
Tutorial: Sudoku

Programming II : Objects

Autumn Term 2017

Rules

From http://www.sudoku.com/:
The goal of Sudoku is to fill in a 9 by 9 grid with digits so that each column, row, and 3

by 3 block contain the numbers between 1 to 9. At the beginning of the game, the 9 by 9 grid
will have some of the squares filled in. Your job is to use logic to fill in the missing digits and
complete the grid. A move is incorrect if:

• Any row contains more than one of the same number from 1 to 9

• Any column contains more than one of the same number from 1 to 9

• Any 3 by 3 grid contains more than one of the same number from 1 to 9

When people play Sudoku they frequently put in the squares using a very small font possible
numbers that a given square could take. These are called pencil marks. As they fill in the squares
they remove pencil marks that are no longer possibilities. The way this problem suggests you
solve a Sudoku puzzle is the following:

Put into each empty square (using pencil marks) all the possible numbers that could
be in the square. After each move remove those pencil marks that are no longer
possible. For easy games there should always be at least one square where there is
only one pencil mark. Make that move and start again.

What to implement

Because a Soduko game is by its definition 9 by 9 you may put this literal in the code itself.
The classes you need to implement are the following:

• Square – This will be a single square. It may have a value or be empty. It may have
pencil marks of possible numbers that could be in the square.

• Grid – This will be a 9 by 9 array of Squares.

• Solver – This should contain the main method and solve a given puzzle.

1. Start by implementing class Square (remembering to put it into a file called Square.java).

(a) You need first to declare the private fields. These should hold the value (probably
0 for empty, 1-9 for values) and the pencil marks. Think how you wish to store the
pencil marks. It also may be easier to write the methods if you store the number of
pencil marks as well as the pencil marks – but this isn’t essential.

(b) Write the following methods. You may write any helper methods that will make your
code clearer which should be made private.

1



i. int value() – returns the value in the square, what to do if the square is empty
is up to you

ii. boolean isEmpty() – true iff it doesn’t contain a number between 1 and 9

iii. boolean hasUniquePMark() – a square has exactly one pencil mark

iv. int uniquePMark() – for a square that has exactly one pencil mark, what its
value is

v. void removePMarkIfThere(int n) – if a square has a pencil mark n then after
this method has executed it no longer has that pencil mark

(c) You may wish to write a toString method for printing a square. (It could have
borders or not, but it only should contain the value, not the pencil marks).

(d) Write two constructors for Square. One should be for an empty square and the other
for one that holds a number.

2. Next implement class Grid, a 9 by 9 array of Squares. This should be a private field.

(a) Implement either a toString or a print method so that grids can be printed.

(b) Write the following methods. You may write any helper methods that will make your
code clearer which should be made private.

i. boolean hasFreeSpace() – returns true iff there is a space on the grid without
a number between 1 and 9

ii. boolean isGoodMove(int row, int col) – returns true iff there is a possible
move at grid[row][col]

iii. void makeMove(int row, int col) – fill in grid[row][col] with the correct
number (pre isGoodMove

iv. void removePMarks(int row, int col) – at grid[row][col] get rid on any wrong
pencil marks

(c) Implement the constructor for Grid. It should take a two dimensional array of
numbers as an input parameter. The constructor needs to initialise each of the
squares, both with values and with pencil marks.

3. Finally implement Solver. You can do it with your implemented classes or add some
additional methods to them. Here is a game that it should work for:

static int[][] game = {

{0, 6, 0, 3, 0, 0, 8, 0, 4},

{5, 3, 7, 0, 9, 0, 0, 0, 0},

{0, 4, 0, 0, 0, 6, 3, 0, 7},

{0, 9, 0, 0, 5, 1, 2, 3, 8},

{0, 0, 0, 0, 0, 0, 0, 0, 0},

{7, 1, 3, 6, 2, 0, 0, 4, 0},

{3, 0, 6, 4, 0, 0, 0, 1, 0},

{0, 0, 0, 0, 6, 0, 5, 2, 3},

{1, 0, 2, 0, 0, 9, 0, 8, 0}

};

There has been a vast amount of research into finding ways to solve Sudoku puzzles and once
you have finished this solver you may wish to make your solver stronger. A simple improvement
to the look for the single pencil mark algorithm would be in each unit (row, column, block) look
for any pencil mark that only appears in exactly one square and make that move. For example
in a row, a square could have pencil marks 3 and 4. If there are no other pencil mark 4s in the
row then even though there is a 3 as well as a 4 in the pencil marks, the square must have value
4. This algorithm includes the simpler one.

2


