---";
case 3: return "...--";
case 4: return ".... -";
case 5: return " ";
case 6: return " -....";
case 7: return " --...";
case 8: return " ---..";
case 9: return " ----.";
default :

String remainder = encodeInt (x % 10);
String rest = encodeInt (x / 10);
return rest + " " + remainder ;

}
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 43 / 220

Recursive Static Methods

Summary

A method that calls itself is called recursive.
Recursive methods that produce a single result are just like Haskell functions.
void methods do not produce a result.

They are used when you are interested in their side effects.
For example input / output.
In the next lectures you will see other forms of side effect.

To ensure recursive calls will eventually terminate, every recursive method
must be guarded by terminating conditions (base cases), and progression
towards those conditions in the recursive calls.
switch statements can be used rather than conditionals
(if (p1) { ... } else if (p2) { ... } else { ... }) for choices based
on int-like values.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 44 / 220

Loops

Loops

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 46 / 220

Loops

The while loop

A loop iterates or ’loops’ over a block of code, executing it repeatedly.
When you need repetition, but you don’t know how many times the
repetition will occur you can use recursion, or a while loop.
Another type of loop, the for loop, is usually used when you know up front
how many iterations are wanted. For example, to traverse all the elements of
a list whose length you know.
The choice between using loops or recursion is usually a matter of taste.
Like recursion, generalised loops can repeat indefinitely. When writing code
you must ensure that your loops will terminate.
Unlike recursion, a non-terminating generalised loop does not cause stack
overflow, as this is caused by having too many unfinished method calls.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 47 / 220

Loops

The while loop
Keep re-executing code as long as a condition is true

while (condition) {
... loop body ...

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 48 / 220

The while loop
Keep re-executing code as long as a condition is true

while (condition) {
... loop body ...

}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Loops

The while loop

1. The loop body should include code that eventually makes the condition false
2. Loops where the condition cannot become false are infinite loops

Loops

The while loop
For example, reading input until a condition is satisfied

public class WhileExample {

public static void main(String [] args) {

System .out. print (" Please enter a number between 1 and 10 -> ");

int input = IOUtil.readInt();

while (input < 1 || input > 10){
System .out. print ("That wasn ’t between 1 and 10. Try again -> ");
input = IOUtil.readInt();}

}

System .out. println ("Thank -you , you entered " + input);

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 49 / 220

The while loop
For example, reading input until a condition is satisfied

public class WhileExample {

public static void main(String [] args) {

System .out. print (" Please enter a number between 1 and 10 -> ");

int input = IOUtil.readInt();

while (input < 1 || input > 10){
System .out. print ("That wasn ’t between 1 and 10. Try again -> ");
input = IOUtil.readInt();}

}

System .out. println ("Thank -you , you entered " + input);

}
}20

17
-1
2-
07

Programming II Introduction to Imperative Programming
Loops

The while loop

1. The variable in the condition, input, is modified in the loop
2. We don’t know in advance how many times the loop will need to be run
3. If the user enters a value between 1 and 10 immediately then the loop body will not

be run at all

Loops

When is the condition checked?
You can imagine a while loop as a potentially infinite stacking of if statements

while (condition) {
... loop body ...

}

if (condition) {
... loop body ...
if (condition) {

... loop body ...
if (condition) {

... loop body ...
if (condition) {

... loop body ...

... etc ...
}

}
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 50 / 220

Loops

Exercise 7

What will these while loops print out?
For each while loop below, will it compile, and if it does, what does it print when
executed?

Meep
while(true) {

System.out.println("Meep!");
}

Strung
String s = "";
while (s != s + 0) {

System.out.println(s);
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 51 / 220

Loops

Exercise 8

Diagonal
int i = 0;
int j = 10;

while (i < j) {
i = i + 1;
j = j - 1;
System.out.println(i + j);

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 52 / 220

Loops

From Recursion to Iteration
Recursive version of fact

public static int fact(int n) {
assert n >= 0 : "factorial: n must be >= 0";
// post: returns n!
if (n == 0) {

return 1;
} else {

return n * fact(n - 1);
}

}

Recursive algorithm

Base case: if n is 0, return 1
Recursive case: multiply n by the factorial of n - 1.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 53 / 220

Loops

From Recursion to Iteration
Iterative version of fact

public static int fact(int n) {
assert n >= 0 : "factorial: n must be >= 0";
// post: returns n!

int result = 1;
while (n != 0) {

result *= n;
n--;

}
return result;

}

Iterative algorithm

Initialize the result to 1.
Multiply the result by all the numbers between n and 1.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 54 / 220

From Recursion to Iteration
Iterative version of fact

public static int fact(int n) {
assert n >= 0 : "factorial: n must be >= 0";
// post: returns n!

int result = 1;
while (n != 0) {

result *= n;
n--;

}
return result;

}

Iterative algorithm

Initialize the result to 1.
Multiply the result by all the numbers between n and 1.

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Loops

From Recursion to Iteration

1. The loop runs until the recursive base case is true
2. This means the loop condition is the negation of the recursive base case condition
3. The argument that changes during the recursive call (n) is modified in place (n--)

Loops

From Recursion to Iteration - Another Example
Recursive version of divisor

public static int divisor(int a, int b) {
assert (a > 0 && b > 0) :

"divisor must be given arguments > 0";
// post: returns the greatest common divisor
if (a == b) {

return a;
} else if (a > b) {

return divisor(a - b, b);
} else {

return divisor(a, b - a);
}

}

Recursive algorithm

If the values are the same, they are their own divisor - return that.
Otherwise return the divisor of the smaller value and the difference of the
values.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 55 / 220

Loops

From Recursion to Iteration - Another Example
Iterative version of divisor

public static int divisor(int a, int b) {
assert (a > 0 && b > 0) :

"divisor must be given arguments > 0";
// post: returns the greatest common divisor
while (a != b) {

if (a > b) {
a = a - b;

} else {
b = b - a;

}
}
return a;

}

Iterative algorithm

Repeatedly make the larger value equal to the difference of the values.
When the values are the same, we are done.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 56 / 220

Loops

Exercise 9

Remember newtonSqrt? Write it iteratively...
public class Newton {

private static final float EPSILON = 0.00001 f;

public static float newtonSqrt(float x) {
assert x >= 0 : "newtonSqrt: x should be >= 0";
return findSqrt(x, x/2);

}

private static float findSqrt(float x, float a) {
if (Math.abs(x - a * a) < EPSILON) {

return a;
} else {

return findSqrt(x, (a + x / a) / 2);
}

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 57 / 220

Loops

Other kinds of loops
A method to simulate the roll of a die. The result is a random int between 1 and 6 (inclusive)

public static int rollDie () {
return (int) (Math.random () * 6) + 1;

}

Thought experiment

I roll one die. ()
I then roll a second die until I get a number smaller than or equal to the first
die.
How many times will I have to roll the second die?

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 58 / 220

Loops

The do { ... } while (condition); loop
Rolling a second die until it is <= the first one

With a while loop
int a = rollDie ();
int b = rollDie();

int count = 1;

while (b > a) {
b = rollDie();
count ++;

}

return count;

With a do-while loop
int a = rollDie ();
int b;

int count = 0;

do {
b = rollDie();
count ++;

} while (b > a);

return count;

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 59 / 220

The do { ... } while (condition); loop
Rolling a second die until it is <= the first one

With a while loop
int a = rollDie ();
int b = rollDie();

int count = 1;

while (b > a) {
b = rollDie();
count ++;

}

return count;

With a do-while loop
int a = rollDie ();
int b;

int count = 0;

do {
b = rollDie();
count ++;

} while (b > a);

return count;20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Loops

The do { ... } while (condition); loop

1. In the while loop version, we have to roll b both outside and inside the loop
2. Frequently this pattern of code is better expressed as a do-while loop
3. In a do { code } while (condition); loop, code is executed first, and then

condition is checked before possibly looping back.

Loops

The do { ... } while (condition); loop
Rolling a second die until it is <= the first one

public static int numberOfRolls () {
int a = rollDie ();
int b;

int count = 0;

do {
b = rollDie ();
count ++;

} while (b > a);

return count;
}

We can use this method to try to answer our thought experiment.
We can call the method n times, and then average the results.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 60 / 220

Loops

The for (init ; condition ; update) { ... } loop
Averaging n calls to numberOfRolls

With a while loop
double total = 0;

int i = 0;
while (i < n) {

total += numberOfRolls ();
i++;

}

double average = total / n;

With a for loop
double total = 0;

for (int i = 0 ; i < n ; i++) {
total += numberOfRolls ();

}

double average = total / n;

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 61 / 220

The for (init ; condition ; update) { ... } loop
Averaging n calls to numberOfRolls

With a while loop
double total = 0;

int i = 0;
while (i < n) {

total += numberOfRolls ();
i++;

}

double average = total / n;

With a for loop
double total = 0;

for (int i = 0 ; i < n ; i++) {
total += numberOfRolls ();

}

double average = total / n;

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Loops

The
for (init ; condition ; update) { ... }
loop

1. Using a while loop we can see when init, condition and update are executed in
a for statement

2. Be careful though, in the for version, i is out of scope after the loop, whereas in
the while version it is in scope

3. Usually the for behaviour is what you want - don’t keep variables in scope that you
don’t need

4. i++ increments i by 1. It updates the variable - its counterpart, ++i, updates first,
then returns the updated value.

Loops

Exercise 10

Remember the fact function? Re-write the function twice, using a for loop
and a do-while loop instead.
Write a function public static void rectangle() that prompts the user for
a width and a height and draws a rectangle of stars. For example:

Please enter a width and a height -> 7 3

You will need to use two nested loops. The outer loop will print out the rows,
whereas the inner loop will print out each row.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 62 / 220

Loops

break and continue
Jumping around or out of loops

There might be times when you want to leave a loop early.
e.g. you are iterating through a list searching for a value, and you can finish
the loop early if you find it.

There might be times when you want to skip the current iteration of the
loop, and go on to the next one

e.g. you only want to process even numbers in a list.
In order to make writing this kind of code easier, there are two control flow
constructs you can use in any of the loops seen so far:

break: which will exit the loop and carrying on execution from the next
statement after the loop. You have seen break in switch statements.
continue: which will jump to the next iteration of the loop.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 63 / 220

Loops

Consider a predicate isPrime

What if you don’t want multiple exits from this method?
static boolean isPrime(int n) {

double top = Math.sqrt(n);
for (int i = 2; i <= top; i++) {

if ((n % i) == 0) {
return false;

}
}
return true;

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 64 / 220

Loops

Another version of the predicate isPrime

You could use break to terminate the loop when you know the number is not
prime.

static boolean isPrime2(int n) {
boolean result = true;
double top = Math.sqrt(n);
for (int i = 2; i <= top; i++) {

if ((n % i) == 0) {
result = false;
break; // stops needlessly looping

}
}
return result;

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 65 / 220

Loops

Yet another version of the predicate isPrime

You could use continue to jump to the next iteration of the loop.
static boolean isPrime3(int n) {

double top = Math.sqrt(n);
for (int i = 2; i <= top; i++) {

if (i % 2 == 0) {
continue; // only check odd numbers

}
if ((n % i) == 0) {

return false;
}

}
return true;

}
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 66 / 220

Loops

break and continue
Rolling n sixes in a row, and reporting how many rolls it took

Exercise 11

First use a while loop to solve this problem.
Rewrite using a for loop for the attempts to roll n 6’s in a row. If we get to
the end of the for loop then we are done.
However, if we don’t roll a 6 within the for loop, then we have to try again.
We may use continue to try the next iteration of a loop and break when we
wish to terminate loop.
We may use return to act like a break, but to also leave the method entirely.
How would you change your code to just keep running?

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 67 / 220

Loops

Summary

There are many different ways of performing repeated execution in Java.
Recursion and while loops are the most general forms of repetition.
Recursive methods can be written using a loop. However care must be taken
to ensure they have the same behaviour.
There are some common patterns that occur when using while statements,
which gives rise to the do-while statement and the for statement.
Sometimes you will want to skip an iteration of a loop, or to exit it early, in
which case a continue or break statement is needed.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 68 / 220

Arrays

Arrays

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 69 / 220

Arrays

Array?

What?
Space for many items of the same type.
Each element can be accessed via its index in the array.
Arrays can be multi-dimensional.

Why?

Sometimes you’ll need to deal with large quantities of data.
Sometimes you’ll want to perform the same operations on lots of individual
items.

Differences with Haskell Lists
Every element of an array can be accessed in constant time.
Arrays are of fixed size (they cannot grow like lists).
You can’t pattern match on arrays.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 70 / 220

Arrays

Example of an array variable initialization
Creating 10 doubles in one go...

double[] vec = new double[10];

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 71 / 220

Example of an array variable initialization
Creating 10 doubles in one go...

double[] vec = new double[10];

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Example of an array variable initialization

1. To declare an array variable of a given type, we add [] after the type
2. This variable is called vec
3. vec therefore is a variable for an array of doubles
4. To initialize vec we use the keyword new to ask for space
5. Here we take space for 10 double values, by using double[10]
6. The 10 new double values will all default to value 0.0
7. The number of elements (10) can be any expression of type int

Arrays

Initializing an array with known values
Arrays of Strings, ints, and chars

String[] judges = { "Craig", "Darcey", "Shirley", "Bruno" };
int[] scores = { 3, 7, 9, 9 };
String[] characters = { "Jerry", "Beth", "Summer", "Mort" };
char[] genders = { ’m’, ’f’, ’f’, ’m’ };

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 72 / 220

Initializing an array with known values
Arrays of Strings, ints, and chars

String[] judges = { "Craig", "Darcey", "Shirley", "Bruno" };
int[] scores = { 3, 7, 9, 9 };
String[] characters = { "Jerry", "Beth", "Summer", "Mort" };
char[] genders = { ’m’, ’f’, ’f’, ’m’ };

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Initializing an array with known values

1. The items are listed between { }
2. Java automatically creates a new array of the right size and populates it

Arrays

Exercise 12

Write a statement to create a variable called flags that is an array with five
false values;
Write a statement to create a variable empty which points to an array of
length 0 of ints.
Write a class AndOr which has two methods, and and or which take an array
of booleans and returns true if (respectively) all or any of the elements in the
array are true. You could use a break to stop looping if you know the result
before all of the elements have been processed.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 73 / 220

Arrays

Reading and Writing to Arrays
Using array indexing expressions

String [] judges = {"Craig", "Darcey", "Shirley", "Bruno"};
int[] scores = { 3, 7, 9, 9 };

String firstJudge = judges [0];

if (scores[0] < 5) {
scores[0] = 5;

}

System.out.println(firstJudge + " gave: " + scores[0]);

System.out.println("The final judge , " + judges[3] +
", gave: " + scores[3]);

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 75 / 220

Reading and Writing to Arrays
Using array indexing expressions

String [] judges = {"Craig", "Darcey", "Shirley", "Bruno"};
int[] scores = { 3, 7, 9, 9 };

String firstJudge = judges [0];

if (scores[0] < 5) {
scores[0] = 5;

}

System.out.println(firstJudge + " gave: " + scores[0]);

System.out.println("The final judge , " + judges[3] +
", gave: " + scores[3]);20

17
-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Reading and Writing to Arrays

1. You can read the element at index i out of array a with the syntax a[i]
2. The first element of an array is at index 0
3. You can change the value of the element at index i in array a with the syntax

a[i] = newValue;
4. The last element of an array is at an index one smaller than the length of the array

Arrays

Iteration...

Arrays exist in order to hold multiple values that should be treated similarly.
Frequently the same operation needs to be performed on each array value.
Traversing all the elements of an array can be achieved with a loop, using the
loop variable to access each element of the array at array[i].
Alternatively, an enhanced for loop can be used.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 76 / 220

Arrays

Looping through Judges
Introducing The Enhanced for statement

String [] judges = {"Craig", "Darcey", "Shirley", "Bruno"};

for (String judge : judges) {
System.out.println(judge);

}

/* In general :
*
* for (Type variable : array) {
* ... code using variable ...
* }
*
*/

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 77 / 220

Looping through Judges
Introducing The Enhanced for statement

String [] judges = {"Craig", "Darcey", "Shirley", "Bruno"};

for (String judge : judges) {
System.out.println(judge);

}

/* In general :
*
* for (Type variable : array) {
* ... code using variable ...
* }
*
*/20

17
-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Looping through Judges

1. The block of code will be executed once for each element in the array
2. Each time the block of code is executed, the loop variable will be bound to a

successive element of the array.

Arrays

Enhanced for Example
Sum all the elements of an array

double [] vector = { 1.1, 2.2, 3.3 };

double sum = 0;

for (double elem : vector) {
sum += elem;

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 78 / 220

Enhanced for Example
Sum all the elements of an array

double [] vector = { 1.1, 2.2, 3.3 };

double sum = 0;

for (double elem : vector) {
sum += elem;

}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Enhanced for Example

1. elem will be 1.1, then 2.2, then 3.3
2. sum += elem is a Java shortcut for sum = sum + elem
3. You might also want to use *=, -=, /= and %=

Arrays

Another for example
What are my Program’s arguments?

public class Arguments {

public static void main(String[] args) {

System.out.println("The program arguments are:");

for (String argument : args) {
System.out.println(argument);

}

}
}

Output

> java -ea Arguments Hello World!
The program arguments are:
Hello
World!

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 79 / 220

Another for example
What are my Program’s arguments?

public class Arguments {

public static void main(String[] args) {

System.out.println("The program arguments are:");

for (String argument : args) {
System.out.println(argument);

}

}
}

Output

> java -ea Arguments Hello World!
The program arguments are:
Hello
World!

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Another for example

1. On the command line you can give your program extra arguments
2. These get turned into a String array and passed into your main method

Arrays

Getting the length of an array
Consider calculating the mean of an array of double.

public static double average(double [] values) {
assert (values.length > 0)

: "Cannot average an empty array";

double sum = Sum.sum(values);

double average = sum / values.length;

return average;
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 80 / 220

Getting the length of an array
Consider calculating the mean of an array of double.

public static double average(double [] values) {
assert (values.length > 0)

: "Cannot average an empty array";

double sum = Sum.sum(values);

double average = sum / values.length;

return average;
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Getting the length of an array

1. Every array knows its own size.
2. To get the size of the array a, you write a.length.
3. This is called a field lookup, where length is a field of every array.
4. This is not a method call, you don’t put () after length.
5. The length field is read only, and is of type int.
6. Once created, an array cannot change its size.

Arrays

Bounded Iteration
Using the for (init ; condition ; update) { ... } loop

Sometimes we need to traverse the array in a different order than first to last.
Sometimes we want to talk about the elements at the same index in different
arrays.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 81 / 220

Arrays

Bounded Iteration
Using the for (init ; condition ; update) { ... } loop

for (int i = lowerbound ; i < upperbound ; i++) {
loop body

}

for (int i = upperbound - 1 ; i >= lowerbound ; i–) {
loop body

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 82 / 220

Bounded Iteration
Using the for (init ; condition ; update) { ... } loop

for (int i = lowerbound ; i < upperbound ; i++) {
loop body

}

for (int i = upperbound - 1 ; i >= lowerbound ; i–) {
loop body

}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Bounded Iteration

1. These are two common patterns for using for loops.
2. The variable i is in scope within the loop.
3. i++ is shorthand for i = i+1, similarly i-- is shorthand for i = i-1.
4. Remember: for (init ; condition ; update) { body } - init is executed,

then condition ; body; update is repeatedly executed as long as condition
evaluates to true.

5. When the loop is being used to traverse an array a, lowerbound is typically 0, and
upperbound is typically a.length.

6. The first loop counts up, and is useful if an array needs to be traversed in order.
7. The second loop counts down, and is useful if an array needs to be traversed in

reverse order.

Arrays

Bounded Iteration Example
Printing judges and their scores.

public static void printScores (String [] judges , int [] scores) {
assert judges . length == scores . length : " Judge / Score mismatch ";

int total = 0;

for (int i = 0 ; i < judges . length ; i++) {
System.out.println(judges[i] + " scored: " + scores[i]);
total += scores[i];

}

System .out. println ("For a total of: " + total);
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 83 / 220

Bounded Iteration Example
Printing judges and their scores.

public static void printScores (String [] judges , int [] scores) {
assert judges . length == scores . length : " Judge / Score mismatch ";

int total = 0;

for (int i = 0 ; i < judges . length ; i++) {
System.out.println(judges[i] + " scored: " + scores[i]);
total += scores[i];

}

System .out. println ("For a total of: " + total);
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Bounded Iteration Example

1. We use a for loop to walk through successive elements of the judges and scores
arrays.

2. On each execution of the body, i will be incremented due to the i++.
3. This means we can access a judge’s name, and their score at the same time in the

loop body.
4. After the for loop, i is no longer in scope, so you cannot refer to it.

Arrays

Bounded Iteration in Reverse
Printing the program arguments in reverse

public static void main(String [] args) {

for (int i = args.length - 1 ; i >= 0 ; i–) {
System.out.println(i + ": " + args[i]);

}
}

Output

> java -ea ArgumentsReversed Hello World!
1: World!
0: Hello

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 84 / 220

Bounded Iteration in Reverse
Printing the program arguments in reverse

public static void main(String [] args) {

for (int i = args.length - 1 ; i >= 0 ; i–) {
System.out.println(i + ": " + args[i]);

}
}

Output

> java -ea ArgumentsReversed Hello World!
1: World!
0: Hello20

17
-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Bounded Iteration in Reverse

1. The loop starts at args.length - 1, which is the index of the last element in the
array

2. The loop continues as long as i is non-negative, decrementing each time round.

Arrays

Exercise 13
Write a method fibArray, which, given an int n produces an array of length n
filled with the first n fibonacci numbers.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 85 / 220

Arrays

Arrays can be multidimensional
Creating an array of arrays.

double [][] matrix = { { 1.0, 2.0, 3.0 }
, { 1.5, 2.5, 3.5 }
};

double [][] transpose = new double [3][2];

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 87 / 220

Arrays can be multidimensional
Creating an array of arrays.

double [][] matrix = { { 1.0, 2.0, 3.0 }
, { 1.5, 2.5, 3.5 }
};

double [][] transpose = new double [3][2];

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Arrays can be multidimensional

1. matrix is an array of length 2, where each element is an array of doubles of length 3
2. The inner arrays of length 3 are written within { }s, and the two inner arrays are

themselves nested within { }s
3. transpose is an array of length 3, where each element is an array of doubles of

length 2

Arrays

Traversing a multi-dimensional array
for loops can be nested

public static double [][] createTranspose(double [][] matrix) {
// pre: matrix is a rectangular matrix

double [][] transpose
= new double[matrix [0]. length][matrix.length];

for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[i].length; j++) {

transpose[j][i] = matrix[i][j];
}

}

return transpose;
}

How would you write a print method that would print out both the matrix and
its transpose?

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 88 / 220

Traversing a multi-dimensional array
for loops can be nested

public static double [][] createTranspose(double [][] matrix) {
// pre: matrix is a rectangular matrix

double [][] transpose
= new double[matrix [0]. length][matrix.length];

for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[i].length; j++) {

transpose[j][i] = matrix[i][j];
}

}

return transpose;
}

How would you write a print method that would print out both the matrix and
its transpose?

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Traversing a multi-dimensional array

1. Accessing the length of a multimensional array will give the number of sub-arrays
within it. i.e. the size of that dimension of the array

2. Each inner array will also have its own length
3. Here we require as a precondition that the matrix parameter is rectangular
4. What happens if matrix.length is 0?
5. In order to build the transpose array, we use nested for loops, one for traversing

each dimension of matrix
6. For the inner loop, we can’t write int i = 0 again, (we’ve already got a variable

called i!) so the convention is to use j, then k, etc.
7. Since our i and j loops are traversing over matrix and matrix[i] respectively,

inside the body of the loop the element we are interested in will be at
matrix[i][j]

Arrays

Exercise 14
Write a method sumAll that takes a three-dimensional array of int as an
argument and returns the sum of all the numbers in the array.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 89 / 220

Arrays

Initializing multi-dimensional arrays with known values...
Pascal’s Triangle

int [][] triangle = { { 1 }
, { 1, 1 }
, { 1, 2, 1 }
, { 1, 3, 3, 1 }
};

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 91 / 220

Initializing multi-dimensional arrays with known values...
Pascal’s Triangle

int [][] triangle = { { 1 }
, { 1, 1 }
, { 1, 2, 1 }
, { 1, 3, 3, 1 }
};

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Initializing multi-dimensional arrays with known
values...

1. Useful for tabulating binomial expansions and combinations
2. In the triangle, the edges are always 1, and inner numbers are the sum of the two

values above them
3. In the array form, the maths is a little different - don’t ever trust indentation - Java

doesn’t care about it at all!
4. The triangle is represented as an array of arrays, but each of the inner arrays has a

different length
5. Such arrays are called jagged

Arrays

Traversing a jagged multi-dimensional array
Printing out Pascal’s Triangle

public static void printTriangle(int [][] triangle) {
for (int i = 0 ; i < triangle.length ; i++) {

for (int j = 0 ; j < triangle[i]. length ; j++) {
System.out.print(triangle[i][j]);

if (j < triangle[i]. length - 1) {
System.out.print(" ");

}
}
System.out.println ();

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 92 / 220

Traversing a jagged multi-dimensional array
Printing out Pascal’s Triangle

public static void printTriangle(int [][] triangle) {
for (int i = 0 ; i < triangle.length ; i++) {

for (int j = 0 ; j < triangle[i]. length ; j++) {
System.out.print(triangle[i][j]);

if (j < triangle[i]. length - 1) {
System.out.print(" ");

}
}
System.out.println ();

}
}20

17
-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Traversing a jagged multi-dimensional array

1. We use nested loops to walk through each part of the triangle.
2. Each of the inner arrays has its own length, so we can use that to get the right

number of elements.
3. To put spaces between the elements, but not at the end, we use an if check to see

if j is before its last index
4. Challenge: how would you print out the triangle centered and not left aligned?

Arrays

Exercise 15
Rewrite printTriangle so that it prints out as an isosceles rather than a right
triangle.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 93 / 220

Arrays

Building a jagged multi-dimensional array
Building the first n layers of Pascal’s Triangle

public static int [][] makeTriangle(int n) {
int [][] triangle = new int[n][];

for (int i = 0 ; i < n ; i++) {
triangle[i] = new int[i+1];

triangle[i][0] = 1;

for (int j = 1 ; j < i ; j++) {
triangle[i][j] = triangle[i-1][j] +

triangle[i-1][j-1];
}

triangle[i][i] = 1;
}

return triangle;
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 94 / 220

Building a jagged multi-dimensional array
Building the first n layers of Pascal’s Triangle

public static int [][] makeTriangle(int n) {
int [][] triangle = new int[n][];

for (int i = 0 ; i < n ; i++) {
triangle[i] = new int[i+1];

triangle[i][0] = 1;

for (int j = 1 ; j < i ; j++) {
triangle[i][j] = triangle[i-1][j] +

triangle[i-1][j-1];
}

triangle[i][i] = 1;
}

return triangle;
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

Building a jagged multi-dimensional array

1. We can ask for space for n arrays of arrays, but not give the size of the inner arrays
(yet)

2. The i loop traverses the rows of the triangle. Row i has i + 1 columns
3. You can create sub arrays and assign them to their parent array. For example,

triangle[i] can be assigned int[] values.
4. The innermost j loop traverses from index 1 to one less than the row length

Arrays

One small syntax gotcha
Declaration vs Assignment / Creation of known array values

Declaration
String [] reallyImportantGames

= {"Minecraft", "Mario", "Candy Crush"};

Assignment
String [] reallyImportantGames;

reallyImportantGames
= new String [] {"Minecraft", "Mario", "Candy Crush"};

Method Call
buyGames(

new String [] {"Minecraft", "Mario", "Candy Crush"});

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 95 / 220

One small syntax gotcha
Declaration vs Assignment / Creation of known array values

Declaration
String [] reallyImportantGames

= {"Minecraft", "Mario", "Candy Crush"};

Assignment
String [] reallyImportantGames;

reallyImportantGames
= new String [] {"Minecraft", "Mario", "Candy Crush"};

Method Call
buyGames(

new String [] {"Minecraft", "Mario", "Candy Crush"});20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

One small syntax gotcha

1. If you declare and initialize an array in one line, then the compiler knows the type of
the array, and you can just use { } as we’ve been doing so far

2. However if you are creating a new array, and e.g. assigning it, or calling a method,
then you need to say that you want a new something, and then use { }s to build it

Arrays

Summary

Arrays are data structures suitable for problems dealing with large quantities
of identically typed data where similar operations need to be performed on
every element.
Elements of an array are accessed through their index values. Arrays using a
single index are sometimes called vectors, those using n indexes are
n-dimensional. A two-dimensional array is really an array of arrays.
The number of items in an array can be found through the length field,
array.length. For multi-dimensional arrays, array.length will contain the
number of sub arrays, and array[i].length will be the number of elements
in sub-array i.
Array indexes are int expressions. The first element is always at index 0, and
the last at array.length - 1.
Arrays need space to be allocated for them. This is either done implicitly
with values given for all their elements, or explicitly using new to take space
in the heap.
Repetition of the same operation is called iteration or looping. A for loop
can be used to do the same operation on every element of an array.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 96 / 220

Arrays In-Place Array Operations

In-Place Array Operations

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 98 / 220

Arrays In-Place Array Operations

Pass by Value

We have been passing arguments to methods.
Java methods can accept primitive types as arguments (int, boolean,
double, etc).
They can also accept more complicated types (called reference types, for
reasons we’ll shortly see) such as arrays and Strings.
In Java, all method parameters are passed by value. This means a copy of
the value of a parameter is made before the method receives it.
If the method makes changes to the parameter values, they are not visible to
the method’s caller.
However the value could point to some shared memory through which
changes could be seen.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 99 / 220

Arrays In-Place Array Operations

Not a swap method
public class NotSwap {

public static void main(String [] args) {
int a = 1;
int b = 2;
System .out. println (" Before swap: " + a + ", " + b);
swap(a,b);
System .out. println (" After swap: " + a + ", " + b);

}

public static void swap(int x, int y) {
// this method doesn ’t do very much !
int temp = x;
x = y;
y = temp;
System .out. println (" Inside swap: " + x + ", " + y);

}
}

Output

Before swap: 1, 2
Inside swap: 2, 1
After swap:

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 100 / 220

Arrays In-Place Array Operations

An Array Swap
public class ArraySwap {

public static void main(String [] args) {
int [] a = { 1, 2 };

System .out. println (" Before arraySwap : " + a[0] + ", " + a [1]);
arraySwap (a);
System .out. println (" After arraySwap : " + a[0] + ", " + a [1]);

}

public static void arraySwap (int [] array) {
assert array . length == 2 : "Can only swap 2 elements ";
int temp = array [0];
array [0] = array [1];
array [1] = temp;
System .out. println ("In arraySwap : " + array [0] + ", " + array [1]);

}
}

Output

Before arraySwap: 1, 2
In arraySwap: 2, 1
After arraySwap:

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 101 / 220

Arrays In-Place Array Operations

Update in place

Even though methods can’t alter the caller’s parameters directly, they can
modify their contents if they are a reference type.
For arrays, this means a method can alter the contents of the array, without
having to allocate space for and then returning a new one.
It is very important that the documentation (postcondition) of methods
makes it clear when they perform such updates.
Note that even though Strings are a reference type, they are immutable, and
their contents can never change.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 102 / 220

Arrays In-Place Array Operations

Exercise 16
What do the stack and heap look like when execution reaches each line of the
following?

String [] dancers = { "Susan", "Konstantinos", "Tony" };
int[] scores = new int [3];
// <here >
scores [0] = 1;
scores [2] = 2;
// <here >
int[] scores2 = { 2,3,4 };
scores = scores2;
// <here >
scores2 [2] = 10000;
// <here >

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 103 / 220

Arrays In-Place Array Operations

Exercise 17
Hand execute the following code in the presence of method m, below. Draw the
state of the stack and the heap before and after the call to m(a).

int[] a = {1, 2, 3};
m(a);

Method m
public static void m(int[] xs) {

int[] ys = xs;
ys[0] = xs[1];
xs = null;
ys = null;

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 104 / 220

Arrays In-Place Array Operations

Array Utility Methods

Java comes with a utility library of helpful methods that act on arrays, called
Arrays.
To use it, you will have to import java.util.Arrays; at the top of your
source file (before the public class ... { line).
It features methods to perform searches, equality checks and pretty printing
on arrays.
It also has methods to sort and fill arrays. These methods are void as they
update the argument array in place.
For the complete API see
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html.
Next term you’ll learn in-place algorithms for binary searching and sorting in
your Reasoning course.
In this rest of this lecture we’ll look at two other algorithms:

Reverse an array.
A Fisher-Yates Shuffle.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 105 / 220

Arrays In-Place Array Operations

Using java.util.Arrays
Sorting numbers from the user

import java.util.Arrays;

public class InputSorter {

public static void main(String [] args) {
System.out.print("How many numbers " +

"do you wish to sort? ");
int number = IOUtil.readInt ();
// TODO: check number is valid

int[] data = new int[number];
for (int i = 0 ; i < number ; i++) {

data[i] = IOUtil.readInt ();
}
Arrays.sort(data);
System.out.println(Arrays.toString(data));

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 107 / 220

Using java.util.Arrays
Sorting numbers from the user

import java.util.Arrays;

public class InputSorter {

public static void main(String [] args) {
System.out.print("How many numbers " +

"do you wish to sort? ");
int number = IOUtil.readInt ();
// TODO: check number is valid

int[] data = new int[number];
for (int i = 0 ; i < number ; i++) {

data[i] = IOUtil.readInt ();
}
Arrays.sort(data);
System.out.println(Arrays.toString(data));

}
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

In-Place Array Operations
Using java.util.Arrays

1. We have to explicitly import the Arrays class at the top of our file.
2. The sort method sorts our array of int for us, modifying it in place.
3. The utility method toString returns a pretty printed version of the array as a

String which we can print out.

Arrays In-Place Array Operations

A slightly more general swap
Another example of update in place

private static void swap(int[] array , int x, int y) {
int temp = array[x];
array[x] = array[y];
array[y] = temp;

}

Exercise 18
Draw the stack and the heap after each assignment.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 108 / 220

Arrays In-Place Array Operations

Reverse

Algorithm

Iterate through the first half of the array.
For each element in the first half, swap it with its corresponding element in
the second half.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 109 / 220

Arrays In-Place Array Operations

Reverse
Java Implementation

public static void reverse(int[] array) {
for (int i = 0 ; i < array.length / 2 ; i++) {

swap(array , i, array.length - 1 - i);
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 110 / 220

Reverse
Java Implementation

public static void reverse(int[] array) {
for (int i = 0 ; i < array.length / 2 ; i++) {

swap(array , i, array.length - 1 - i);
}

}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

In-Place Array Operations
Reverse

1. The for loop only traverses the first half of the array
2. If the array has an odd length we don’t visit the middle element, since int division

rounds down
3. If the first element is at index 0, then the last element (the one we swap it with) is

at array.length - 1

Arrays In-Place Array Operations

Don’t forget to test!

import java.util.Arrays;

public class ReverseTests {

public static void main(String [] args) {

int[] test = { 5, 4, 3, 2, 1 };
ReverseShuffle.reverse(test);
assert Arrays.equals(new int[] 1, 2, 3, 4, 5 , test);

test = new int[] { 4, 3, 2, 1 };
ReverseShuffle.reverse(test);
assert Arrays.equals(new int[] 1, 2, 3, 4 , test);

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 111 / 220

Arrays In-Place Array Operations

There are several different notions of equality for arrays.
Are they the same array in the heap (pointer equality)?

import java.util. Arrays ;
public class EqualityTests {

public static void main(String [] args) {
// no assertions to show the differences in equality tests .

int [][] m1 = { { 1, 2, 3 }, {4, 5, 6} };
int [][] m2 = { { 1, 2, 3 }, {4, 5, 6} };

if (m1 == m2) {
System .out. println (" pointer equality : same array ");

} else {
System .out. println (" pointer equality : different array ");

}

if (Arrays.equals(m1, m2)) {
System .out. println ("one level equality : same array ");

} else {
System .out. println ("one equality : different array ");

}

if (Arrays.deepEquals(m1, m2)) {
System .out. println ("deep equality : same array ");

} else {
System .out. println ("deep equality : different array ");

}
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 112 / 220

There are several different notions of equality for arrays.
Are they the same array in the heap (pointer equality)?

import java.util. Arrays ;
public class EqualityTests {

public static void main(String [] args) {
// no assertions to show the differences in equality tests .

int [][] m1 = { { 1, 2, 3 }, {4, 5, 6} };
int [][] m2 = { { 1, 2, 3 }, {4, 5, 6} };

if (m1 == m2) {
System .out. println (" pointer equality : same array ");

} else {
System .out. println (" pointer equality : different array ");

}

if (Arrays.equals(m1, m2)) {
System .out. println ("one level equality : same array ");

} else {
System .out. println ("one equality : different array ");

}

if (Arrays.deepEquals(m1, m2)) {
System .out. println ("deep equality : same array ");

} else {
System .out. println ("deep equality : different array ");

}
}

}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

In-Place Array Operations
There are several different notions of equality for
arrays.

1. Do they have the same elements (shallow structural equality)?
2. For nested arrays, are the deeply nested values the same (deep structural equality)?
3. Pointer equality can be tested with array1 == array2.
4. Shallow structural equality can be tested with Arrays.equals(array1, array2)
5. Deep structural equality can be tested (on 2-or-higher dimensional arrays) with

Arrays.deepEquals(array1, array2)

Arrays In-Place Array Operations

Fisher-Yates Shuffle - Another Example

Algorithm

Loop from the end of the array towards the start.
At each step, swap the current element for a random array element between
the first and the current (inclusive).

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 113 / 220

Arrays In-Place Array Operations

Fisher-Yates Shuffle
Java Implementation

public static void shuffle(int[] array) {
for (int i = array.length - 1; i >= 0; i–) {

int index = (int) (Math.random() * (i + 1));
swap(array , index , i);

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 115 / 220

Fisher-Yates Shuffle
Java Implementation

public static void shuffle(int[] array) {
for (int i = array.length - 1; i >= 0; i–) {

int index = (int) (Math.random() * (i + 1));
swap(array , index , i);

}
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Arrays

In-Place Array Operations
Fisher-Yates Shuffle

1. The loop starts at the end of the array and walks backwards toward the front
2. The utility method Math.random() returns a double value that is uniformly

distributed between 0 (inclusive) and 1 (exclusive)
3. To produce a random number between 0 and i inclusive we multiply the random

value by i + 1.
4. To convert a double to an int, we cast it, by writing (int). This will round the

double towards 0.
5. i.e. for positive double values like we have here, it will round down. To round

rather than round down add 0.5 before rounding.

Arrays In-Place Array Operations

Exercise 19
Write a method rotate that is given an int[] and an int n, and that rotates the
elements of the array n steps to the right. For example:

int[] xs = { 10, 20, 30, 40 };
rotate(xs , 3);
assert Arrays.equals(new int[] { 20, 30, 40, 10 }, xs);

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 116 / 220

Arrays In-Place Array Operations

Summary

Java has pass by value semantics. Methods receive a copy of their arguments
and changes made are not passed back to the calling method.
However, Java also has reference types, which a method can make changes
to. These changes are seen by the calling method.
Reference types, like arrays and Strings live on the heap, unlike primitive
values, which live on the stack.
For arrays, there is an API java.util.Arrays with a very large number of
utility methods. The utility methods perform updates in place, for example
sorting, without needing to create space for a new array.
Arrays have several different forms of equality, and you must be careful about
using ==, as it compares if two arrays are the same thing in the heap, not if
they have the same values.
There are utility methods in java.util.Arrays for checking the structural
equality of two arrays.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 117 / 220

Objects

Objects

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 118 / 220

Objects

Programming II
The story so far...

So far we have been using Java to develop methods that could be placed into
utility libraries.
These tend to be small and self contained, usually performing a single job.
e.g.

biggest : returning the largest of three numbers.
encodeInt : converting an int into its Morse code representation.
reverse : reversing the contents of an array

This is a procedural style of program writing.
However Java is primarily an Object Oriented programming language, and has
many sophisticated language features for creating and working with Objects.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 119 / 220

Objects

Classes and Objects
Things that have State, Behaviour and Identity

A class is a type (for example, class String).
An object is an instance of a class (for example, the actual String
"Hello World").
There can be many objects of the same type
Objects can have fields and methods, which capture and define their state,
behaviour, and identity.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 120 / 220

Objects

Objects
Things that have State, Behaviour and Identity

State
Internal information that the object uses to know how to behave.
Usually hidden, or only accessed / updated through a well defined interface.
For example, a watch knows the current time, traffic lights know how long
until they change to red.
State is modelled in Java by using fields. These are variables that persist
across multiple method calls on the object.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 121 / 220

Objects

Objects
Things that have State, Behaviour and Identity

Behaviour
This is the external stimuli an object can respond to.
Usually publicly available, this is the well defined interface that the object lets
the rest of the world interact with it by.
For example, if asked to change, a traffic light can tell you the next colours it
will display.
Behaviour is modelled in Java by instance methods. These can:

Accept arguments.
Read and write to the object’s state.
Return results.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 122 / 220

Objects

Objects
Things that have State, Behaviour and Identity

Identity

There can be many different objects, each with different internal state and
possessing different behaviours.
We may want to create many similar objects that have the same state and
behaviour descriptions, but can co-exist in different states at the same time.
For example, most traffic lights in London look the same, but they don’t all
show red at the same time.
In Java, the description of an object is called its class, and an object that
follows the description given by a class is said to be an instance of that class.
Classes are described by the class construct, and instances are created using
new.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 123 / 220

Objects

A Clicky Counter
An example of an Object

Imagine a simple device with two buttons labelled tick and getTicks. The tick
button increments a count of how many times it has been pressed. The getTicks
button tells you how many times the tick button has been pressed.

State
The number of times the button has been pressed.
Can be stored in an int called count.

Behaviour
tick will accept no arguments, increment the state, and return no results.
getTicks will accept no arguments, read the state and return it.

Identity

We could create many counters and increment them separately.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 124 / 220

Objects

Classes describe Objects
The description of a counter

public class Counter {

private int count = 0;

public void tick() {
count ++;

}

public int getTicks() {
return count;

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 126 / 220

Classes describe Objects
The description of a counter

public class Counter {

private int count = 0;

public void tick() {
count ++;

}

public int getTicks() {
return count;

}
}20

17
-1
2-
07

Programming II Introduction to Imperative Programming
Objects

Classes describe Objects

1. public class Counter must live in a file called Counter.java
2. private int count is an instance field of the class. It is declared within the class

but not inside any method.
3. Each Counter instance that is created will get its own count value that will store

its value as long as the instance exists.
4. The = 0 is optional (as int fields default to 0), but makes things clearer.
5. We make the count variable private to keep it hidden. Only methods declared

within the class Counter can access it.
6. The public void tick() is an instance method declaration. It can access the

field count and modify it. Note the lack of the static keyword.
7. Since we only care about the side effect of incrementing the count, tick is a void

method. It doesn’t return anything.
8. The getTicks instance method reads the current value of count and returns it.

Objects

Creating instances of Objects
Making a Counter tick

public class TickTock {

public static void main(String [] args) {

Counter counter = new Counter();
System.out.println(counter.getTicks());

System.out.println("Tick!");
counter.tick();

{System.out.println(counter.getTicks());

}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 127 / 220

Creating instances of Objects
Making a Counter tick

public class TickTock {

public static void main(String [] args) {

Counter counter = new Counter();
System.out.println(counter.getTicks());

System.out.println("Tick!");
counter.tick();

{System.out.println(counter.getTicks());

}

}20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

Creating instances of Objects

1. To create a new Counter object, write new Counter()
2. This will create space in the heap for the fields of Counter and return a pointer to

it that we store in the counter variable.
3. In order to invoke the instance methods tick and getTicks we have to say which

instance of Counter we want to call them on.
4. This specification happens through the use of a ., e.g. counter.getTicks() or

counter.tick()
5. You can read counter.tick() as, on the instance of Counter pointed to by

counter, invoke the tick method with no arguments.

Objects

Exercise 20
Create a variation of the Counter class that has a method hasBeenTicked which
returns true if tick has been called.

One way is to use an extra boolean field.
Another way it to look at the value of the existing count field.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 128 / 220

Objects

A more flexible counter

We can write a description of more flexible counter that also allows you to fix
the value of count.
To do this, we’ll add a new behaviour, setTicks that accepts an int
argument and uses that as the new value of count.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 129 / 220

Objects

A more flexible counter
An example of an instance method accepting an argument and writing to the state

public class ResettableCounter {

private int count = 0;

public void tick() {
count ++;

}

public int getTicks() {
return count;

}

public void setTicks(int i) {
count = i;

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 130 / 220

A more flexible counter
An example of an instance method accepting an argument and writing to the state

public class ResettableCounter {

private int count = 0;

public void tick() {
count ++;

}

public int getTicks() {
return count;

}

public void setTicks(int i) {
count = i;

}
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

A more flexible counter

1. The setTicks method accepts a single argument.
2. Again, we are only interested in the side effect of updating the state of

ResettableCounter, so it is also a void method.
3. In Java, if a private field is to be updatable, it is a common pattern to use methods

named get* and set* (getters and setters).

Objects

Creating several instances
An example of multiple ResettableCounters with different values.

public class TickTockTwo {
public static void main(String [] args) {
ResettableCounter c1 = new ResettableCounter();
ResettableCounter c2 = new ResettableCounter();

for(int i = 0 ; i < 5 ; i++) {
c1.tick();

}

System.out.println("c1: " + c1.getTicks());

for(int i = 0 ; i < 10 ; i++) {
c1.tick();
c2.tick();

}
System.out.println("c1: " + c1.getTicks());
System.out.println("c2: " + c2.getTicks());
c1.setTicks(0);
System.out.println("c1: " + c1.getTicks());
System.out.println("c2: " + c2.getTicks());

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 131 / 220

Creating several instances
An example of multiple ResettableCounters with different values.

public class TickTockTwo {
public static void main(String [] args) {
ResettableCounter c1 = new ResettableCounter();
ResettableCounter c2 = new ResettableCounter();

for(int i = 0 ; i < 5 ; i++) {
c1.tick();

}

System.out.println("c1: " + c1.getTicks());

for(int i = 0 ; i < 10 ; i++) {
c1.tick();
c2.tick();

}
System.out.println("c1: " + c1.getTicks());
System.out.println("c2: " + c2.getTicks());
c1.setTicks(0);
System.out.println("c1: " + c1.getTicks());
System.out.println("c2: " + c2.getTicks());

}
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

Creating several instances

1. We first create two different counters, and store pointers to them in c1 and c2.
2. We then tick c1 five times and print out it’s getTicks
3. Next we tick both counters ten times. Printing out their ticks will give different

internal counts.
4. Finally we reset c1 back to a count of 0.
5. Again, printing out the ticks of c1 and c2 will have different results.
6. What happens if instead of writing new ResettableCounter() we put

ResettableCounter c2 = c1;?

Objects

Exercise 21
Given the following snapshots of the stack and heap, what could code0, code1 and
code2 be?

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 132 / 220

Objects

Static vs Instance

Static
Static methods and fields are not associated with any instance.
If they are public you can call or read/write to them from anywhere - within
instances or static methods.
They are denoted by the keyword static.
Think “there can only be one”.

Instance
Instance methods and fields are associated with an instance of a class.
If they are public they can be called or read/written to only if you have an
instance of that class already.
They are denoted by the absence of the keyword static.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 133 / 220

Objects

Objects: Another Example
A Simple Calculator

Imagine a small simple calculator. It should start at zero, and it has methods to
add or multiply its current value by an int. It should also be able to represent its
current calculation as a String.

State
The current value of the calculation, represented by an int field called total.
The String representing the calculation so far. Call it concat.

Behaviour
Methods plus and multiply that accept an int and update the total and
concat fields accordingly.
A method getTotal to return the current total.
A method reset to reset the current total and concat back to 0.
A method toString which will represent the state of the calculator as a
String.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 134 / 220

Objects

Using the Calculator
With only the previous description of the behaviour we can say what our calculator should do.

public class Main {

public static void main(String [] args) {
Calculator c1 = new Calculator();

c1.plus(5);
c1.multiply(3);
c1.plus(7);
System.out.println("c1 total: " + c1.getTotal());
System.out.println(c1);

c1.reset ();
System.out.println(c1);

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 135 / 220

Using the Calculator
With only the previous description of the behaviour we can say what our calculator should do.

public class Main {

public static void main(String [] args) {
Calculator c1 = new Calculator();

c1.plus(5);
c1.multiply(3);
c1.plus(7);
System.out.println("c1 total: " + c1.getTotal());
System.out.println(c1);

c1.reset ();
System.out.println(c1);

}
}20

17
-1
2-
07

Programming II Introduction to Imperative Programming
Objects

Using the Calculator

1. The class that describes our calculator will be called Calculator.
2. We should be able to call plus and multiply methods upon it, and it should build

up the correct total.
3. In Java, if a class describes a method with the signature

public String toString() then println will use that instead of the default one
provided for all objects.

Objects

The Calculator
The implementation

public class Calculator {

private int total = 0;
private String concat = "0";

public void plus(int amount) {
total += amount ;
bracket();
concat += " + " + amount ;

}

public void multiply (int amount) {
total *= amount ;
bracket();
concat += " * " + amount ;

}

private void bracket() {
concat = "(" + concat + ")";

}

public int getTotal () {
return total ;

}

public void reset () {
total = 0;
concat = "0";

}

public String toString () {
return concat +

" = " + total ;
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 136 / 220

The Calculator
The implementation

public class Calculator {

private int total = 0;
private String concat = "0";

public void plus(int amount) {
total += amount ;
bracket();
concat += " + " + amount ;

}

public void multiply (int amount) {
total *= amount ;
bracket();
concat += " * " + amount ;

}

private void bracket() {
concat = "(" + concat + ")";

}

public int getTotal () {
return total ;

}

public void reset () {
total = 0;
concat = "0";

}

public String toString () {
return concat +

" = " + total ;
}

}20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

The Calculator

1. Both plus and multiply need to put brackets around concat, so we create a
private helper method.

2. bracket() is this private instance method. It can only be called by other methods
defined withing Calculator.

3. Within an instance method, you can call other instance methods on the same
instance implicitly, i.e. without needing the instance. syntax.

Objects

Constructors
Executing code when creating an instance

Sometimes when you create an instance you would like some custom code to
execute.
Frequently this is used to initialize the fields of the object to a known state,
to make sure some property of the fields holds.
You may also wish to pass into the object some initial values to use for the
fields.
This code is specified by a special method called a constructor. Constructors
can accept arguments and modify the fields of an instance, but they can’t
return results.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 137 / 220

Objects

InitializedCounter
A counter which is told it’s initial count when created

public class InitializedCounter {

private int count;

public InitializedCounter(int count) {
this.count = count;

}

public void tick() {
count ++;

}

public int getTicks () {
return count;

}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 139 / 220

InitializedCounter
A counter which is told it’s initial count when created

public class InitializedCounter {

private int count;

public InitializedCounter(int count) {
this.count = count;

}

public void tick() {
count ++;

}

public int getTicks () {
return count;

}

}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

InitializedCounter

1. Note the InitializedCounter constructor method. Constructors use the same
name as the class itself.

2. The constructor doesn’t have a return type, as it doesn’t return results.
3. Frequently the parameter names of the constructor will shadow the names of fields.

To get around this, fields can be referred to by prefixing with this.
4. this is a variable that refers to the current instance.

Objects

TickTock - Constructors II

public class TickTockInitialized {

public static void main(String [] args) {

InitializedCounter counter = new InitializedCounter(10);
System.out.println(counter.getTicks ());

System.out.println("Tick!");
counter.tick ();

System.out.println(counter.getTicks ());

}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 140 / 220

TickTock - Constructors II

public class TickTockInitialized {

public static void main(String [] args) {

InitializedCounter counter = new InitializedCounter(10);
System.out.println(counter.getTicks ());

System.out.println("Tick!");
counter.tick ();

System.out.println(counter.getTicks ());

}

}20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

TickTock - Constructors II

1. If a class constructor expects arguments, you can pass them to it during the new
call.

2. The arguments are passed between ()s after the class name.

Objects

Exercise 22
Write a class IntHolder that would make the following assert statements pass.

public class Main {
public static void main(String [] args) {

IntHolder ih = new IntHolder (10);
assert ih.size() == 10;
ih.put(0, 3);
assert ih.get (0) == 3;
ih.fill (6);
assert ih.get (4) == 6;

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 141 / 220

Objects

Exercise 23
What does the following program print?

public class Main {
public static void main(String [] args) {

InitializedCounter a = new InitializedCounter (10);
InitializedCounter b = new InitializedCounter (20);

a = b;
a.tick ();
System.out.println("The counters have ticked " +

a.getTicks () + " and " + b.getTicks () + " times");
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 142 / 220

Objects

Mutable and immutable objects

So far, we have seen mutable objects – their state can change, and when it
does, every variable using the object will see the change.
Instead of changing the state of an object, a method can return a new object
with the desired new state, while the state of the current object remains
unchanged.
In this approach, we can declare all the object’s fields as final, to guarantee
that its state will never change. This is called an immutable object.
The choice between the two is often a matter of taste, and depends on the
situation. However, objects that primarily carry ’data’ are often immutable
(e.g. Strings).
Haskell data structures are immutable.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 143 / 220

Objects

ImmutableCounter
Re-writing InitializedCounter as an immutable object

public class ImmutableCounter {

private final int count;

public ImmutableCounter(int count) {
this.count = count;

}

public ImmutableCounter tick() {
return new ImmutableCounter(count + 1);

}

public int getTicks() {
return count;

}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 145 / 220

ImmutableCounter
Re-writing InitializedCounter as an immutable object

public class ImmutableCounter {

private final int count;

public ImmutableCounter(int count) {
this.count = count;

}

public ImmutableCounter tick() {
return new ImmutableCounter(count + 1);

}

public int getTicks() {
return count;

}

}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

ImmutableCounter

1. This example shows how InitializedCounter can be implemented as an
immutable object

2. The constructor and getTicks() method are as before.
3. The private int count field has been made final, making this class an

immutable object.
4. public void tick() has been changed to public ImmutableCounter tick(),

and instead of updating the state returns a new object with the desired state.

Objects

Exercise 24
What does the following program print?

public class Main {
public static void main(String [] args) {

ImmutableCounter a = new ImmutableCounter (10);
ImmutableCounter b = new ImmutableCounter (20);

a = b;
a = a.tick (); // assign back to a
System.out.println("The counters have ticked " +

a.getTicks () + " and " + b.getTicks () + " times");
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 146 / 220

Objects

More on final

Declaring something as final means its value cannot be changed after the initial
assignment. The following declarations can be made final:

Variables inside a function.
Fields of an object, such that their value cannot change throughout the
lifetime of the object. They must be initialised with an assignment or inside a
constructor method.
Method arguments, meaning their value cannot be changed/re-assigned
inside the method body. Note, that Java by default allows re-assigning to a
method argument, though it is commonly considered bad practice.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 147 / 220

Objects The DragonsBreath Dungeons – Another Example

The DragonsBreath Dungeons – Another Example

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 148 / 220

Objects The DragonsBreath Dungeons – Another Example

Working with Objects
The DragonsBreath Dungeons

We are going to build up a slightly larger example, with several classes and lots of
different instances working together in a single program.
Our program is going to be a very simple dungeon game, which features four
classes:

The Player class. This describes our hero, who braves the fearsome dungeon,
fighting monsters and gaining experience, while trying not too lose to much
health.
The Monsters. This describes the template of a monster, which attacks our
hero and dies when they run out of health.
The Dungeon. This holds a player and the monsters within. It also
co-ordinates the attack phases between monsters and players, and signals
when the game is over.
DragonsBreath. Contains the static main method, and manages the main
game loop and input routines.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 149 / 220

Objects The DragonsBreath Dungeons – Another Example

Monsters

We wish to create several different variations of Monster, for example Orcs,
Dragons and Bunnies.

State
Their name, a String that will not change after the instance is created.
Their attackStrength, an int that will not change after the instance has
been created.
Their health, an int that will be initialized to a set value.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 150 / 220

Objects The DragonsBreath Dungeons – Another Example

Monster - I
The description of things that live in our dungeon

public class Monster {

private final String name;
private final int attackStrength;
private int health;

public Monster(String name ,
int attackStrength , int health) {

this.name = name;
this.attackStrength = attackStrength;
this.health = health;

}

public String getName () {
return name;

}
public boolean isAlive () {

return health > 0;
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 152 / 220

Monster - I
The description of things that live in our dungeon

public class Monster {

private final String name;
private final int attackStrength;
private int health;

public Monster(String name ,
int attackStrength , int health) {

this.name = name;
this.attackStrength = attackStrength;
this.health = health;

}

public String getName () {
return name;

}
public boolean isAlive () {

return health > 0;
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

The DragonsBreath Dungeons – Another Example
Monster - I

1. The public Monster(...) declaration is the class constructor
2. Constructors are methods without a return type, and with the same name as the

class
3. If you don’t write a constructor, a default is created for you which is roughly

equivalent to public ClassName() { }
4. The name and attackStrength fields are marked final. Instance methods cannot

change the value of a final field.
5. final fields must be initialized in place or in a constructor.
6. Frequently the parameter names of the constructor will shadow the names of fields.

To get around this, fields can be referred to by prefixing with this.
7. this is a variable that refers to the current instance.

Objects The DragonsBreath Dungeons – Another Example

Calling the Monster Constructor
Bunny!

public class MainMonsters {

public static void main(String [] args) {

Monster monster = new Monster("Cute Bunny", 0, 7);

System.out.println(monster.getName ()
+ " " + monster.isAlive ());

}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 153 / 220

Objects The DragonsBreath Dungeons – Another Example

Monster

Behaviour
getName - returns the name of the Monster
isAlive - returns whether the health of the monster is > 0.
takeDamage - receives an amount of damage to take and reduces health by
that amount.
toString - represents the monster as a String

attack - accepts a Player as an argument, and attacks them.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 154 / 220

Objects The DragonsBreath Dungeons – Another Example

Monster - II
Implementations of Behaviour

...

public void takeDamage(int damage) {
health = Math.max(health - damage , 0);

}

public String toString () {
String aliveOrDead = isAlive () ? ":)" : "x";
return name + " H: " + health

+ " A:" + attackStrength + " " + aliveOrDead;
}

public void attack(Player player) {
player.takeDamage(attackStrength);

}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 155 / 220

Monster - II
Implementations of Behaviour

...

public void takeDamage(int damage) {
health = Math.max(health - damage , 0);

}

public String toString () {
String aliveOrDead = isAlive () ? ":)" : "x";
return name + " H: " + health

+ " A:" + attackStrength + " " + aliveOrDead;
}

public void attack(Player player) {
player.takeDamage(attackStrength);

}

}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

The DragonsBreath Dungeons – Another Example
Monster - II

1. The condition ? expression : expression syntax is an expression-level
conditional.

2. (compare to if (condition) { ... } else { ... } which is a statement-level
conditional.)

3. The attack method receives a Player as an argument, and then instructs them to
takeDamage according to the attackStrength of the monster.

4. Note that the player.takeDamage(...) method will be a method declared in the
Player class, not the takeDamage method declared here.

Objects The DragonsBreath Dungeons – Another Example

Player

State
int health - the remaining health of the Player.
int experience - This is increased by killing monsters, and will make the
player tougher and stronger.
final int attackStrength - The base attack damage the player does. It will
be multiplied by their experience.

Behaviour
attack - attacks a monster. If they succeed in killing the monster, the player
gains experience.
takeDamage - reduces the players health by an amount of damage, modified
by experience.
isAlive - returns whether the player’s health is >0.
toString - returns a String representation of the player.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 156 / 220

Objects The DragonsBreath Dungeons – Another Example

Player
public class Player {

private int health ;
private final int attackStrength ;
private int experience ;

public Player (int health ,
int attackStrength) {

this . health = health ;
this . attackStrength

= attackStrength ;
this . experience = 1;

}

public void attack (Monster monster) {
if (! monster . isAlive ()) {

return ;
}

monster . takeDamage (
attackStrength * experience);

if (! monster . isAlive ()) {
experience ++;

}
}

public void takeDamage (
int monsterAttackStrength) {

health = Math.max (0, health -
monsterAttackStrength / experience);

}

public boolean isAlive () {
return health > 0;

}

public String toString () {
String aliveOrDead

= isAlive () ? ":)" : "x";
return " Player : H: " + health

+ " A:" + attackStrength
+ " E: " + experience
+ " " + aliveOrDead ;

}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 157 / 220

Objects The DragonsBreath Dungeons – Another Example

Dungeon

Holds a player and some monsters. Coordinates the attacking of creatures held
within, and knows when the game is over.

State
final Player player - The Player that has braved the dungeon.
final Monster[] monsters - An array of dead and alive Monsters that live in
the dungeon.
final Random random - An instance of a Java utility class that provides more
flexible random numbers than just using Math.random().

Note that although all the state is final, the states of the individual Player and
Monsters can change, just that the Dungeon cannot change which Player instance
it knows about.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 158 / 220

Objects The DragonsBreath Dungeons – Another Example

Dungeon

Behaviour
printDungeon - Print out a representation of the dungeon to the console.
isGameOver - The game is over if the player dies, or all the monsters have
died.
randomMonsterAttack - Causes a random monster to attack the player.
playerAttack - Causes the player to attack a particular monster.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 159 / 220

Objects The DragonsBreath Dungeons – Another Example

Dungeon - I
import java.util.Random;

public class Dungeon {

private final Player player;
private final Monster [] monsters;
private final Random random;

public Dungeon(Random random , Player player) {
this.player = player;
this.monsters = new Monster []

{ new Monster("Tiny Mouse", 1, 5),
new Monster("Vam -Goblin", 2, 10),
new Monster("Orc Wizard", 3, 15),
new Monster("Ice Dragon", 20, 50),
new Monster("Cute Bunny", 0, 7) };

this.random = random;
}

...
(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 160 / 220

Dungeon - I
import java.util.Random;

public class Dungeon {

private final Player player;
private final Monster [] monsters;
private final Random random;

public Dungeon(Random random , Player player) {
this.player = player;
this.monsters = new Monster []

{ new Monster("Tiny Mouse", 1, 5),
new Monster("Vam -Goblin", 2, 10),
new Monster("Orc Wizard", 3, 15),
new Monster("Ice Dragon", 20, 50),
new Monster("Cute Bunny", 0, 7) };

this.random = random;
}

...

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

The DragonsBreath Dungeons – Another Example
Dungeon - I

1. We need to explicitly import java.util.Random; to refer to the Random class.
2. We initialize monsters with an array of new Monster instances. Every time the

constructor is called, new, fresh monsters are created.

Objects The DragonsBreath Dungeons – Another Example

Dungeon - II

...

public void printDungeon () {
System.out.println("Our Hero:");
System.out.println(player);

System.out.println("The foul monsters: ");
for(int i = 0 ; i < monsters.length ; i++) {

System.out.println(i + " - " + monsters[i]);
}

}

...

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 161 / 220

Dungeon - II

...

public void printDungeon () {
System.out.println("Our Hero:");
System.out.println(player);

System.out.println("The foul monsters: ");
for(int i = 0 ; i < monsters.length ; i++) {

System.out.println(i + " - " + monsters[i]);
}

}

...20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

The DragonsBreath Dungeons – Another Example
Dungeon - II

1. println() will use the toString method defined on Player to represent them.
2. The toString method is also implicitly used if you try and concatenate (+) a

instance object onto a String.
3. Here, for example, monsters[i] is a Monster, and its toString is used in the

println(...) call.
4. Note the use of the for(... ; ... ; ...) loop to let us print out both the

index of the monster, and the monster itself.

Objects The DragonsBreath Dungeons – Another Example

Dungeon - III

...

public boolean isGameOver () {
return !player.isAlive () || areAllMonstersDead ();

}

private boolean areAllMonstersDead () {
for (Monster monster : monsters) {

if (monster.isAlive ()) {
return false;

}
}
return true;

}

...

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 162 / 220

Dungeon - III

...

public boolean isGameOver () {
return !player.isAlive () || areAllMonstersDead ();

}

private boolean areAllMonstersDead () {
for (Monster monster : monsters) {

if (monster.isAlive ()) {
return false;

}
}
return true;

}

...

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

The DragonsBreath Dungeons – Another Example
Dungeon - III

1. areAllMonstersDead is a private helper method in Dungeon.
2. If it detects any monster is alive, then it can immediately return false.
3. Note the use of the enhanced for loop to check all the monsters when we don’t

care about their positions in the array.

Objects The DragonsBreath Dungeons – Another Example

Dungeon - IV

/* Causes a random living monster to attack the Player
* return The monster which attacked the player
*/

public Monster randomMonsterAttack () {
assert !isGameOver () : "Monster cannot attack if game is over";

Monster attackingMonster;
do {

attackingMonster = monsters[random.nextInt(monsters.length)];
} while (! attackingMonster.isAlive ());

attackingMonster.attack(player);

return attackingMonster;
}

...

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 163 / 220

Dungeon - IV

/* Causes a random living monster to attack the Player
* return The monster which attacked the player
*/

public Monster randomMonsterAttack () {
assert !isGameOver () : "Monster cannot attack if game is over";

Monster attackingMonster;
do {

attackingMonster = monsters[random.nextInt(monsters.length)];
} while (! attackingMonster.isAlive ());

attackingMonster.attack(player);

return attackingMonster;
}

...

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

The DragonsBreath Dungeons – Another Example
Dungeon - IV

1. This method does two things, it causes a random monster to attack the player, and
it returns the monster that attacked.

2. The precondition of this method is that the game isn’t over.
3. In order to keep choosing random monsters until we get one that is alive, we use a

do-while loop. do-while is appropriate as we definitely want to run the body of
the loop at least once.

4. In order to choose a random monster, we use the instance method nextInt on our
random field.

5. nextInt(value) returns a random number between 0 (inclusive) and value
(exclusive) - perfect for choosing a random value from an array!

6. The method causes the chosen attackingMonster to attack the player, and also
returns it for printing out later.

Objects The DragonsBreath Dungeons – Another Example

Dungeon - V

public void playerAttack(int i) {
assert player.isAlive () && i >= 0

&& i < monsters.length
&& monsters[i]. isAlive ()

: "Player cannot attack monster " + i;
player.attack(monsters[i]);

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 164 / 220

Dungeon - V

public void playerAttack(int i) {
assert player.isAlive () && i >= 0

&& i < monsters.length
&& monsters[i]. isAlive ()

: "Player cannot attack monster " + i;
player.attack(monsters[i]);

}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

The DragonsBreath Dungeons – Another Example
Dungeon - V

1. This method tells the player to attack the monster at index i in the monsters
array.

2. It has a big precondition: the player must be alive, the index must be a valid index
into the array, and the monster at that index must be alive.

3. What would happen if the monsters[i].isAlive() check was at the beginning of
the precondition instead of at the end?

Objects The DragonsBreath Dungeons – Another Example

DragonsBreath
Tying it all together.

This class has two static methods:
The main method that runs the game loop
and a helper method, checkDifficultyAndGetPlayer which prints out a menu
to choose the difficulty of the game.

The difficulty setting changes the initial strength and health of the Player which
is put into the dungeon.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 165 / 220

Objects The DragonsBreath Dungeons – Another Example

DragonsBreath - I

import java.util. Random ;

public class DragonsBreath {

private static Player checkDifficultyAndGetPlayer () {
System .out. println (" Please choose your difficulty :");
System .out. println ("1: Easy");
System .out. println ("2: Normal ");
System .out. println ("3: Hard");

while (true) {
int response = IOUtil . readInt ();
switch (response) {
case 1:

return new Player (1000 , 100);
case 2:

return new Player (100 , 5);
case 3:

return new Player (15 , 1);
default :

System .out. println (" Invalid response , please try again !");
}

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 167 / 220

DragonsBreath - I

import java.util. Random ;

public class DragonsBreath {

private static Player checkDifficultyAndGetPlayer () {
System .out. println (" Please choose your difficulty :");
System .out. println ("1: Easy");
System .out. println ("2: Normal ");
System .out. println ("3: Hard");

while (true) {
int response = IOUtil . readInt ();
switch (response) {
case 1:

return new Player (1000 , 100);
case 2:

return new Player (100 , 5);
case 3:

return new Player (15 , 1);
default :

System .out. println (" Invalid response , please try again !");
}

}
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Objects

The DragonsBreath Dungeons – Another Example
DragonsBreath - I

1. Since DragonsBreath will also need to use Random it needs to import
java.util.Random too.

2. The while (true) loop is used to keep asking the user for a difficulty until they
choose a correct one.

3. We vary the constructor parameters to the Player that is returned to alter the
difficulty.

Objects The DragonsBreath Dungeons – Another Example

DragonsBreath - II
The main loop of the game

public static void main(String [] args) {
Random random = new Random ();
System .out. println (" Hello and welcome to DragonsBreath !");
Player player = checkDifficultyAndGetPlayer ();
Dungeon dungeon = new Dungeon (random , player);

while (! dungeon . isGameOver ()) {
dungeon . printDungeon ();

System .out. println (" Which monster do you wish to attack ?");
int monsterId = IOUtil . readInt ();
// TODO : check this is a valid monster ;
dungeon . playerAttack (monsterId);

if (dungeon . isGameOver ()) {
break ;

}

Monster monsterThatAttacked = dungeon . randomMonsterAttack ();
System .out. println ("You were attacked by the: "

+ monsterThatAttacked . getName () + "!");
}

System .out. println ("Game over!");
dungeon . printDungeon ();

}
} (120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 168 / 220

Testing

Testing

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 169 / 220

Testing

Testing Static Methods

When testing functions in Haskell and simple static methods in Java it was
enough to enumerate simple test cases matching inputs to expected outputs.
For example:

public static void sumSquareDigitsTests () {
checkSumSquareDigits (10, 1);
checkSumSquareDigits (103, 10);
...

}

These test cases represented the fact that sumSquareDigits(10) should equal
1, and that sumSquareDigits(103) should equal 10.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 170 / 220

Testing

Testing Objects?

Testing objects is different. You can’t think of an object as being a mapping
from inputs to outputs.
Recall that an object consists of three parts: State, Behaviour and Identity.

Identity - this is managed for us by Java. New, unique things are created via
new.
State - this is internal and hidden and used only by the object.
Behaviour - this is external and visible to others using the object.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 171 / 220

Testing

Testing Objects?

State
From outside an object you can’t see its internal state.
Furthermore, we don’t really want to - we want the state to be encapsulated
(e.g. hidden).
We don’t care how the object does what it does, only that it does it correctly.
This means it should be safe to change how an object works internally.

e.g. Monsters could store a boolean field saying if they are dead or alive and
update and use that instead of checking if health > 0 in isAlive.

That is, we don’t want to test the state directly.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 172 / 220

Testing

Testing Objects?

Behaviour
The behaviour of an object is specified by its public instance methods.
We can observe the return values of these methods and whether they are
what we expect.

e.g. if we have just created a Monster with 10 health, we expect isAlive to
return true.

Some methods are void. However we can also observe their side effects on
the current object.

e.g. After calling takeDamage(20) on a Monster that has been created with
10 health, we’d expect a subsequent call of isAlive to return false.

We can also observe the side effects of void methods on other objects.
e.g. After calling attack(player) on a Monster that has been created with
an attack damage of 5, we’d expect a newly created Player with health 10 to
still be alive after the call.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 173 / 220

Testing

Testing Objects - Examples
Testing Monster

public class MonsterTests {

/* Monster behaviour from lecture slides
* getName - returns the name of the Monster
* isAlive - returns whether the health of the monster is > 0.
* takeDamage - receives an amount of damage to take and
* reduces health by that amount .
* toString - represents the monster as a String
* attack - accepts a Player as an argument, and attacks them
*/
public static void main(String [] args) {

System .out. println (" Running tests ...");

canRememberName ();
canBeAliveOrNot ();
canBeDamaged ();
attacksPlayers();
hasReadableStringRepresentation ();

System .out. println ("... tests complete ");
}

. . .
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 174 / 220

Testing Objects - Examples
Testing Monster

public class MonsterTests {

/* Monster behaviour from lecture slides
* getName - returns the name of the Monster
* isAlive - returns whether the health of the monster is > 0.
* takeDamage - receives an amount of damage to take and
* reduces health by that amount .
* toString - represents the monster as a String
* attack - accepts a Player as an argument, and attacks them
*/
public static void main(String [] args) {

System .out. println (" Running tests ...");

canRememberName ();
canBeAliveOrNot ();
canBeDamaged ();
attacksPlayers();
hasReadableStringRepresentation ();

System .out. println ("... tests complete ");
}

. . .
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Testing

Testing Objects - Examples

1. We begin with a small program that contains some tests, at least one for each
behaviour.

2. The different tests have names that describe behaviour monsters can exhibit. So
you would say ’A monster attacks players.’ hence the attack method could be
tested by a method called attackPlayers.

3. For more complicated objects it may be important to test the interaction of
multiple methods, and so new categories could be created for them.

Testing

Testing Objects - Examples
Two Helper Methods

static void assertIsAlive(Monster m) {
// a simple for procedure for checking a particular case

boolean actual = m.isAlive();
if (!actual) {

System.out.println("m.isAlive() returned:" + actual + ", expected: true");
}

}

static void assertIsNotAlive (Monster m) {
// a simple for procedure for checking a particular case

boolean actual = m.isAlive();
if (actual) {

System.out.println("m.isAlive() returned:" + actual + ", expected: false");
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 175 / 220

Testing Objects - Examples
Two Helper Methods

static void assertIsAlive(Monster m) {
// a simple for procedure for checking a particular case

boolean actual = m.isAlive();
if (!actual) {

System.out.println("m.isAlive() returned:" + actual + ", expected: true");
}

}

static void assertIsNotAlive (Monster m) {
// a simple for procedure for checking a particular case

boolean actual = m.isAlive();
if (actual) {

System.out.println("m.isAlive() returned:" + actual + ", expected: false");
}

}20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Testing

Testing Objects - Examples

1. These methods only print out if results are unexpected.
2. If we run large numbers of tests, it is clearer to only see those that fail than going

through lots of output trying to work out which pass and which fail.
3. Note that there is no modifier. This means that this method is available in the

entire package or package visible. Anyone can see public methods and only within
a class are private methods visible. For now, a package can be thought of as all
the files you can see at once in the IJ ide.

Testing

Testing Objects - Examples
Testing Monster’s takeDamage method

// takeDamage tests

static void canBeDamaged () {
Monster testMonster;

testMonster = new Monster("test", 5, 10);
testMonster.takeDamage (5);
assertIsAlive(testMonster);

testMonster = new Monster("test", 5, 10);
testMonster.takeDamage(10);
assertIsNotAlive(testMonster);

testMonster = new Monster("test", 5, 10);
testMonster.takeDamage(5);
testMonster.takeDamage(5);
assertIsNotAlive(testMonster);

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 176 / 220

Testing Objects - Examples
Testing Monster’s takeDamage method

// takeDamage tests

static void canBeDamaged () {
Monster testMonster;

testMonster = new Monster("test", 5, 10);
testMonster.takeDamage (5);
assertIsAlive(testMonster);

testMonster = new Monster("test", 5, 10);
testMonster.takeDamage(10);
assertIsNotAlive(testMonster);

testMonster = new Monster("test", 5, 10);
testMonster.takeDamage(5);
testMonster.takeDamage(5);
assertIsNotAlive(testMonster);

}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Testing

Testing Objects - Examples

1. Here are three of many possible examples of testing the takeDamage method here
2. The simplest cases are tested first (just calling takeDamage once), and then a more

complicated example calling takeDamage twice.

Testing

Testing Objects - Examples
Testing Monster’s attack method

private static void attacksPlayers () {
Monster testMonster;
Player testPlayer;

testMonster = new Monster("test", 5, 10);
testPlayer = new Player(5, 10);
testMonster.attack(testPlayer);
PlayerTests.assertIsNotAlive(testPlayer);

testMonster = new Monster("test", 5, 10);
testPlayer = new Player(10, 10);
testMonster.attack(testPlayer);
PlayerTests.assertIsAlive(testPlayer);

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 177 / 220

Testing Objects - Examples
Testing Monster’s attack method

private static void attacksPlayers () {
Monster testMonster;
Player testPlayer;

testMonster = new Monster("test", 5, 10);
testPlayer = new Player(5, 10);
testMonster.attack(testPlayer);
PlayerTests.assertIsNotAlive(testPlayer);

testMonster = new Monster("test", 5, 10);
testPlayer = new Player(10, 10);
testMonster.attack(testPlayer);
PlayerTests.assertIsAlive(testPlayer);

}20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Testing

Testing Objects - Examples

1. The attack method should change the health status of the testPlayer. To see its
effect, we check whether the player is alive or not after the attack.

2. Again notice that before each test, we recreate the Monster and Player, so that
the tests are as minimal as possible.

3. We could also add some tests that attack doesn’t change our expectations of
whether the testMonster is alive.

Testing

When should you write tests

Before writing the code that implements it.
You’ll know when you’ve implemented the feature because the tests all pass.
Writing the tests can sometimes guide the design of your object.

Before fixing a bug found in a program.
If you have a test that isolates the bug, then debugging gets easier.
If you already have a test suite, then adding new test cases should make this
easy.
If when you introduce a bug you find it, fix it and add a test for it (not
necessarily in that order!), you’ll never have to worry that the bug might come
back. (This does happen!)

Before changing/restructuring the internal workings of an object.
Arrange to have passing tests before making the change.
Once you’ve changed the code, you can rerun the tests.
If any fail then you’ve changed the behaviour of the object, as-well as its state.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 178 / 220

Testing

Note

This is just scratching the surface of testing Java code.
Next term you’ll see more features of Java that will make it possible to create
modular, flexible test suites in a disciplined way.
You will also get to see (and create!) much larger codebases and be exposed
to different forms of testing, for example:

Integration Testing - testing a whole program from end to end.
Unit Testing - testing the individual components (in this case objects).
Regression Testing - using existing tests to check changed or new code still
works.
Automated Testing - using tools to help you create tests.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 179 / 220

Testing

Summary

To test static methods one enumerates simple test cases, (so mapping inputs
to outputs).
Objects have identity, state and behaviour. We need to test the behaviour -
that it does what it is supposed to do.
For each object produce a set of tests that see whether the object behaves
properly or not. You need at least one test for each different behaviour.
To make it easier to see what has gone wrong only print out when a test
shows that an object is not behaving properly.
Accumulate your tests for an object. Do not write a test, see that the
behaviour is correct and then throw it away. Always run the tests you have
written every time you test your code.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 180 / 220

Enumerations

Enumerations

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 181 / 220

Enumerations

Enumerations

An enumerated type is a type whose legal values consist of a fixed set of
constants.
If your program needs a fixed set of constants then using an enumerated type
makes your program more readable and more maintainable.
In Java, the values in the enumerated type are also objects, which means
they can have constructors and instance methods which makes it easy to
have per-constant behaviour.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 182 / 220

Enumerations

Simplest Examples
Haskell and Java enumerated types

In Haskell
data Day = Sunday | Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday

In Java
public enum Day {

SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,FRIDAY, SATURDAY;
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 183 / 220

Simplest Examples
Haskell and Java enumerated types

In Haskell
data Day = Sunday | Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday

In Java
public enum Day {

SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,FRIDAY, SATURDAY;
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Enumerations

Simplest Examples

1. In Java, enum is bit like class.
2. The Day enum must live in a file called Day.java
3. By convention, Java constants (and enumeration constants) are written in all

capital letters
4. Note: enums were added in Java 1.5 (or Java 5).

Enumerations

Other Examples

Compass Directions (North, East, South and West)
Days of the week
Months of the year
Ranks and Suits in a deck of cards
Planets in our solar system

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 184 / 220

Enumerations

Using an enumerated type
Working with Days

public class DayExample {

public static void main(String [] args) {
Day today = Day.MONDAY;
System.out.println(today);

System.out.println("The week: ");

for (Day day : Day.values()) {
String tail = today == day ? " <– Today!" : "";
System.out.println(day + tail);

}

System.out.println("Today’s index:");
System.out.println(today.ordinal());

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 185 / 220

Using an enumerated type
Working with Days

public class DayExample {

public static void main(String [] args) {
Day today = Day.MONDAY;
System.out.println(today);

System.out.println("The week: ");

for (Day day : Day.values()) {
String tail = today == day ? " <– Today!" : "";
System.out.println(day + tail);

}

System.out.println("Today’s index:");
System.out.println(today.ordinal());

}
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Enumerations

Using an enumerated type

1. To reference an enum constant you have to prefix it with the name of the enum.
i.e. Day.MONDAY

2. By default, when you convert an enum constant to a String it will return its name
("MONDAY")

3. Enum classes (e.g. Day) have some static methods automatically declared for
them, for example values() which returns all of that enum’s constants, in an array,
in order.

4. You are guaranteed by Java that there will only ever be one instance of the enum
for each enum constant. This means that == will work on them.

5. If you wish to know what the index of an enum value is in the array, you can call its
instance method .ordinal()

6. Setting a single variable to one of two states based on a single condition is such a
common use of if-else that a shortcut has been devised for it, the conditional
operator, ?:.

Enumerations

Using an enumerated type
Enumerations work with case expressions

public static String whatToDoToday(Day day) {
switch (day) {

case MONDAY:
return "Give Lectures";

case TUESDAY:
return "Play Prison Architect";

case WEDNESDAY:
return "Run Tutorial";

case THURSDAY:
return "Give Lecture";

case FRIDAY:
return "Play Suduko and Solitaire";

case SATURDAY:
case SUNDAY:

return "Watch Strictly Come Dancing";
default:

return "not possible";
}

}
(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 186 / 220

Using an enumerated type
Enumerations work with case expressions

public static String whatToDoToday(Day day) {
switch (day) {

case MONDAY:
return "Give Lectures";

case TUESDAY:
return "Play Prison Architect";

case WEDNESDAY:
return "Run Tutorial";

case THURSDAY:
return "Give Lecture";

case FRIDAY:
return "Play Suduko and Solitaire";

case SATURDAY:
case SUNDAY:

return "Watch Strictly Come Dancing";
default:

return "not possible";
}

}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Enumerations

Using an enumerated type

1. The cases aren’t prefixed with Day.
2. Even if the switch is exhaustive, Java will still require you to put a default case in

or an extra return statement.

Enumerations

Exercise 25
Write a static method isWeekDay that takes a Day arguments and returns true if
the given day is a weekday (Monday – Friday).

One way is to use a switch statement.
Another is to use the .ordinal() method.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 187 / 220

Enumerations

Giving enumerated types behaviour
Because enums are actually objects, they can have constructors, fields, and methods.

public enum EnhancedDay {

SUNDAY("Watch Strictly Come Dancing"),
MONDAY("Give Lectures"),
TUESDAY("Play Prison Architect"),
WEDNESDAY("Run Tutorial"),
THURSDAY("Prepare Labs"),
FRIDAY("Play Suduko and Solitaire"),
SATURDAY("Watch Strictly Come Dancing");

private final String whatToDo;

EnhancedDay(String whatToDo) {
this.whatToDo = whatToDo;

}

public String whatToDo() {
return whatToDo;

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 188 / 220

Giving enumerated types behaviour
Because enums are actually objects, they can have constructors, fields, and methods.

public enum EnhancedDay {

SUNDAY("Watch Strictly Come Dancing"),
MONDAY("Give Lectures"),
TUESDAY("Play Prison Architect"),
WEDNESDAY("Run Tutorial"),
THURSDAY("Prepare Labs"),
FRIDAY("Play Suduko and Solitaire"),
SATURDAY("Watch Strictly Come Dancing");

private final String whatToDo;

EnhancedDay(String whatToDo) {
this.whatToDo = whatToDo;

}

public String whatToDo() {
return whatToDo;

}
}20

17
-1
2-
07

Programming II Introduction to Imperative Programming
Enumerations

Giving enumerated types behaviour

1. The constructor arguments are written between ()s after the enum constant’s
name, to be passed to the constructor.

2. If you declare a constructor, it is private, and you cannot write program code to
call it. It doesn’t need to be explicitly declared as private. It is executed
automatically.

3. Within the definition of an enum you can also create fields and methods.

Enumerations

Using an enumerated type’s behaviour

public class EnhancedDayExample {

public static void main(String [] args) {

EnhancedDay today = EnhancedDay.MONDAY;
String activity = today.whatToDo ();

System.out.println(activity);

}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 189 / 220

Enumerations

Exercise 26
Extend EnhancedDay with an isWeekDay instance method.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 190 / 220

Enumerations

Summary

Enums are lists of constants (or static final). Use an enum when you need
a small predefined list of values.
Using enums appropriately both makes your program more readable (hence
less error prone) and it may run faster.
Enums can contain constructors, methods, fields, and constant class bodies.
MyEnum.values() returns an array containing the MyEnum values.
anEnum.ordinal() returns the index of anEnum in MyEnum.values().
Enums can be compared with ==, .equals(), and case statements. Even if
there is a case for every value in an enumerated type you must either have a
default or after the swtich statement a separate return in case there is no
match (which would be impossible).

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 191 / 220

Bits and Pieces – Rounding off your Java, ready for next term

Bits and Pieces – Rounding off your Java, ready for
next term

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 192 / 220

Bits and Pieces – Rounding off your Java, ready for next term

Method and constructor overloading
Multiple definitions of the same function

In a single program a function can be redefined with the same name and same
return type, but with strictly different arguments. This is called overloading.
For example, the System.out.println() method exists multiple times taking
different arguments (or none): println(), println(3), println(false).
Overloading is useful to enable methods to deal with different kinds of
arguments, and also to allow the specification of default values.
Constructors can also be overloaded. This enables the provider of a class to
have a default initisalisation without parameters and another initialisation
with parameters.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 193 / 220

Bits and Pieces – Rounding off your Java, ready for next term

Counter
A flexible, overloaded counter

public class Counter {
private int count;

public Counter() {
this(0);

}
public Counter(int count) {

this.count = count;
}
public void tick() {

tick(1);
}
public void tick(int n) {

count += n;
}
public int getTicks () {

return count;
}

}
(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 194 / 220

Counter
A flexible, overloaded counter

public class Counter {
private int count;

public Counter() {
this(0);

}
public Counter(int count) {

this.count = count;
}
public void tick() {

tick(1);
}
public void tick(int n) {

count += n;
}
public int getTicks () {

return count;
}

}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Bits and Pieces – Rounding off your Java, ready for next
term

Counter

1. Note the two constructor methods.
2. Constructor methods that can be called with no arguments are called default

constructors.
3. The default constructor uses this to call another overloaded constructor method,

passing a default value of zero.
4. The tick method can tick a single time, or n times.
5. We could implement the no-argument version of tick by writing count++, but

instead we chose to call the overloaded version with a default argument of 1

Bits and Pieces – Rounding off your Java, ready for next term

this
or self-referencing

this(...) references another constructor method.
this followed by a . allows us to reference fields and functions of the current
object
this can also be used to pass a self-reference to another object. For instance,
in a tree-like structure:

Node n = new Node ();
n.setParent(this);

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 195 / 220

Bits and Pieces – Rounding off your Java, ready for next term Generics

Generics

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 196 / 220

Bits and Pieces – Rounding off your Java, ready for next term Generics

Java generics
Creating a pair class in Java

public class Pair<F, S> {

private final F first;
private final S second;

public Pair(F first , S second) {
this . first = first ;
this . second = second ;

}

public F getFst () {
return first ;

}

public S getSnd () {
return second ;

}

public void println () {
System .out. println ("<" + first + "," + second + ">");

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 197 / 220

Java generics
Creating a pair class in Java

public class Pair<F, S> {

private final F first;
private final S second;

public Pair(F first , S second) {
this . first = first ;
this . second = second ;

}

public F getFst () {
return first ;

}

public S getSnd () {
return second ;

}

public void println () {
System .out. println ("<" + first + "," + second + ">");

}
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Bits and Pieces – Rounding off your Java, ready for next
term

Generics
Java generics

1. The type parameters to a class are put between < >’s
2. Within the definition of the class Pair, you can use F and S as types.
3. So, for example, they are used as the types of the first and second fields.
4. They are also used as the types of the first and second parameters to the

constructor.
5. They are also the return types of the getFst and getSnd methods.

Bits and Pieces – Rounding off your Java, ready for next term Generics

Using a generic class
Creating an instance of a Pair

public class PairHelloWorld {

public static void main(String [] args) {
Pair <String , String > helloWorld

= new Pair<>("Hello", "World");

System.out.println(helloWorld.getFst());

}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 198 / 220

Using a generic class
Creating an instance of a Pair

public class PairHelloWorld {

public static void main(String [] args) {
Pair <String , String > helloWorld

= new Pair<>("Hello", "World");

System.out.println(helloWorld.getFst());

}

}20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Bits and Pieces – Rounding off your Java, ready for next
term

Generics
Using a generic class

1. When calling new, you must show that it is generic by creating a Pair<>
2. helloWorld.getFst() will have a return type of String in this example.

Bits and Pieces – Rounding off your Java, ready for next term Generics

Exercise 27

1 Create a static method equalAllThree which takes three arguments of the
same type, and returns true if they are all .equals(...) to each other. The
syntax for the signature is:
static <T> boolean equalAllThree (T first , T second , T third)

2 Now create a similar method but this time as an instance method rather than
as a static method. In this case it should only take two parameters, because
it should compare them with itself.

3 Consider the function makeDuplicate in Haskell:
makeDuplicate :: a -> (a, a)
makeDuplicate x = (x, x)

Write a similar method in Java.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 199 / 220

Bits and Pieces – Rounding off your Java, ready for next term Generics

Reminder: Primitive and Reference Types

Java’s Primitive Types

byte, short, int, long, float, double, boolean, char

Values of primitive types live on the stack, and are copied when assigning to
variables/fields or when passed into / out of methods.
By convention they start with a lowercase letter.

Java’s Reference Types

String, arrays of anything and instances of classes.
Their contents live in the heap, and variables / fields get a pointer to their
contents. This pointer is copied, but the contents themselves are not. So if
their contents are changed every use of them will see the change.
By convention they start with a capital letter.
Variables and fields of reference type can have the value null which means
they don’t point to a value (yet).

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 200 / 220

Bits and Pieces – Rounding off your Java, ready for next term Generics

Type Variables can only represent reference types

This means you cannot use Pair<String, int> as a type for a variable, for
example, as int is a primitive type.
However, Java has a set of reference types that box the primitive types.
These boxes live on the heap like other reference types, but are immutable
(i.e. they always point to the same place on the heap).

Primitive Type Reference Type
byte Byte
short Short
int Integer
long Long
float Float
double Double
boolean Boolean
char Character

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 201 / 220

Bits and Pieces – Rounding off your Java, ready for next term Generics

Boxes for Primitive Types
You can create instances of the box classes using their constructors, as per
normal classes. You can then use the box’s instance methods to unwrap the
primitive they contain. For example:

Integer i = new Integer (2);
int j = i.intValue ();

In many cases, Java can work out when you need to do the wrapping /
unwrapping and can do it for you. This is a feature called autoboxing. The
above example could equally be written as:

Integer i = 2;
int j = i;

The box classes have lots of useful static and instance methods.
Be aware, that autoboxing will crash your program if you try and convert a
null box into a primitive, e.g.

Integer i = null;

// this line will crash
int j = i;

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 202 / 220

Bits and Pieces – Rounding off your Java, ready for next term Generics

Exercise 28
What do the stack and heap look like during the execution of the following code:

int i = 0;
Integer ii = i;

// << here >>

int j = ii.intValue () + 1;
Integer jj = new Integer(j);

// << here >>

Integer kk = null;

// << here >>

int k = kk.intValue ();

// << here? >>

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 203 / 220

Bits and Pieces – Rounding off your Java, ready for next term Generics

Using Generics with Boxed Types

public class PairExample {

public static void main(String [] args) {

Pair <Integer, Integer> twoInts = new Pair <>(1, 1);
twoInts.println ();

Pair <Character, Integer> charInt = new Pair <>(’x’, 1);
charInt.println ();

Pair <String , Integer> keyValue = new Pair <>("Susan", 569);
keyValue.println ();

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 204 / 220

Bits and Pieces – Rounding off your Java, ready for next term Generics

Parametric Polymorphism

Haskell has polymorphism where you use type variables to write data
structures that are can be used to hold elements of any type.
Java has generics where you use type variables to write data structures that
are can be used to hold elements of any type.
This functionality is called parametric polymorphism because it takes type
variables as parameters and lets you create data structures (or classes) of the
same shape, independent of the types of the elements to be held in the data
structure. It makes a language much more expressive. That is it takes less
code, to say more and the code is more understandable to read.
If we did not have parametric polymorphism in Java, instead of a single class
Pair<F,S>, we would have needed separate classes StrStrPair, IntIntPair,
ChrIntPair, ChrChrPair, and StrIntPair etc., etc. each with their own
constructor and other methods.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 205 / 220

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

Collections and Interfaces

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 206 / 220

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

Collections

A collection is an object that holds a group of objects. Methods are provided
to manage the stored objects (such as storing and retrieving elements).
Modern programming languages provide large libraries (or api’s - application
program interface) of collections.
Examples of these are lists, sets, and maps - and there are many, many more
and many variations of each of these.
The api java.util.Collections contains the api’s for the most commonly
used data structures. See
https://docs.oracle.com/javase/9/docs/api/java/util/package-
summary.html.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 207 / 220

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

Collections

Parametric polymorphism (using generics) make the collections libraries very
expressive. For example, if one had a class Student then the List<E> class
could be used if you wanted a list data structure for your Students, whereas
before Java had generics, programmers had to write all the methods for
accessing a StudentList themselves.
As is very good programming practice, Java separates each data structure
into two - what it does and how it is implemented.
To use a data structure in your code, you need to know what it does. This is
the data structure’s specification and you can see what it does by looking at
its interface.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 208 / 220

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

The List<E> interface
Lists in Java

Use the List interface to store a list of elements
Elements can be added to the end of the list (default), or at a specific
position.
Lists do not have a fixed size, and support behaviour for removing elements.
https://docs.oracle.com/javase/9/docs/api/java/util/List.html
shows that there are over 30 methods in the List interface. Each method is
described.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 209 / 220

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

The List<E> interface
Important methods in the interface

public interface List <E> {
boolean add(E e);
void add(int index , E element);
void clear ();
boolean contains(Object o);
boolean equals(Object o);
E get(int index);
int indexOf(Object o);
boolean isEmpty ();
E remove(int index);
int size ();
...

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 210 / 220

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

The Set<E> interface

A list has ordered, possibly duplicated elements. Sometimes this level of
structure is not needed and a set models the problem better.
Use the Set interface to hold a unique set of values.
Sets do not have a way of retrieving an individual element, as they do not
commit to storing items in the order they are added.
https://docs.oracle.com/javase/9/docs/api/java/util/Set.html
shows the methods in the Set interface.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 211 / 220

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

The Set<E> interface
Important methods in the interface

public interface Set <E> {
boolean add(E e);
void clear ();
boolean contains(Object o);
boolean equals(Object o)
boolean isEmpty ();
boolean remove(Object o);
int size ();
...

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 212 / 220

https://docs.oracle.com/javase/9/docs/api/java/util/List.html
https://docs.oracle.com/javase/9/docs/api/java/util/Set.html

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

The Map<K,V> interface - lookup tables
Values do not need to be unique in a map.

Another very useful data structure is a map. Maps contain key-value pairs.
The key is used to access the key-value pair (or entry), so each key has to be
unique. A key is an object that you use to retrieve a value at a later date.
Here is an example where a map would be an appropriate data structure:

Key Value
Susan 569
Tony 354
Alastair 422
Alessandra 560
Marc 304
Konstantinos 228
Mark 228

Adding entries into a Map<K,V> requires the user to call
void put(K key, V value), which will add the key-value pair to the map if
the key does not exist, or replace the value of the given key if it is already
present. This ensures the set of keys will always be unique.
https://docs.oracle.com/javase/9/docs/api/java/util/Map.html
shows the methods in the Map interface.(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 213 / 220

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

The Map<K,V> interface - lookup tables
Important methods in the interface

public interface Map <K,V> {
void clear ();
boolean containsKey(Object key);
boolean containsValue(Object value);
Set <Map.Entry <K,V>> entrySet ();
boolean equals(Object o)
V get(Object key);
boolean isEmpty ();
Set <K> keySet ();
V put(K key , V value);
V remove(Object key);
int size ();
...

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 214 / 220

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

Interfaces and Implementations

Interfaces say what is implemented but not how it should be implemented.
They contain no method bodies, just fields and method headers.
Java provides over 2500 interfaces, see
http://docs.oracle.com/javase/9/docs/api/
Some you might find useful are in:

java.lang.Math - util methods for mathematics.
java.util.Arrays - util methods for handling arrays.
java.util.Collections - util methods for handling Collections

A class can implement an interface (the how). It must provide methods for
each of the method headers in the interface.
For example, the interfaces for the data structures list, set, and map have
a size() method and so any class that implements one of these data
structures must have a size() method.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 215 / 220

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

Interfaces and Implementations

For the interfaces that Java provides, it also provides a variety of classes that
can be chosen to implement it and they are listed in the documentation for
the interfaces themselves.
It is usual that there are several ways one can implement a given interface,
the how.
For example, look up List and see ‘All Known Implementing Classes:’
There are ten implementing classes including:
ArrayList, LinkedList, Stack, Vector

What the programmer has to do after they decide which interface they wish
to use, is to choose which class they want to use to implement it.
Choose an implementing class that has the features you want for your
application. For lists, if you cannot decide I suggest you use an ArrayList.
Next term you will learn how to write your own interfaces in Java, but you
can go a long way with the interfaces and implementing classes that Java
provides already.

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 216 / 220

https://docs.oracle.com/javase/9/docs/api/java/util/Map.html
http://docs.oracle.com/javase/9/docs/api/

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

Using a collection type
List is the interface used (twice) and it is implemented (both times) by the ArrayList class.

public class ListExample {
public static void main(String [] args) {

List<String> data = new ArrayList<String>();
data.add("Hello World");
data.add("Foo");
String s = data.get (0);

List<Integer> nums = new ArrayList<Integer>();
nums.add(Integer.MAX_VALUE);
Integer first = nums.get (0);

printSize(data);
printSize(nums);

}

public static void printSize(List data) {
System.out.println("Stored " + data.size() + " items");

}
}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 217 / 220

Using a collection type
List is the interface used (twice) and it is implemented (both times) by the ArrayList class.

public class ListExample {
public static void main(String [] args) {

List<String> data = new ArrayList<String>();
data.add("Hello World");
data.add("Foo");
String s = data.get (0);

List<Integer> nums = new ArrayList<Integer>();
nums.add(Integer.MAX_VALUE);
Integer first = nums.get (0);

printSize(data);
printSize(nums);

}

public static void printSize(List data) {
System.out.println("Stored " + data.size() + " items");

}
}

20
17

-1
2-
07

Programming II Introduction to Imperative Programming
Bits and Pieces – Rounding off your Java, ready for next
term

Collections and Interfaces
Using a collection type

1. The type parameters for both interface and implementation appear between < >’s
2. Only reference types are allowed as type parameters, no primitive types.

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

Using a collection type
Using a Map<K,V> inteface implemented by a Hashmap class.

import java.util .*;

public class MapExample {

public static void main(String [] args) {
Map<String, Integer> officeDB = new HashMap<String, Integer>();
officeDB .put(" Susan ", 569);
officeDB .put("Tony", 354);
officeDB .put(" Alastair ", 422);
officeDB .put(" Alessandra ", 560);
officeDB .put("Marc", 304);
officeDB .put(" Konstantinos ", 228);
officeDB .put("Mark", 228);

System .out. println (" Susan is in " + officeDB .get(" Susan "));
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 218 / 220

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

Exercise 29
What will the following print? What would the output be if we used a list instead
of a set?

public class SetExample {

public static void main(String [] args) {
Set <Integer > nums = new TreeSet <Integer >();
nums.add (5);
nums.add (10);
nums.add (3);
nums.add (5);

for (Integer i : nums) {
System.out.println(i);

}
}

}

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 219 / 220

Bits and Pieces – Rounding off your Java, ready for next term Collections and Interfaces

Summary
Methods and constructors can be overloaded. For example, print can print
any type because it is overloaded. Two overloaded methods or constructors
take parameters of different types.
this is used to reference an individual object.
Java has a generics capability, but that we cannot use primitives as the types
of the elements. Fortunately, primitives can be boxed so they can be used in
generic data structures.
Java has a large library of interfaces, and these provide a very rich library of
data structures or collections.
We have looked into three of these in a little detail. They are lists, sets, and
maps.
The interfaces are generic so there are List<Integer>s and List<String>s for
example.
Interfaces need to be implemented by classes and Java also provides a large
collection of classes that implement the interfaces that are provided.
It is good to use interfaces when declaring your data structures and the
declarations are of the form:
List <String > myList = new ArrayList <String >();

(120.2) Programming II Introduction to Imperative Programming Autumn Term - 2017 220 / 220

	Introduction
	Loops and Arrays
	Loops
	Arrays
	In-Place Array Operations

	Objects
	The DragonsBreath Dungeons – Another Example

	Testing
	Enumerations
	Bits and Pieces – Rounding off your Java, ready for next term
	Generics
	Collections and Interfaces

