
Java Competency Test

Friday 17th November 2017

14.00 - -16.00
TWO HOURS

• Please make your swipe card visible on your desk.

• After the planning time log in using your username as both your
username and password.

The maximum total is 25.

Credit will be awarded throughout for clarity, conciseness, useful com-
menting, and appropriate use of assertions.

Important notes:

• Five Marks will be deducted from solutions that do not compile.
You should comment out any code which you cannot get to compile.

• One Mark will be deducted from solutions that include any addi-
tional print statements. All output should be provided or look like the
sample run. Please make sure you remove any of your additional print
statements before submitting your final solution.

1



Big Nats

Integers in Java have a maximum value Integer.MAX VALUE. The aim
of this test is to provide a library BigNatsLibrary and a test program
TestBigNats so that programmers can have natural numbers (non-negative
integers) that may be much larger. A skeleton file for each of these is pro-
vided for you.

One of the main aims of this test, is to test your capabilities with processing
arrays, so each BigNat must be held in an integer array. Each digit of the
number should be held as its own element in the array. Which order you
hold the digits and whether the array contains anything else, is up to you.

The expectation is that the methods will be used correctly so methods
should not defend against rogue parameters. Rather the expectation is
that assertions will cause any program that uses this library’s methods
incorrectly to stop with an assertion error.

Getting Started

In the BigNats directory you will find 3 .java files. IOUtil.java contains
the input/output utility methods used in your notes and labs. You should
not edit this file. You should edit the remaining two files providing your
answers to this test.

• TestBigNats.java: contains tests for BigNatLibrary methods. As
part of this test you will need to write the main method to run the
tests. You are not to provide any additional tests.

• BigNatLibrary.java: contains stubs for all the methods that you will
need to provide. You may provide additional helper methods. There
are several methods that are fully provided to help you get started,
but there is no need to use them. You may replace them with your
own methods if you wish. There are no marks associated with doing
this replacement. The main reason for replacing the provided methods
is to enable you to provide a different implementation of the BigNat
data type.

You should not change the signatures of any of the provided methods:
auto-testing of your solution depends on the methods having exactly their
original signatures. You should not provide any additional .java files.

2



What to do

Part I: TestBigNats.java (2 marks)

Implement the main program, which should allow a programmer to run
interactive tests multiple times. For your reference, an example run has
been added to the end of this document.

You are free to implement this as you wish, however methods are provided
in TestBigNats.java. If you do not use the methods provided, please
ensure that the output is exactly as shown in the above run. Note from
the sample run that when a number other than 1,2,3,4 or 5 is entered this
input terminates the run (just as 0 would have).

Part II: BigNatLibrary.java (23 marks)

This is the library to be implemented and which your main method in
TestBigNats.java actually tests. It already has stubs for all the meth-
ods you need to implement. It is important that you do not change the
signatures of any of the methods. You are free to add any helper methods.

You are required to implement your Big Nats as integer arrays where each
element of the array is one digit. However, what order the elements are in,
where in the array they are held, and whether the array contains anything
other than the digits is up to you. The two methods zero and read fully
provide a specific implementation for Big Nats. Feel free to change this
implementation (together with replacements for zero and read).

To complete this class you will need to throw away the stubs provided, re-
membering not to change the signatures, and provide full implementations
of the following:

1. Method void print(int[] a)) – which prints a Big Nat on the
screen. This is not a println method so do not go to the next line. 1
mark

2. Method boolean areDigits(char[] cs)) – which takes an array of
characters and returns true if and only if every character in the array
is between ’0’ and ’9’ inclusive. 1 mark

3. Method boolean areEqual(int[] a, int[] b) – which takes two
Big Nats and returns true if and only if the two numbers have the
same value. 2 marks

3



4. Method boolean isGreater(int[] a, int[] b) – which takes two
Big Nats and returns true if and only if the first number is larger than
the second number. 2 marks

5. Method int[] reverse(int[] a) – which takes a Big Nat and re-
verses the digits. For example, the reverse of 12345 is 54321. 2
marks

6. Method int[] intToBigNat(int n) – which takes an int and re-
turns it as a Big Nat. This is changing the representation of the
number. 2 marks

7. Method int[] add(int[] a, int[] b) – which takes two Big Nats
and returns their sum as a Big Nat. Make sure you cover the possibility
that the two numbers when added produce a number too large to store
in your implementation of a Big Nat. This may be done using an
assertion or in code. 3 marks

8. Method int[] sub(int[] a, int[] b) – which takes two Big Nats
and returns their difference as a Big Nat. The second number is to be
taken from the first number. Make sure you cover the possibility that
the second number is larger than the first. This may be done using an
assertion or in code. 3 marks

9. Method int[] mul(int[] a, int[] b) – which takes two Big Nats
and returns their product as a Big Nat. Make sure you cover the
possibility that the two numbers when multiplied produce a number
too large to store in your implementation of a Big Nat. This may be
done using an assertion or in code. 4 marks

10. Method int[] fib(int[] n) – which takes a Big Nat n and recur-
sively returns the nth Fibonacci number. where

0th Fibonacci number is 0
1st Fibonacci number is 1
2nd Fibonacci number is 1
20th Fibonacci number is 6765

Your solution can be naive. However, as a recursive solution soon
slows down (try fib(40)) so if you have the time why not make it
more efficient, while keeping it recursive? There is an extra mark for
a more efficient implementation. 3 or 4 marks

Total across both files: 25 marks (possibly capped to 25)

4



Sample Run – java -ea TestBigNats

0: Quit

1: Add two numbers

2: Subtract the second number from the first number

3: Multiply two numbers

4: Calculate a Fibonacci number using big numbers rather than integers

5: Test helper functions

Choice -> 1

Please type in two big numbers -> 12 13

25

0: Quit

1: Add two numbers

2: Subtract the second number from the first number

3: Multiply two numbers

4: Calculate a Fibonacci number using big numbers rather than integers

5: Test helper functions

Choice -> 2

Please type in two big numbers -> 12345 2346

9999

0: Quit

1: Add two numbers

2: Subtract the second number from the first number

3: Multiply two numbers

4: Calculate a Fibonacci number using big numbers rather than integers

5: Test helper functions

Choice -> 3

Please type in two big numbers -> 1000 1000

1000000

0: Quit

1: Add two numbers

2: Subtract the second number from the first number

3: Multiply two numbers

4: Calculate a Fibonacci number using big numbers rather than integers

5.:Test helper functions

Choice -> 4

Which Fibonacci number do you want -> 6

8

0: Quit

1: Add two numbers

2: Subtract the second number from the first number

3: Multiply two numbers

4: Calculate a Fibonacci number using big numbers rather than integers

5: Test helper functions

Choice -> 5

Please type in two big numbers -> 12345 12345

The numbers are equal.

The first number is not greater than the second number.

Reversing the first number gives 54321

Please type in a positive integer to convert to a big natural number -> 123456

123456

0: Quit

1: Add two numbers

2: Subtract the second number from the first number

3: Multiply two numbers

4: Calculate a Fibonacci number using big numbers rather than integers

5: Test helper functions

Choice -> 6

bye

5


