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The world is as it ought to be, ALL THINGS considered 

Abstract. Types were introduced into Logic as a defence 
mechanism. Without some segregation of formal entities 
into types, Russell’s and other paradoxes would strike, it 
was feared, rendering every formula a theorem. More 
recently, types have come to play a similar role in 
computer science, to keep the bugs away. There are, 
moreover, famous interactions between systems of 
propositional logic and theories of types. These have been 
biased towards Heyting’s intuitionist logic J, in view of the 
Curry-Howard correspondence. It is rather argued here, as 
in the author's work with Dezani, Motohama and Bono, that 
there is a better correspondence with the basic relevant 
logic B+. More than that, this paper develops the author's 
1995 work showing that B+ may be conservatively 
extended to accommodate an outright Boolean negation. 
The resulting system, here called CB, will be a central focus 
of this paper.
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1. Introduction 

Types were introduced into Logic as a defence mechanism. Without some segregation 
of formal entities into types, Russell’s and other paradoxes would strike, it was 
feared, rendering every formula a theorem. More recently, types have come to play a 
similar role in computer science, to keep the bugs away.  

There are, moreover, famous interactions between systems of propositional logic 
and theories of types. On the whole, these have been biased towards Heyting’s 
intuitionist logic J, in view of the Curry-Howard correspondence. It is rather argued 
here, as in Dezani et al. (2002), that there is a better correspondence with the basic 
relevant logic B+. 

More than that, Meyer (1995) noted that B+ may be conservatively extended to 
accommodate an outright Boolean negation ¬. The resulting system, here called CB, 
is studied further in Meyer et al. (2006). It will be an important focus of this paper. 

2. Intersection Types and Basic Relevant Logic 

B+ was introduced in Routley-Meyer (1972) as the basic positive relevant logic. This 
meant that, on the semantical analysis of Routley-Meyer (1973), only such postulates 
were imposed as went with the method. Thus the idea was that B+ would stand to the 
strong positive relevant logics E+ of entailment and R+ of relevant implication 
roughly as the minimal normal modal logic K stands to the strong normal modal 
logics S4 and S5, on the semantical analysis of Kripke (1963). 

Unbeknownst to its authors, B+ had (or would presently acquire) another life. For 
Coppo, Dezani and their European colleagues were independently developing, most 
notably in Barendregt et al. (1983), a theory BCD of intersection types. Types had 
been, since Russell (1908), a popular Way Out of the set-theoretic and semantic 
paradoxes. Types were introduced for Combinatory Logic (henceforth CL) and 
Lambda Calculus (henceforth λ) respectively in Curry (1934) and Church (1940). See 
also Curry-Feys 1958. 

The BCD intersection type theory has important advantages over the Church and 
Curry schemes. First, all combinators can be typed in BCD. This contrasts with 
Curry-Feys 1958, where (for example) the combinator WI receives no type. Second, 
the intersection type theory actually provides models of CL and λ . Third, to reiterate 
observations from Dezani et al. (2002), the ternary relational semantics of relevant 
logics applies to BCD. 
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A. Syntactic Preliminaries 

We presuppose a sentential language L, whose formulae are built up from a countable 
supply of atoms (sentential variables). We use ‘A’, etc., for the formulae and ‘p’, etc., 
for the atoms. We always suppose, here, that among the logical particles of L are the 
binary connectives (classical) conjunction ∧ and (relevant) implication →. (For the 
alternative story in which the formulae are taken as types and the particles are taken as 
operations on types, see Dezani et al. (2002).) We will have in mind some additional 
particles, such as classical negation ¬, disjunction ∨ and material implication ⊃. Also 
interesting is a top truth T (the ω of Barendregt et al. (1983), taken there as the whole 
space of types). When the language L is so extended, we make the extra particles 
explicit thus: L[T] is the language in which T is an additional constant; L[¬] that in 
which classical negation is primitive, etc. For ease in reading formulae we rank binary 
connectives ∧, ∨, , ⊃, → in order of increasing scope, otherwise associating equal 
particles to the right. 

B. Ternary Relational Semantics 

A 3-frame (formerly +ms) shall here be a triple 
 

(1) K = <0, K, R>, 
 

where K is a set, 0 ∈ K, and R ⊆ K3, subject to the following definition and 
postulates, for all a, b, c, a’, b’, c’ in K: 

 
 d⊆. a ⊆ b  =df  R0ab 
 p1. a ⊆ a 
 p2. (a’ ⊆ a) ∧ (b’ ⊆ b) ∧ (c ⊆ c’) ⊃  Rabc ⊃  Ra’b’c’ 
 

Metaphysically inclined readers may think of K as a set of worlds, 0 as a preferred 
logical world in K and R as a ternary accessibility relation on K. Demythologized, 
elements of K are just logically closed theories (or filters, if you are an algebraist). As 
our notation suggests, ⊆ may be thought of as the sub-theory relation, which is by p1 
reflexive and which by p2 is monotone decreasing in the first two arguments of the 
ternary relation R and which is monotone increasing in the final place. (By the time 
we are done going classical, dear Reader, p1 and p2 will have become trivial.) 

C. Behind the Ternary Relation 

The most conspicuous element in the semantics just presented is the ternary relation 
R. We would do well, accordingly, to demythologize R a little further. Behind R 
stands the modus ponens product, or fusion, operation o defined on arbitrary sets S 
and T of formulae. The underlying thought here is that a formula tells you on its face, 
so to speak, why it should be a theorem of Logic. (Or not, since there is disagreement 
about which formulae should be taken as logically true.) More than that, since Logic 
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is above all an applied science, telling us how we should get on deductively in 
worldly theories and in ordinary life, the shape of a formula is also its central clue to 
the prescriptions it offers for everyday inferences from premises to conclusions. So 
here is the Powers (1976) definition of modus ponens product, for S, T ⊆ L. 

 
Do. SoT = {C: ∃A[(A→C ∈ S) ∧ (A ∈ T)]} 

 
That is, the fusion SoT of two theories S and T consists of all the formulae C obtained 
by performing →E on major premises A→C from S and minor premises A from T. 

Why, you may wonder, have we chosen a binary operation o on theories to 
motivate a ternary relation R? The reason is that the operation has priority. For it is o 
that tracks modus ponens, and (an appropriate) respect for modus ponens is what the 
semantic analysis of → is all about.  

Let us have another look at what → formulae are trying to tell us. We had better 
look at such a formula A→C as a tree,  

A → C 

/     \ 

A         C 

whose import is to tell us that, when we’ve got A, we can also get C.1 Put otherwise, 
we clearly have, for any set of formulae S and formulae A and C, 

 
(2) A→C ∈ S iff C ∈ So{A} 

 
We recall below how (2) yields an appropriate truth-condition T→ in models based 
on the 3-frame semantics. 

Meanwhile, an open question: Which sets of formulae S should be taken with 
semantic seriousness? Philosophers will be tempted to answer, “Those S that might 
be taken to describe a possible world.” We shall eventually see this answer as on the 
right track. (After all, we did suggest above that the members of our 3-frames K might 
be called “worlds”.)  But we do not want to arrive too quickly at such a conclusion. 
Rather what we aim for, in the wonderful phrase of Anderson, Belnap and Dunn 
(1992, p. 122), are theories that are truth-like. 

Specifically, when L contains particles that are intended classically, like ∧, ∨, ¬, 
we expect a truth-like theory T to treat them classically, satisfying conditions like 

C∧.  A∧B ∈ T iff A∈T ∧ B∈T 
C∨. A∨B ∈ T iff A∈T ∨ B∈T 

                                                             
1 When yet a wee lad, the author got a little mixed up. He was warned by his mother that 

playing on the nearby railroad tracks would get him hit by a train, when he would feel an 
awful pain. He parsed this as “Excruciating tummy ache” → “I’ve been hit by a train”. He 
had the antecedent, and tried modus ponens. But Mother rejected the consequent! 
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C¬. ¬A ∈ T iff A ∉ T 
So let us get a little more deeply into our intended models. As the preferred syntactic 
counterparts of the “worlds”, Routley-Meyer (1973) and its successors chose truth-
like theories,2 satisfying in particular the conditions C∧, C∨. In addition, that Logic 
should receive its due, theories were required to be closed under provable logical 
entailment. So when a logic L is in focus, we impose, for each S ⊆ L, 

 
(3) S is L-closed iff, for ∀A, B ∈ L, L |- A→B ⊃ A∈S ⊃ B∈S 
(4) S is ∧-closed iff, for ∀A, B ∈ L, A∈S ∧ B∈S ⊃ A∧B ∈ S 
(5) S is an L-theory iff S is L-closed and S is ∧-closed 
(6) S is ∨-prime iff, for ∀A, B ∈ L, A∨B ∈ S ⊃ A∈S ∨ B∈S 
(7) S is a prime L-theory iff S is a ∨-prime L-theory 

 
It follows quickly, using the distributive lattice axioms of relevant logics L, that S is a 
prime L-theory iff S is L-closed and satisfies C∧ and C∨. 

We return to the rationale behind the ternary relation. It would have been useful to 
base relevant semantics on the fusion operation o. But while it is easy to show that the 
fusion SoT of two L-theories is again an L-theory, it is simply false that the fusion of 
two prime L-theories is again ∨-prime. (Cf. Dezani et al. 2002 for counterexamples.) 
This presents us with an immediate quandary. We may weaken our attachment to 
truth-like theories by dropping C∨ above. Or we may save C∨ and go relational, 
trading in the fusion operation o for a ternary relation R. When one gets to the nitty-
gritty of semantical completeness proofs, what this relation amounts to canonically, 
for prime L-theories x’, y’, z’ is 

 
(8) Rx’y’z’ iff x’oy’ ⊆ z’ 
 

The contrasting policies on which we have dwelt have actually been instantiated in 
independent semantic developments. They are, roughly speaking, different ways of 
packaging what is at root the same mathematics. While Routley-Meyer (1973) can 
claim priority for the first semantical completeness proof for a full relevant logic, they 
were quickly followed by the relational-operational semantics of Fine (1974). The 
distinction is without much of a difference. The operation Fine called fusion was 
already inside the ternary relation. And the Routley-Meyer smooth truth-condition on 
∨ is hidden inside Fine’s more intricate one. Finally, priority in the area belongs to 
Urquhart (1972), which developed the first operational semantics for relevant →.3 

                                                             
2 Due to the vagaries of publication schedules, some of those successors appeared in 1972. 
3 Urquhart developed his ideas on analysis of the Fitch style natural deduction schemes for R 

and its kin of Anderson-Belnap (1975). This is not the same mathematics as the “calculus of 
theories” approach of Routley, Meyer and Fine. Sadly, Urquhart’s hope to extend his 
successful analysis of R→∧  to all of R+ ran into a counterexample. Still, he was first. 
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D. Truth Conditions 

It is the job of a formal semantics to say under what conditions formulae are true and 
false; and, building on that, to say what logically entails what. Given a 3-frame K = 
<0, K, R>, we begin with the notion of a possible interpretation I of L in K. Let 2 = 
{0, 1} be the set {false, true} of truth-values. Then I : L×K → 2 is a possible 
interpretation. I. e., any function I which assigns exactly one of the truth-values to 
each formula A at each point in K counts as a possible interpretation. 

A possible interpretation I being given, we assume in context some notation that 
links the semantics with a corresponding first-order language. We will write 

 
(9) [A]a for I(A, a) = 1 
(10) ¬[A]a for I(A, a) = 0 

 
and we also use henceforth ¬, ∧, ∨, ⊃, ≡, ∀, ∃ in the obvious senses in our classical 
metalogic (quantifiers having been taken, since K is fixed, to range over K).  

Let I = <0, K, R, I> be a possible interpretation of the language L in the 3-frame K. 
I is moreover an interpretation, or model, iff the following conditions hold, for all 
formulae A and B in L and all c, d in K, with quantifiers ranging over K. 

 
(11) Truth-conditions 
 
 T∧. [A∧B]c iff [A]c ∧ [B]c 
 T→. [A→B]c iff ∀a∀b(Rcab ⊃ [A]a ⊃ [B]b) 
 

In the presence of additional logical particles (of which more later), we impose also 
 
 TT. [T]c 
 T¬. [¬A]c iff ¬[A]c 
 TF. ¬[F]c 
 T∨. [A∨B]c iff [A]c ∨ [B]c 
 To. [AoB]c iff ∃a∃b(Rabc ∧ [A]a ∧ [B]b) 

E. Heredity conditions 

For all formulae A in L and all c, d in K, we impose moreover 
 

 H. c ⊆ d ⊃ [A]c ⊃ [A]d 
 

The heredity condition H is reminiscent of a similar condition in Kripke (1965) for 
the semantical analysis of intuitionist logic. It rests on the thought that the ⊆ of d⊆ 
really does mean sub-theory. In the presence of other postulates and truth-conditions, 
it can very often (as in Kripke (1965), Routley-Meyer (1973, 1972)) be reduced to the 
condition 

 
 Hp.  c ⊆ d ⊃ [p]c ⊃ [p]d 
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where p is a sentential variable. 

F. Models 

Again let I = <0, K, R, I> be a possible interpretation of the language L in the 3-frame 
K. We call I moreover an interpretation, or a model, of L in K provided that the 
heredity condition H and the truth conditions T→, T∧, etc., hold for I.4  

We say of a formula A 
 
 T0. A is verified on I iff [A]0 
 
There is an intimate connection on the ternary relational semantics between 

verification of implication statements B→C and a binary relation ≤ of propositional 
entailment. We signal this in the model I by 

 
 d≤. B ≤ C =df  ∀a([B]a ⊃ [C]a) 
 
We recall next from Routley-Meyer 1972 the important Semantic Entailment 

Lemma. 
 
SemEnt. In every model I we have B ≤ C iff [B→C]0. 
 
That is, a relevant implication B→C is true on I at the central point 0 in K iff, for 

every point a in K either ¬[B]a or [C]a. Put otherwise, B→C is verified in our model 
I iff I is truth-preserving at every point in the model. We conclude this sub-section 
with 

 
 V0. A is valid in K iff A is verified in all models I =  <K, I> 
 B0. A is basically valid iff A is valid in all 3-frames K 

3. B∧T and the Combinators 

We pause to recapitulate the system B∧T (pronounced bat) of Dezani et al. (2002) 
and to recall the accompanying model of λ  and CL in its theories.  

A. B[→ , ∧ , T] 

We formulate B∧T in L[T],5 with the following axioms and rules: 

                                                             
4 L may vary. Specifically we require that each primitive particle c of L satisfy its truth-

condition Tc on I. We frame definitions so that defined particles c naturally also satisfy their 
truth-conditions Tc for a model I. 
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AxI.  A ≤ A 
Ax∧E. A∧B ≤ A 
  A∧B ≤ B 
Ax→∧I. (A→B) ∧ (A→C) ≤ A → B∧C 
AxT.  A ≤ T 
AxT→ . T ≤ T→T 
 
Rul→E. A ≤ C ⊃ (|-A ⊃ |-C) 
Rul∧I. ( |- A ∧ |- B ) ⊃ |- (A∧B) 
RulB.  (B ≤ C) ⊃ (A→B ≤ A→C) 
RulB’. (A ≤ B) ⊃ (B→C ≤ A→C) 
 

Characteristic of the minimal relevant environment of B+ is that many principles 
which appear as axioms in stronger familiar systems have been weakened to rules. 
Note also our appeal to the material vocabulary in stating rules. What, for example, 
the prefixing RulB says is that if B→C is a theorem then also (A→B)→(A→C) is a 
theorem of B∧T. But prefixing formulae (B→C) → ((A→B)→(A→C)) are not, in 
general, basic theorems. As for (B→C) ⊃ ((A→B)→(A→C)), it is by no means a 
theorem, since ⊃ is neither primitive nor definable in the language L[T].6 

The role of the top truth T is also interesting. This Church constant stands in for 
the ω of the BCD system equivalent to B∧T. Of special interest is the (at first sight 
weird) AxT→ . This assures that A→T will always be B∧T equivalent to T, 
mirroring the material principle that conditionals with true consequents are true. 
(Other material principles, relevantists will be relieved to hear, are not so mirrored.) 
Incidentally, T is in the vocabulary here (as ω was in BCD) to look after the (rather 
irrelevant) combinator K. Its semantical correlate in completeness proofs is that only 
non-empty theories (all of which contain T) will count. If we have no need of K and 
its fellow cancellators, as in the λI systems preferred in Church (1941), then T and its 
special treatment can also be chopped. 

B. Combinator Theories 

A theory, to reiterate, is here any subset S ⊆ L(T) such that, for any formulae A, B, 
we have 

Entailment closure: (A ≤ B) ⊃ ( (A ∈ S) ⊃ (B ∈ S) ) 
Conjunction closure: (A ∈ S) ∧ (B ∈ S)  ⊃  (A∧B ∈ S) 
T closure: T ∈ S 

                                                                                                                                                  
5 So primitive particles are the constant T and just the binary connectives ∧ and →. We may 

write A ≤ C in place of |- A→C, to spare parentheses and suggest algebraic links. 
6 There is a nice clue here as to what will happen when we go classical and admit Boolean ¬ 

(and its mate Boolean ⊃) to the vocabulary. Then indeed the formula just displayed will 
become a theorem, while the rules may be shrunk to only one: modus ponens for ⊃. 
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We can put this more succinctly if we say that S is a theory iff it is closed under 
arbitrary conjunctions of its finite subsets and provable B∧T entailment. So put, this 
counts (as lattice theory might suggest) the top element T as the conjunction of all the 
members of the empty subset ∅ of S, forcing the theory S itself to be non-empty. 

There are many B∧T theories, but some are more equal than others. Of particular 
interest are the theories generated by Curry-style Combinators. We indicate these 
briefly with the following notational device. Where A is a formula, let #[A] be the 
smallest theory that contains all substitution instances of A. We then define 

I : #[p→p] 
B: #[(q→r) → (p→q)→(p→r)] 
C: #[(p→(q→r)) → (q→(p→r))] 
W: #[(p→(p→q)) → (p→q)] 
K: #[p → (q→p)] 
S: #[(p→(q→r)) → (p→q)→(p→r)] 

The formulae displayed are those that Curry-Feys (1958) CL fans will be expecting. 
But you may be a bit surprised at the interpretation here placed on them. For, unless 
you are also an intersection type theory BCD fan, you may not notice that our 
Interpreted Combinators (henceforth, IC’s) are not simply formulae or types but 
whole theories. We begin with the splendid 

I fact. A ∈ I iff A is a theorem of B∧T. 
That is, as was also noted for B+ in Dezani-Frisch et al. (2002), the interpreted 
combinator I consists exactly of the theorems of the underlying logic. 
Proof of the I fact is by a simple deductive induction, left to the reader. 

What shall we make of the other IC’s? We may reasonably look at them as further 
axiom candidates, in substructural logics strictly stronger than B∧T. For example the 
corresponding fragment of R (should we call it R∧T?) is the theory determined by all 
of the Interpreted Combinators B, C, I, W, containing in particular all unions of 
fusions of the IC’s. Not only that, but when an IC makes it into a Logic L, as a sub-
theory of L, the combinator becomes available as a basis for structural rules in a 
corresponding Gentzen consecution calculus.7  

It is also interesting when we combine IC’s under modus ponens product o. Recall 
that ∧ and T are in the language. This means, in the first instance, that every 
combinator has a corresponding IC, including ones that, in the original Curry scheme, 
are untypeable. This is immediately clear, just from the fact that all fusions of theories 
contain T. (So, in the worst instance, any combinator built by application from S and 
K and their mates has at least the minimal IC whose members are T and its B∧T 
equivalents.) 

C. Non-Curry IC’s 

We mused in the last sub-section how all of the usual Combinators of Curry’s CL 
have interpretants among the B∧T-theories. But there is no need to stop there. Any 

                                                             
7 Curry (1963) and the Display Logic of Belnap (1982) make much of this fact. 
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B∧T-theory may, in our present perspective, be counted among the IC’s. Should not a 
Classicist, for example, view with some enthusiasm an IC 

P: #[((p→q)→p) → p], 
which adds to the formula schemes above one that will deliver all of Classical Logic? 
(After all, S and K alone, with modus ponens, suffice for the pure intuitionist 
implicational logic J→ , to which it is well known that the addition of Peirce’s Law P 
will produce the pure classical 2-valued implicational calculus 2→ .) 

Or we might try other directions completely. Of the same shape as P but different 
content is the Axiom of Relativity, which Meyer-Slaney (1979, 1989) picked to 
formulate their Abelian logic. 

Rel: #[((p→q)→q) → p] 
To be sure, Rel is not a 2-valued tautology. Worse, it is incompatible with the T 
axioms. Still, it serves (with B and the ∧ axioms above) to axiomatize (in the →, ∧ 
vocabulary) the logic A of lattice-ordered Abelian groups.  

4. Let’s Go Classical 

Despite our musings re Peirce’s Law P in the last section, we have an entirely 
different route in mind for making the basic relevant logic a subsystem of classical 2-
valued logic 2. Here goes. 

A. The system CB 

The language of CB, to begin with, is the language L[¬], with Boolean ¬ primitive, 
along with →, ∧. A Boolean tautology, in this vocabulary, will be any substitution 
instance of a classical tautology in the Boolean particles ∧ and ¬ (and in Boolean 
particles immediately to be defined, as follows).  
 
 DEFINITION DEFINIENDUM DEFINIENS CONDITION 
D∨ A ∨ B  ¬(¬A ∧ ¬B)  
DT T p ∨ ¬p p is the first atom 
DF F ¬T  
D⊃ A ⊃ B ¬A ∨ B  
D≡ A ≡ B (A ⊃ B)∧(B ⊃ A)  

 
When we go Boolean, we get the top truth T for free (our choice of the first sentential 
variable in the definiens is indifferent, all Boolean tautologies being equivalent). We 
also get free the terrible falsehood F, whose fate it is to entail everything. We can less 
interestingly define as well some properly relevant particles, which do not count as 
Boolean. 



TYPES, RELEVANCE & CLASSICAL LOGIC 15April2006      11 

 
 DEFINITION DEFINIENDUM DEFINIENS 
D A  T → A 
D◊ ◊A ¬¬A 
D© A © B ¬(A → ¬B) 
D↔ A ↔ B (A→B) ∧ (B→A) 

 
Of the particles just defined, ↔ is a familiar relevant equivalence. The new binary 
particle © is a relevant consistency operation (not to be confused with fusion o, which 
is not yet introduced). Finally  and ◊ are unary modal operators, reminiscent of 
these (weak) operations in the minimal normal modal logic K. 

It is time for some axioms and rules. Under the same conventions as in section 3A, 
we choose the following: 

AxBool. A ≤ C, when A ⊃ C is a Boolean tautology 
Ax→⊃. (A→B) ⊃ (A ⊃ B) 
AxAntilog. (A∧B → C) ⊃ (A∧¬C → ¬B) 
AxB⊃. (B → C) ⊃ ( (A→B) → (A→C) ) 
AxB’⊃. (A → B) ⊃ ( (B→C) → (A→C) ) 
Ax→∧. (A→C) ∧ (B→D) ≤ A∧B → C∧D 
Ax→∨. (A→C) ∧ (B→D) ≤ A∨B → C∨D 
AxT→ . T ≤ T→T 
 
Rul⊃E. |- (A ⊃ C) ⊃ (|-A ⊃ |-C) 

 
Note that AxBool has rendered our previous AxI, Ax∧E and AxT redundant.  

5. The B∧T Model in the Classical Framework 

We take the opportunity to review the BCD “filter model” of λ-calculus, with the aim 
of adapting it to the classical CB situation. This is for us a Theory Model M in non-
empty B∧T-theories. Given the definability of λ  in CL, we treat M as a function 
whose arguments are CL-terms and whose values are B∧T-theories.   

A. Terms and Environments 

The CL-terms shall consist of countably many individual variables, for which we use 
‘x’, etc.; primitive constants for combinators, among which shall be S, K, I, and 
perhaps others; terms shall then be built up as usual under the binary application 
operation ⋅, always eliminated for simple juxtaposition, with association to the left. 
We use ‘t’, etc., for terms. 

We already have a suggested interpretation for application ⋅ in B∧T-theories—
namely, the modus ponens product (or fusion) operation o defined by Do in section 
2C. It is next necessary to say what values the model M will take on primitive 
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combinators like I. But that is easy. We exposed our policy in 3B, which readers may 
consult to see which theories are assigned to which primitive combinators. 

But what, you may well wonder, should M assign to a variable x? The only 
reasonable answer is, “A non-empty theory S,” in the sense of 3B. To bring this under 
the tent, we introduce the notion of an environment—which, here, shall be any 
function m such that 

 
(11) m(x) is a theory,  for each variable x 
(12) m(t) = M(t), for each primitive combinator t 
(13) m(tu) = m(t) o m(u),  for all terms t and u 

 
There are uncountably many environments m. But they all lead to M. 

B. The Calculus CBT of B∧T-theories and its Relational Structure BRT 

Let us now back up from the last section. We already know that, in the presence of 
additional Boolean connectives like ∨ and ¬, we can no longer count on the resulting 
theories to be truth-like. Still, we will concentrate on the Calculus CBT of B∧T-
theories, and pass quickly to its relational structure. 

i. The Calculus CBT = <CBT, o, ⊆ , I>. Let CBT be the class of non-
empty theories, and let o be defined by Do, where ⊆ is sub-theory and I 
is the theorems of B∧T. The environments m and the model M are 
realizations of CL in CBT. 

ii. The Relational Structure BRT = <I, CBT, R>. We now look at CBT 
no longer as an algebra but instead as a 3-frame <0, K, R>, with a 
relevant ternary accessibility relation R defined on K. 0 is of course the 
“combinator” I, which by the I fact of section 3B is the set of B∧T-
theorems. K remains the class CBT of all B∧T-theories. And R is 
defined as in (8) above, for any theories x, y, z, by 

iii.  
(dR) Rxyz =df xoy ⊆ z 

C. Conservatively Extending B∧T to CB 

It is almost but not quite obvious that whatever can be done with B∧T can equally 
well be done by its extension CB, in which Boolean ¬ becomes explicit, and ∨ and T 
accordingly become definable. So we adapt here the policy, already invoked in the 
related context of Meyer-Routley (1973), which enables us to tweak a countermodel 
in the smaller vocabulary so that it remains one after enrichment with ¬. 

Let I = <K, I> be an interpretation, where K = <0, K, R> is a 3-frame. Let G be a 
new element (G ∉ K). We define the Boolean enrichment KG = <G, KG, RG> thus: 

(14) KG = K ∪ {G} 
(15) For all a, b, c ∈ K, Rabc iff RGabc 
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(16) For all a, b ∈ KG, RGGab iff a = b 
(17) Except as constrained just above, ¬RGabc 

KG is the Boolean enrichment of the 3-frame K. We now define the Boolean 
enrichment IG of the interpretation I, thus: 

(18) For all a ∈ K and formulae A, IG(A, a) = I(A, a), where the latter is defined 
(19) For all formulae A, IG(A, G) = I(A, 0), where the latter is defined 
(20) Otherwise define IG(A) using whichever of T→, T∧, T¬ is appropriate 

We leave it to the reader to verify that IG = <KG, IG> is indeed an interpretation of the 
full Boolean language L[¬] in the 3-frame KG. But worthy of attention is the 

Boolean Enrichment Theorem. The following conditions are equivalent: 
(i) The formula A of L[T] is a theorem of B∧T 
(ii) The formula A of L[¬] is a theorem of CB 

Proof. We assume that A is translated into L[¬] using the definition DT, if 
required. That (i)  (ii) is a straightforward deductive induction. We conclude the 
proof by contraposition, assuming the denial of (i). By the semantical completeness of 
B∧T, there is then a countermodel I = <K, I> for A. I. e., A is false on I at 0. 
Consider now the Boolean enrichment IG = <KG, IG> of I. Note that, in KG, we have 
switched the “logical world” from 0 to the new element G. Nonetheless, we may 
complete the proof by structural induction on A, noting the following for all 
subformulas B of A: 

(a) For all a ∈ K, IG(B, a) = I(B, a) 
(b) IG(B, G) = IG(B, 0) 

It occurs to me, at this point, that I might have left a little too much to the reader in the 
remarks preceding the present theorem. For (a) and (b) merely restate (18) and (19) 
above. The real key to the theorem is that IG, as defined thereby, truly is an 
interpretation, satisfying T→ on all of KG. This could most conspicuously fail if, for 
some subformula B→C of A, we had [B→C]0 on I but, in violation of T→, RGGab 
and [B]a and ¬[C]b on IG, for some a, b ∈ KG. Readers who have done the homework 
will already have noted that this possibility cannot arise, in virtue of the Semantic 
Entailment observation SemEnt above. So every subformula of A, including A itself, 
is verified on IG iff it is verified on I. But we picked I because it makes A false at 0; 
accordingly IG makes A false at G. So, given the semantic completeness of CB, A 
remains a non-theorem of that system, ending the proof of the theorem. 

6. The Key to the Universe? 

The author has long held, and is in print with several co-authors to the effect that, the 
combinatory character of relevant postulates is the key to the semantical universe. 
Nonetheless, he has been pleasantly surprised by how good this connection has 
hitherto proved to be, especially in the work on B∧T-theories detailed above. 

But I must say something more, in conclusion, about the degree to which we can 
make a Boolean connection in advancing the project further. Recall that the genesis of 
the present investigations lay in seeking understanding of highly non-classical logics. 
(So Boole certainly was not on the initial agenda, except as an opponent.) Still, certain 
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particles always had a Boolean flavor; conjunction ∧ led that charge, with the 
distributive lattice ∨ and the DeMorgan negation ~ not far behind.  

We now have a look at some clues, garnered from semantical completeness proofs, 
which may prove useful in yielding full-blooded Boolean extensions of non-Boolean 
type theories. 

Clue #1. Attend to prime theories 

A theory S is prime just in case it satisfies 
 
(∨EI)  A∨B ∈ S iff (A∈S) ∨ (B∈S) 
 

Associated with prime theories are the following useful facts, which depend on the 
distributive lattice properties of ∧ and ∨: 

Intersection Fact A. A theory S is the intersection of its prime extensions 
Extension Fact B. Suppose that A ∉ S, where S is a theory. Then there is a prime 
theory S’ such that S ⊆ S’ and A ∉ S’ 
Squeezing Fact C. Let P and Q be theories, and let S’ be a prime theory. Suppose 
PoQ ⊆ S’. Then there are prime theories P’ and Q’ such that P ⊆ P’, Q ⊆ Q’ and  
P’oQ ⊆ S’ and PoQ’ ⊆ S’ and P’oQ’ ⊆ S’. 

Clue #2. Attend to ultra theories 

A theory S is ultra (or maximal) just in case it satisfies 
 
(¬EI)  ¬A ∈ S iff A ∉ S 
 

Ultratheories are what prime theories come to in the presence of Boolean ¬. 
Accordingly the intersection, extension, and squeezing facts just above continue to 
hold for them. 

Clue #3. Watch the combinators 
 
We listed above some B∧T-theories that correspond to axiom candidates for well-
known substructural logics. These theories play a dual role. First, they enforce certain 
first-order postulates in the 3-frame semantics for logics that count the candidates 
among their theorems. For example, corresponding to axioms B, C and W above, get 

Postulate B. Rabcd ⊃ Ra(bc)d 
Postulate C. Rabcd ⊃ Racbd 
Postulate W. Rabc ⊃ Rabbc 

Second, the combinator theories already play their appointed role, under the Curry 
isomorphism, even in logics of which they are non-theorems. This is clearest in the 
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calculus of theories. For using juxtaposition for fusion o and otherwise invoking CL 
notation, our B∧T-theories B, C, W induce the facts, for arbitrary theories a, b, c, 
 B fact. Babc = a(bc) 
 C fact. Cabc = acb 
 W fact. Wab = abb 

Clue #4. Attend to substitution-closed theories 
 
The combinator theories have another pleasant property. Their members contain, 
together with their instances, all substitution instances of their instances. This is 
another item on which we should focus when we expand the vocabulary—to include, 
for example, Boolean ¬. The theory I (which is now CB itself) has got bigger. It 
contains, for example, ¬p → ¬p, which was not previously in the vocabulary. And 
just so have our other combinator theories got bigger. 
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