
Java Practice Test

Thursday 14th December 2017

10.00 – 13.00
THREE HOURS

• Please make your swipe card visible on your desk.

• After the planning time log in using your username as both your
username and password.

The maximum total is 25.

Credit will be awarded throughout for clarity, conciseness, useful comment-
ing, and appropriate use of assertions.

Important notes:

• Three Marks will be deducted from solutions that do not compile.
You should comment out any code which you cannot get to compile.

• One Mark will be deducted from solutions that include any addi-
tional print statements. All output should be provided or look like the
sample run. Please make sure you remove any of your additional print
statements before submitting your final solution.

1

Problem Description

Figure 1: An aerial view of the hedge maze at Hatfield House (with thanks
to Google Earth).
.

A hedge maze1 is an outdoor maze or labyrinth in which the “walls” between
passages are made of vertical hedges. Hedge mazes were a popular form of
amusement for British and European royalty and aristocrats in the 17th and
18th centuries. Although less numerous (and less elitist) today, there are
currently more than 100 mazes open to the public in Britain at venues such
as Hampton Court Palace, Leeds Castle and Hatfield House (see Figure 1).

As shown in Figure 2, we will represent a maze as a rectangular two-
dimensional array of characters, using the “barrier” characters ’-’ and ’|’
for hedges and (unique) “marker” characters to denote points of interest;
here ’>’ represents the entrance, ’X’ the exit, and ’U’ an unreachable square.

A solution path through the maze is a sequence of directions from one marker
character to another using the letters N, S, E and W for north, south, east

1A desirable accessory if you are ever lucky enough to own a luxurious castle or a
stately country manor.

2

012345678

0 ---------

1 > |U|

2 - --- ---

3 | | | |

4 - - -----

5 | | |

6 - ----- -

7 | X

8 ---------

012345678

0 ---------

1 ## |U|

2 |#|-| |-|

3 |#| | |

4 |#| ----|

5 |# | |

6 |#----- |

7 |########

8 ---------

Figure 2: A textual representation of a maze with marker characters and a
valid solution path from the entrance to the exit (right).

and west respectively. The path must not pass through any hedges or pass
outside the boundaries of the maze. Hence a valid solution path for the
example maze from the entrance to the exit (shown on the right in Figure 2)
is ESSSSSSEEEEEEE. Although it leads from the entrance to the exit, the
path EEEEEEEESSSSSS is not a valid solution path since it passes through
hedges.

Pre-supplied files and methods

To get you started, you are initially supplied with five files: Coords.java,
Dir.java, Maze.java, Solution.java, and Tests.java. Coords is the
class that you are to use for holding the pair of coordinates of a position in
the maze and Dir is an enumerated type for directions (N,S,E,W).

Feel free to extend these two or not use all the functionality provided.

Some of the questions below ask you to add some more methods to the Maze
class. Some will ask you to add methods to Solution.

The Tests class is provided to help you test your code. Currently its main

method is commented out. Uncomment the code as you provide function-
ality that can be tested. You may find it helpful to fill in the missing tests
cases and add additional test cases to Tests.java. We will not be using
your Tests class to test your code so it can be left in whatever state you
find useful.

3

Please read the files, before designing any code. You may use methods
that you have written in later methods and you may write any additional
methods you need to do the tasks.

Specific Tasks

1. Extend the following methods in the Maze class:

(a) A method isInMaze that takes a pair of coordinates and returns
true if and only if the coordinates are within the maze. For
example, if your maze is an 8 by 8 square then (0,7) should return
true and (8,1) should return false. 3 marks

(b) A method findMarker which finds the coordinates of marker
character ch in the maze. The method should return the co-
ordinates of the position in a Coords. If the marker is not in the
maze, both the row and column coordinates should be set to -1.

For example, using the maze of Figure 2, the call:

c = findMarker(’X’);

should result in c.row having the value 7, and c.col having the
value 8. 3 marks

(c) A method next which takes as parameters coordinates and a
direction and returns for the given direction the coordinates of
the next position in the maze. This method is not expected to
test whether the space in the maze is occupied or whether it is
even inside the maze.

For example, assuming you have a variable c whose value is the
coordinates (1,2) and the northern direction the call:

c1 = next(c, Dir.N);

should result in c1.row having the value 0, and c1.col having
the value 2. 3 marks

(d) A method isPossible that takes a pair of coordinates and re-
turns true if and only if the maze at that position is a place one
can move to. The start and stop places are considered to be pos-
sible, as is any space in the maze. To be possible the coordinates

4

have to be in the maze. It is not possible to move where there is
a hedge (’-’,’|’) character. 3 marks

2. Extend the following methods in the Solution class:

(a) A method isValidPath which determines if a given path through
a maze leads from the entrance marker ’>’ to the exit marker ’X’
without moving outside the boundaries of the maze or passing
through a hedge.

For example, using the path that represents ESSSSSSEEEEEEE
and the simple maze of Figure 2, isValidPath should return
true whereas the SSSSSSSEEEEEEE path should return false.
5 marks

(b) A method putPathInMaze which replaces the start, finish, and
appropriate empty spaces with ’#’ characters. 3 marks

(c) A method findPath which finds a valid solution path through
a maze beginning at a marker character start and terminating
at a marker character end. It is possible that there isn’t a path
through the maze. Your code will be tested on both mazes with
dead ends and those without. Dealing with dead ends is hard
and will carry 2 of the 5 marks. (So if you cannot implement
backtracking, make sure your code can deal with mazes without
dead ends such as TinyMaze and mazes with no solutions such as
TinyNoStartMaze - both in Tests.java.)

For bonus marks make sure your path does not have any unnec-
essary steps, that is, it should not have any sub-paths that don’t
make any progress such as EW or ENWS in the path. To get the
bonus marks, in addition to producing minimal paths, you must
fill in the comment above findPath explaining how you ensured
that your paths were minimal. 5 + 2 bonus marks

There are several maze examples in Tests.java available for you to use.
goodMaze is the example from this test paper. If you are happy with the
results of your tests for each method and want to see your methods working
together you could call putItAllTogether in Tests.java.

If you execute solve from Solution.java on goodMaze your outcome should
be:

5

The maze to be traversed is:

012345678

0 ---------

1 > |U|

2 | |-| |-|

3 | | | |

4 | | ----|

5 | | |

6 | --|-- |

7 | X

8 ---------

A path through the maze from ’>’ to ’X’ is:

ESSSSSSEEEEEEE

012345678

0 ---------

1 ## |U|

2 |#|-| |-|

3 |#| | |

4 |#| ----|

5 |# | |

6 |#----- |

7 |########

8 ---------

Hints:

1. You will save a lot of time if you begin by carefully studying the files
provided.

2. Feel free to define any auxiliary functions which would help to make
your code more elegant.

3. One (but by no means the only) way to solve the final question for
potentially dead ended mazes is to use a helper function which im-
plements a “breadth first” algorithm based on your current position
within the maze. First, for the base case consider:

(a) How will you know when you have solved the maze?

6

(b) How will you know when your current position is definitely not
en route to a valid solution?

Next, use recursive calls to see if going North, South, East or West
from your current position leads to a valid solution. Concurrently,
you will need to maintain the string of taken directions, and to mark
the position of explored squares on the maze (remembering to unmark
them when dead ends are encountered).

4. Try to attempt all questions. If you cannot get one of the questions
to work, try the next one.

Important note: You should not change the filenames or move any files
out of their original location, otherwise the autotesting will fail.

7

