
A sequent calculus for Limit Computable
Mathematics

Stefano Berardi1,
Yoriyuki Yamagata2

1 C. S. Dept., Univ. of Turin, Turin,
2 National Institute of Advanced Industrial Science and Technology, Osaka, Japan,

Abstract. We prove a kind of Curry-Howard isomorphism, with some
set of recursive winning strategies taking the place of typed λ-terms, and
some set of classical proofs taking the place of intuitionistic proofs.
We introduce an implication-free fragment PA1 of ω-arithmetic, having
Exchange rule for sequents dropped. Exchange rule for formulas is, in-
stead, an admissible rule in PA1. Our main result is that cut-free proofs
of PA1 are tree-isomorphic with recursive winning strategies of a set of
games we call “1-backtracking games”.
“1-backtracking games” are introduced in [1] as a complete semantics
for the implication-free fragment of Limit Computable Mathematics, or
LCM ([3], [4]). LCM, in turn, is a subset of Classical Mathematics intro-
duced for software verification whose proofs can be “animated” to detect
a formalization error. The goal of this paper is to show that PA1 is a
sound and complete formal system for the implication-free fragment of
LCM. A simple syntactical description of this fragment was still missing.
No sound and complete formal system is known for LCM itself.

1 Introduction

We first sketch what Limit Computable Mathematics is, then we address the
problem of finding a formal system for it. Limit Computable Mathematics (from
now on, LCM for short) was introduced in [3] as a way to “animate” (to interpret
as a program) a classical proof that a formal specification can be satisfied. The
motivation was to run a proof on simple examples, as a toy program, in order to
find formalization bugs (like false equational axioms), and to check which kind
of input/output behavior the specification is describing.1

LCM does not interpret all classical proofs as programs. Yet, it interprets
many proofs of common use in applied mathematics. LCM interprets proofs as
algorithms “able to learn”. These algorithms can do mistakes, they can change
their output value if they find out it is wrong, but they can change it only finitely
many times. A standard example is the algorithmic interpretation of the proof
of Excluded Middle for a semi-decidable statement ∃y.P (n, y) (with P decidable

1 The general problem addressed by Hayashi is to check how close is a formal specifi-
cation to the informal idea we want to express through it.

predicate). LCM interprets it as an algorithm learning whether ∃y.P (n, y) is true
or false. The algorithm first says that ∃y.P (n, y) is false. Then we are allowed
to use the hypothesis ∀y.¬P (n, y) as many times as we want in the following. If
we eventually deduce a false conclusion ¬P (n,m), then we know that P (n,m)
(and therefore ∃y.P (n, y)) is actually true. In this case the algorithm changes his
mind just once, from “∃y.P (n, y) false” to “∃y.P (n, y) true”. Every computation
which used the assumption ∀y.¬P (n, y) is erased and restarted. More in general,
every proof using only Excluded Middle over semi-decidable formulas can be
interpreted as a learning algorithm. We conjecture that a kind of converse holds:
the only proofs which can be interpreted as “learning algorithms” are ω-proofs
using only Excluded Middle over semi-decidable formulas. Many proofs of applied
mathematics fall in this class, and can be “animated” using these ideas. In §5.2,
we produce an example of a proof (actually, an axiom of classical logic) which,
instead, cannot be “animated” using these ideas.

The first semantics proposed for the informal idea of “learning algorithm”
was Limit Realization ([3]). However, a limitation of this semantics is the lack
of readability for algorithms extracted from proofs. A second semantics pro-
posed was a game semantics called “1-backtracking”. ([1], [4]). 1-backtracking
game semantics is a restriction of the backtracking semantics proposed by T.
Coquand in [2] for proofs in ω-arithmetic. 1-backtracking was proved equivalent
to Limit Realization Semantics in [1]. For the viewpoint of proof animation, “1-
backtracking” has several nice features: it is very intuitive, and quite close to
the idea of “learning algorithm” it comes from. It also explain in details how
to “run” a proof as a learning algorithm. What was still missing was a simple
syntactical description of LCM, that is, of the set of proofs we can “run” using
these techniques.

In this paper we fill this (important) gap, and we show that recursive winning
strategy for 1-backtracking are isomorphic with proof-trees of a suitable fragment
PA1 of ω-arithmetic. We conjecture that PA1 derives exactly all intuitionistic
consequences of Excluded Middle for semi-decidable formulas. The fragment
PA1 has a simple description: it is classical ω-arithmetic without Exchange rule
for sequents (exchange rule for formulas is, instead, an admissible rule). Therefore
PA1 fulfill its goal, giving a simple syntactical description of proofs of LCM.

The isomorphism result we prove is alike to Curry-Howard isomorphism be-
tween λ-terms and proofs in natural deduction. It says that recursive winning
strategies restate proofs of PA1 in term of “learning algorithm”, without al-
tering their tree structure. The same result implies that theorems of PA1 are
exactly the implication-free valid formulas of LCM. This is the first formal sys-
tem proposed for some fragment of LCM. Until now, all descriptions of LCM
were semantical in nature. Even though PA1 is ω-logic, understanding PA1 is
easier than game semantics since game semantics require the subtle notion of
1-backtracking. Furthermore, having such system makes encoding to LCM from
other formal systems easier.

From a technical viewpoint, our result is obtain by adapting an isomorphism
result by H. Herbelin [5] , between all cut-free proofs of classical ω-arithmetic

from one side, and (full, Coquand’s style) backtracking game semantics on the
other side. The isomorphism between 1-backtracking and cut-free proofs of PA1

answers to a question proposed by T. Coquand to the authors.2

This is the plan of the paper. In §2 we introduce 1-backtracking games, and in
§3 Tarski games. In 4 PA1, we introduce ω-arithmetic without Exchange rule on
sequents, and we state the existence of an isomorphism between cut-free proofs
and winning strategies with 1-backtracking. In §5 we introduce some examples
of proofs we read as winning strategies with 1-backtracking, and, conversely,
of winning strategies with 1-backtracking we read as proofs. We also show a
classical proof which cannot be interpreted with 1-backtracking.

The proof of the isomorphism result is postponed to the appendix. In §6 we
introduce coding and terminology for trees. Then in §7 we derive some properties
of proofs, and in §8 introduce a class of intermediate objects between proofs and
winning strategies we call proof-strategies. Eventually, in §9, 10 we show that
proofs, proof-strategies, winning strategies are isomorphic (as trees).

2 Games and Strategies

In this section we introduce finite games between two players, E (Eloise) and A
(Abelard). following [6]. We assume the reader is familiar with tree terminology
(see §6). Informally, the set of positions of a game is a tree. The starting position
of a play is the root of the tree. There is a “turn” map deciding who moves next
from a given position. The player moving next selects a child of the current
position of the play, and this becomes the new position of the play. If the play
eventually stops, the first player who should move and does not (either because
he does not want to, or because he cannot) loses. In some games, the play can
continue forever. In this case, some extra rules of the game decide the winner.
The formal definition runs as follows.

Definition 1. 1. A game G between two players, E (Eloise) and A (Abelard),
is any tuple 〈T, t, WE ,WA〉. T is a tree (a set of lists, see §6) over some set
E, ∗E . t is a map from T to {E ,A}. (WE ,WA) is a partition of all infinite
branches of T .

2. We call the elements of E moves, the elements of T positions, and the
branches of T plays. We call t the turn map. We call a position x ∈ T
an A-position, an E-position according if t(x) = A, E .

3. G is a finite game if all plays in G are finite (that is, if WE = WA = ∅). We
identify a finite game G with the list 〈T, t〉.

We introduce here 1-backtracking game associated to any finite game G.
Informally, for a while a 1-backtracking play runs like a play in G. The first

2 (T. Coquand, letter of 25/01/2005) Question: if one gives the presentation of cut-free
provability for ω-logic (with countable and finite ∧ and ∨ as only connectives) one
gets general backtracking. Is there a modification of the rules of cut-free provability
such that the proofs correspond to learning strategies [i.e., to 1-backtracking]??

player plays x0, the next player a child x1 of x0, and so forth. Player E (Eloise),
however, can make a new kind of move, called backtracking. If E moves from xi,
she can, instead of choosing a child of xi, come back to some previous position
xj (with j < i) from which she moved xj+1. She can decide, this time, to move
xi+1 from xj . In this way, in a 1-backtracking game player E has the possibility
of learning from her mistakes. If she thinks that the move xj+1 she did from xj

is a mistake, she can backtrack to the position xj before such move, and change
her move to xi+1. There is a constraint: E can only backtrack finitely many times
to the same move, otherwise she loses. A strategy using 1-backtracking can be
considered a learning algorithm in the sense of Hayashi. For more information
we refer to [4], [1]. Here is the formal definition. Remark that the moves in
a 1-backtracking game associated to a game G are defined as positions of G,
which are defined as list of moves of G. Therefore, formally, positions of a 1-
backtracking game associated to G are list of lists of moves of G.

Definition 2. A cut-free 1-backtracking play of a finite game G = 〈T, t〉, or
a 1-bck. play for short, is some (finite non-empty or infinite) sequence of β =
〈x0, x1, . . . , xi . . .〉 of positions of the play G. We require that, for each xi+1 in
β,

1. if xi is an A-position, then xi+1 is a child in T of xi.
2. if xi is an E-position, then xi+1 is a child in T of some E-position xj , for some

0 ≤ j ≤ i, which is an ancestor of xi. We call xj the position E backtracks
to from xi, and xi+1 the new move of xi from xj .

We define now the turn map and a winning condition on infinite plays. If we
start from a finite play G, an infinite play can only arise if E backtracks infinitely
many times to the same positions. If she does it she loses, therefore E loses all
infinite plays.

Definition 3. The cut-free 1-backtracking game bckcf (G) of a finite game G =
〈T, t〉 is a Game 〈T cf , tcf ,W cf

A ,W cf
E 〉 where,

1. Tcf is the set of all finite 1-bck. plays(see Def. 2).
2. tcf (〈x0, . . . , xn〉) = t(xn)
3. W cf

A = {all infinite branches in T b}
4. W cf

E = ∅

We introduce now winning strategies of bckcf (G). Informally, a winning strat-
egy is some way of selecting one move of E from any E-position. Besides, if E
always plays, from any E-position, the move selected from the winning strategy,
then she always wins, no matter what the moves of A are. We identify a winning
strategy with some set of finite plays, namely, the set of all plays in which E
follows the strategy.

Definition 4. Let G = 〈T, t〉 be any finite game. A winning strategy W of
bckcf (G) is any well-founded subtree of Tcf such that,

1. If p ∈ W and p is an A-position, all one-step extension q of p in T are in W,
2. If p ∈ W and p is an E-position, there exists one and only one m ∈ E such

that p::m ∈ W (i.e., p has a unique one-step extension in W).

3 Formulas and Tarski games

In this section we introduce the set of formulas for ω-arithmetic, and Tarski
games for them. For an intuitive motivation of Tarski games we refer to [6], §3.
We only consider the standard model of arithmetic to interpret our language.

Definition 5.

1. We call L the language consisting of one symbol of predicate for each recur-
sive predicate, and of one symbol of function for each recursive function.

2. We call Lpos the set of closed formulas of L in the connectives ∨,∧,∃,∀. We
call any A ∈ Lpos just a formula, for short. We call any Γ ∈ List(Lpos) an
ordered sequent, or just a sequent for short.

3. We call conjunctive formulas, or A-formulas, all formulas A1 ∧ A2,∀xA ∈
Lpos, and all a ∈ Lpos true atomic (in the standard model).

4. We call disjunctive formulas, or E-formulas, all formulas A ∨B, ∃xA ∈ Lpos,
and all a ∈ Lpos false atomic (in the standard model).

5. We call the first symbol of A ∈ Lpos the outermost connective of A, if A is not
atomic. If A is atomic true, atomic false the first symbol of A is true, false.

Conjunctive formulas are all formulas with first symbol ∧, ∀, true. Disjunctive
formulas are all formulas with first symbol ∨, ∃, false. We also call conjunctive
and disjunctive formulas A-formulas and E-formulas, because, in Tarski games,
formulas are positions, and playerAmoves from conjunctive formulas, and player
E moves from disjunctive formulas. We now define a tree whose nodes are (cor-
responding to) all subformulas of A ∈ Lpos.

Definition 6. The subformula tree

1. For i = 1, 2, we say that Ai is the one-step subformula of A1 ∨ A2, A1 ∧A2

of index i. For n ∈ N , we say that A(n) is the one-step subformula of
∀x.A(x), ∃x.A(x), of index n ∈ N . We say that B is a subformula of A if
there is a chain of one-step subformulas from A to B.

2. Fix some ∗ ∈ N (say, ∗ = 0). Let A ∈ Lpos. The subformula tree TA of A is
defined as the set of all lists x = 〈∗, i1, . . . , ik〉 ∈ List(N), such that there
is a sequent A0, . . . , Ak, with A = A0, and with Ah+1 subformula of index
ih+1 of Ah, for all 0 ≤ h < k. We call x a position of the subformula Ah of
A. We define a map form : TA → Lpos by form(x) = A.

The only position of A in TA is the root 〈∗〉 of TA. In general, however, a
subformula of A can have many different positions in TA. TA is a well-founded
tree: all branches of TA are finite because they correspond to shorter and shorter
subformulas of A.

We can now define a Tarski game for A ∈ Lpos. The tree of position is the
subformula tree of A. Intuitively, E defends the truth of A and A the falsity of
A. In order to defend the truth of a disjunctive formula, E chooses an immediate
subformula Ai of A she believes to be true. E defends the truth of A by defending
the truth of Ai. In order to defend the truth of a conjunctive formula, A chooses
an immediate subformula Ai of A he believes to be false. A defends the falsity
of A by defending the falsity of Ai. Eventually, the play ends in some atomic
subformula a of A. If a is true then E wins, if a is false then A wins.3 Here is
the formal definition.

Definition 7. The Tarski Game GA of a formula A ∈ Lpos is the finite game
〈TA, tA〉 defined as follows.

1. TA is the (well-founded) subformula tree of A.
2. For all p ∈ TA,we set tA(p) = A if p is an A-formula (i.e., the position of a

conjunctive formula), and tA(p) = E if p is an E-formula (i.e., the position
of a disjunctive formula).

We end this section by defining what are list of positions for a sequent of Lpos,
and we associate to each node x ∈ TA a sequent Γ in a “canonical” way. This
association will be used to define the isomorphism between proofs and strategies.

Definition 8. Let x ∈ TA and B ∈ Lpos. Assume L = 〈x0, . . . , xm〉 is a list of
positions in TA, and Γ is a sequent (a list of formulas).

– When B = form(p) is conjunctive, we say that the position p of B in TA

is conjunctive, or is an A-node. When B is disjunctive, we say that p is
disjunctive, or is an E-node.

– If Γ = Map(form)(L) = 〈form(x0), . . . , form(xm)〉, we say that L a list of
positions for Γ . Form = Map(form) is the operator computing Γ out of L.

– (Canonical labelling of TA) For each x ∈ TA, we define the A-disjunctive
sequence L = disj(x) as the list of positions E can backtrack to from x
(including x itself). We say that a sequent Γ is A-disjunctive if there is some
A-disjunctive list L = disj(x) of positions for Γ . We call Γ the canonical
sequent labelling the node x ∈ TA.

If L is the canonical sequent labelling x, then, by definition of 1-bck. play, L
is the list of all E-nodes (all disjunctive nodes) which are proper ancestors of x,
plus x.4

3 In the definition of Tarski play, this is obtained with a little trick. Nobody can move
from an atomic a, because a has no immediate subformula. Therefore if a is true we
make a conjunctive and we ask A to move next, in order to make him lose. If a is
false we make a disjunctive and we ask E to move next, in order to make her lose.

4 Alternatively, L is the list of ancestors of x with all A-nodes (all conjunctive nodes)
6= x skipped. The last node of L is x, that is, last(L) = x. The previous nodes in L
are all disjunctive nodes proper ancestors of x. Alternatively again, we can define L =
disj(x) by induction on x. If x = 〈∗〉, then disj(x) = 〈〈∗〉〉. Assume y = x::i, and
disj(x) = 〈x0, . . . , xm−1, x〉. If x is conjunctive, we set disj(y) = 〈x0, . . . , xm−1, y〉
(we skip x). If x is disjunctive, we set disj(y) = 〈x0, . . . , xm−1, x, y〉 (we keep x).

4 Proofs

In this section we introduce PA1, a sub-classical ω-arithmetic whose proof trees
will correspond exactly to all recursive winning strategies in Tarski games with
1-backtracking. Rules of PA1 are introductions of some true atomic formula,
or of ∨,∧,∀,∃. All these rules are merged with weakening, adding a sequent ∆
of disjunctive formulas to the conclusion (possibly, ∆ is empty). Sequents are
ordered and Exchange is skipped.

Definition 9. Let B ∈ Lpos. Denote with Bi the one-step subformula of B of
index i.

1. A proof π of classical ω-arithmetic without Exchange is a pair 〈Tπ, dπ〉 of
a well-founded Tπ over N, ∗, and a decoration dπ, associating to each node
p ∈ T a non-empty sequent Θ of Lpos decorating it. dπ is a recursive map
and T is recursive.

2. In addition, π should satisfy the following condition. For each p ∈ π, there is
some sequent Γ, B,∆ decorating p, with all formulas in ∆ disjunctive, and:
– If B is a true atomic, then p has no descendant.

Γ, B, ∆

– If B = B1 ∧ B2 , then the children of the node p are exactly p::1 and
p::2, one for each Bi. The decoration of each p::i is Γ, Bi.

Γ, B1 Γ,B2

Γ, B1 ∧B2,∆

– If B = ∀xB(x), then the children of the node p are exactly all p::n(n ∈
N), one for each B(n). The decoration of each p::n is Γ,B(n).

. . . Γ,B(n) . . .

Γ, ∀xB(x),∆
(one node for each n)

– If B = B1 ∨B2, then p has only one descendant p::i ∈ T , corresponding
to some Bi. The decoration of p::i is Γ,B1 ∨B2, Bi

Γ,B1 ∨B2, Bi

Γ, B1 ∨B2,∆

– If B = ∃xB(x), then p has only one descendant p::n(n ∈ N), correspond-
ing to some B(n). The decoration of p::n is Γ, B, B(n).

Γ, ∃xB(x), B(n)
Γ, ∃xB(x),∆

3. In the picture above, we say that in p we have an introduction of B, and a
true,∨, ∃,∧,∀-introduction if the first symbol of B is true,∨, ∃,∧, ∀.

There is no introduction for atomic false formulas, but you can add them
by Weakening, inside ∆. We often insert the rule name, true,∨, ∃,∧,∀, in the
right-hand-side of a rule. We stress that a sequent is an (ordered) list, and that
there is no rule permuting two formulas.

We briefly discuss the main features of PA1. The rule for disjunction involves
contraction: we infer a disjunctive Bj from Bj , Bj,i, instead of inferring Bj , Bj .
All rules involve weakening, too: we add some disjunctive formulas Bj+1, . . . , Bm

to the conclusion. Weakening in its most general form (with both conjunctive
and disjunctive formulas) is a derived rule, and so are Contraction, Exchange
for formulas (not sequents), and Cut.

Lemma 10. Let Γ, ∆ be any sequents and A any formula.

1. (Weakening) If Γ is derivable, then Γ,∆ is, with a proof of the same (ordinal)
height.

2. (Contraction) If Γ, A,A, ∆ is derivable, then Γ,A, ∆ is.
3. (Exchange for formulas only) Assume Γ can be obtained from ∆ by replacing

some A∧B and some C ∨D with B ∧A and D ∨C. Then Γ is derivable if
and only if ∆ is.

4. (Cut) Γ,A, and A⊥,∆ are derivable, then Γ, ∆ is, with a proof of lesser
height.

We skip the proof because it is not required in the rest of the paper. The last
point is really unexpected: in full ω-arithmetic, cut elimination involves a super-
exponential grow in height of the proof, while in PA1, cut elimination reduces the
height of a proof. Another curious feature concerns proofs of a singleton sequent
{A}. All sequent in these proofs are lists A0, . . . , An strictly decreasing under the
subformula relation: Ai+1 is a proper subformula of Ai, for all i < n. Actually
(Lemma 18), all these sequents are A-disjunctive sequents of the Tarski game of
A with 1-backtracking. Besides (Lemma 15 in Appendix), in a proof of {A} we
never merge Weakening and introduction of a conjunctive formula. That is, in
any proof of {A}, all introductions of a conjunctive formula have the simplified
form:

. . . Γ, Bi . . .

Γ, B
(one node for each Bi)

The main result of the paper is:

Theorem 11. (Isomorphism Theorem) For all A ∈ Lpos, the class of proof-trees
of the sequent {A} in PA1 is pointwise isomorphic to the class of the recursive
winning strategy for the 1-backtracking game for A. Besides, if a node of a proof
and a position in a winning strategy are in correspondence in such isomorphism,
then they are labelled with the same sequent.

The isomorphism theorem can be informally restated as follows. For any
A ∈ Lpos true in LCM, the proofs of A (in a suitable formal system PA1) can

be identified with strategies learning by “trial-and-error” the winning moves in
the Tarski game for A.

Here, we only sketch the proof of isomorphism theorem. We postpone the
rigorous proof of the theorem to the appendix.

From proofs to strategies. Since we only deal with cut-free proofs, all
formulas appeared in the proofs are subformulas of A. Moreover, we can identify
these subformulas with subformula occurrences of A. Hence, we can treat formu-
las in the proofs as positions in Tarski game of A. For each sequents, we identify
the right-most formula with the current position of the game, and other formulas
with the positions which we can backtrack from the current position. Now, if we
drop all formulas in the sequent except the right-most formula, then we get a
strategy as a tree. The root of the tree is A, which is the starting point of the
game. If the current position is A-formula, the tree contains all branches corre-
sponding all A’s move. Note that by Lemma 15, there is no weakening (hence
backtracking) occurs here. If the current position is E-formula, there is only one
branch with a possible backtracking. It is clear that E wins on all leaves in the
tree.

From strategies to proofs. Let W be a winning strategy for bckcf (A). We
decorate each position B in W by the sequent C1, . . . , Cn, B where C1, . . . , Cn

are the sequence of all disjunctive formulas in the path from A to B of the
subformula tree of A. Then the decorated tree π we obtained is a proof of A.

In the next section, we include some examples of how the isomorphism works.

5 Examples

In this section we include some example of proofs of A in PA1 defining 1-
backtracking winning strategies for TA, and the other way round. The general
idea is that a sequent A1, . . . , An corresponds to a list of moves in a 1-bck.
play, after we skip all moves to which E cannot backtrack. The introduction of a
conjunctive formula corresponds to all possible moves A can do from a given po-
sition. The introduction of a disjunctive formula corresponds to a winning move
by E from a given position. If the rules involves a Weakening of n formulas, this
means that E backtracks n positions before making her move.

Our first example is the proof of Excluded Middle for semi-decidable formulas
we quoted in the introduction.

5.1 1-excluded middle

The law of Excluded Middle, or EM is the schema A ∨ ¬A. If only Σ0
1 -formulas

are allowed to be substituted into A, the schema is called the law of 1-Excluded
Middle, or EM1. EM1 has the following natural proof in PA1. In the proof tree
below, we assume that P (n− 1) is a true (hence conjunctive) instance of P (x),
and P (n) is a false (hence disjunctive) instance of P (x). Therefore ¬P (n) is true
(hence conjunctive). We write boldface all formulas introduced by some rule.
We write crossed out all formulas added by some introduction of A∨B or ∃x.A

(recall, these rules can add any sequent ∆ to A∨B or ∃x.A). The only formulas of
this latter kind in the proof are all P (n). Since our logic is ω-logic, ∀-introduction
has infinite branches. In the proof below, the premise ∀xP (x)∨ ∃x¬P (x), P (m)
is deduced by true-introduction if P (m) is true. Otherwise, P (m) is derived in a
similar from ∀xP (x)∨∃x¬P (x),∃x¬P (x),¬P (m) (note that ¬P (m) is true) by
merging ∃x¬P (x),¬P (m) to ∃x¬P (x) using ∃-introduction (we obtain ∀xP (x)∨
∃x¬P (x), ∃x¬P (x)) and simultaneously merging ∀xP (x) ∨ ∃x¬P (x), ∃x¬P (x)
to ∀xP (x) ∨ ∃x¬P (x) by ∨-introduction and introducing P (m) by weakening.
Having ∀xP (x)∨∃x¬P (x), P (m) deduced for all m ∈ N , we apply ∀-introduction
and obtain ∀xP (x) ∨ ∃x¬P (x), ∀xP (x).

. . . ∀xP (x) ∨ ∃x¬P (x),P(n− 1)
true

∀xP (x) ∨ ∃x¬P (x), ∃x¬P (x),¬P(n)
true

∀xP (x) ∨ ∃x¬P (x),∃x¬P(x)
∃n

∀xP(x) ∨ ∃x¬P(x), P (n)−−−−−− ∨2

. . .

∀xP (x) ∨ ∃x¬P (x), ∀xP(x)
(one node for each n)

∀xP(x) ∨ ∃x¬P(x)
∨1

We can translate this proof as a strategy learning the truth value of ∀xP (x)
using backtracking. We obtain the same strategy we sketched in the introduction.
For the first move, Eloise chooses either ∀xP (x) or ∃x¬P (x). Since Eloise does
not know the witness of ∃x¬P (x), Eloise postpones the answer the witness, and
chooses ∀xP (x). Then, Abelard chooses an integer m for x. The play goes to
P (m). If P (m) is true, Eloise wins. If P (m) is false, then ¬P (m) is true. Thus
m is a witness of ∃x¬P (x). Therefore, Eloise backtracks from P (m) to ∀xP (x)∨
∃x¬P (x). This corresponds to introducing P (m) by Weakening. Eloise moves
∃x¬P (x) from ∀xP (x) ∨ ∃x¬P (x) this time. Again, the formula is disjunctive.
Hence Eloise moves again.5 Eloise chooses m and wins because ¬P (m) is true.

5.2 2-excluded middle

We introduce now a proof corresponding to no winning strategy of 1-bck. play.
Consider the law of excluded middle A ∨ ¬A. When Σ0

2 -formulas, not only Σ0
1 -

formulas are allowed to be substituted into A, the schema is called the law
of 2-Excluded Middle, or EM2. The proof of EM2 requires Exchange rule for
sequents, as it is illustrated by the proof below (in ω-arithmetic with Exchange,
not in PA1). In the proof, A = ∀x∃yQ(x, y) and ¬A denotes ∃x∀y¬Q(x, y),
B(x) = ∃yQ(x, y) and ¬B(x) denotes ¬B(x) = ∀y¬Q(x, y). Further, we assume
that Q(n, k− 1) is false while Q(n, k) is true. Formulas introduced by a rule are
boldfaced, while formulas added by an introduction of A∨B or ∃x.A to the left
of A ∨ B or ∃x.A are crossed out (recall, any introduction of A ∨ B or ∃x.A
is merged with Weakening). Exchange is labelled by Exch. The only formula
subjected to Exchange, B(n), is not introduced but switched with A∨¬A. Note

5 Remark that we did not ask in the definition of play that player alternate.

that since we have true-introduction only for true atomics, A and ¬A must be
decomposed to atomic formulas. Since we are dealing with ω-logic, the proof has
infinite branches.

First, we derive B(n), A ∨ ¬A,¬A,¬Q(n, k) in a way depending on whether
Q(n, k) is true or false. If Q(n, k) is true, we derive B(n), Q(n, k) by true-
introduction, then simultaneously merging Q(n, k) to B(n) by ∃-introduction
and introducing A ∨ ¬A,¬A,¬Q(n, k) by weakening. If Q(n, k) is false, since
¬Q(n, k) is true, we can derive B(n), A∨¬A,¬A,¬Q(n, k) by true-introduction.
Having B(n), A∨¬A,¬A,¬Q(n, k) for all k ∈ N , we derive B(n), A∨¬A,¬A,∀x¬Q(n, x)
(∀x¬Q(n, x) ≡ ¬B(n)). Applying ∃n- and ∨2-introduction, we have B(n), A ∨
¬A. Now, exchange B(n) and A ∨ ¬A so that B(n) becomes active. Since the
proof so far can be carried out for any n ∈ N , we have A∨¬A, B(n) for all n ∈ N .
By ∀-introduction we have A ∨ ¬A,∀xB(x) (∀xB(x) ≡ A). By ∨1-introduction,
we have A ∨ ¬A.

. . . B(n), A ∨ ¬A,¬A,¬Q(n,k− 1)
true

B(n),Q(n,k)
true

B(n), A ∨ ¬A,¬A,¬Q(n, k)−−−−−−−−−−−−−−−−−−∃
k

. . .

B(n), A ∨ ¬A,¬A,¬B(n)
(one node for each k)

B(n), A ∨ ¬A,¬A
∃n

B(n),A ∨ ¬A
∨2

. . . A ∨ ¬A,B(n) . . .
Exch

A ∨ ¬A,A
(one node for each n)

A ∨ ¬A ∨1

It is essential to exchange B(n) and A ∨ ¬A. In this stage of the proof, we
are supposed to prove B(n), that is, we are suppose to find some y which is a
witness B(n) = ∃yQ(n, y). We do not know even whether such a y exists or not.
Moreover we cannot introduce B(n) by weakening, otherwise we would stuck
in a later stage of the proof, while proving A ∨ ¬A,¬A,¬Q(n, k) with Q(n, k)
true. What Exchange does is to postpone the proof of B(n) after we fail proving
¬B(n) = ∀y¬Q(n, y). If and when we fail, we find some true Q(n, k), and we
use y = k as a witness for it B(n) = ∃yQ(n, y) (look to the top right corner of
the proof).

It is easier to understand how the proof works if we interpret it as a win-
ning strategy of a backtracking game of Tarski game GA∨¬A. However, as we
will show, we need a stronger form of backtracking than 1-backtracking for in-
terpreting Exchange: we need backtracking in the sense of Coquand [2]. The
interpretation of the proof runs as follow.

As in the case of EM1, Eloise chooses ∀x∃yQ(x, y) and Abelard chooses a
subformula ∃yQ(n, y). Now the turn is Eloise’s, but she does not know which
Q(n, k) is true (if any). Therefore, she postpones to answer ∃yQ(n, y) and opens
the dual game ¬A. She repeats Abelard’s play and reaches ∀y¬Q(n, y). Abelard
chooses either some integer k such that ¬Q(n, k) is true, or some integer l such
that ¬Q(n, l) is false. In the first case, Eloise wins. In the second case, Q(n, l) is

true. Eloise reopens the play for ∃yQ(n, y), and chooses l for y. The play goes
to Q(n, l) which is true. Hence Eloise wins. This play is not a 1-bck. play, since
backtracking from ¬Q(n, k) to ∃yQ(n, y) violates the condition 2 of Definition 2.
Indeed, ∃yQ(n, y) is not an ancestor of the node ¬Q(n, k) in the subformula tree
of A∨¬A, therefore the backtracking we used is not 1-backtracking. Backtracking
necessary for EM2 is called 2-backtracking in [1]. In 1-bck. play, a position
∃yQ(n, y) becomes unreachable after Eloise backtracks from ∃yQ(n, y) to A∨¬A,
while the winning strategy for EM2 requires to reactivate it. In the term of a
proof, backtracking of 1-bck. play corresponds weakening, since formulas in the
conclusions are discarded from the premises after 1-bck. Instead, 2-backtracking
and general backtracking correspond to exchange, since de-activated formulas
are not discarded from the premises, but just pushed back in the sequent, and
they can be recovered if we later need them.

5.3 A “learning algorithm” corresponding to a classical proof

In this example, we first define a “learning strategy” (or 1-backtracking strategy)
for the Tarski game of some formula A. Then we turn it into a proof in PA1 of
A. In this way we sketch how we can recover a proof from a “learning algorithm”
in the sense of Hayashi. This is the formula A we consider. For any functions
f, g1, g2 from N (the set of natural numbers) to N, there is some n ∈ N such
that f(n) ≤ f(g1(n)) and f(n) ≤ f(g2(n)). We can find an n as required, by the
following “learning” algorithm. First we choose n arbitrary, say n = 0, then:

Step 1: If f(n) ≤ f(g1(n)), f(g2(n)), then n is a solution. Otherwise, either
f(g1(n)) or f(g2(n)) is strictly smaller than f(n).

Step 2: If f(g1(n)) < f(n), then let n be g1(n) and return to step 1. If
f(g2(n)) < f(n), then let n be g2(n) and return to step 1.6

Let ni be the i-the number used as n. Then f(n1) > f(n2) > . . . > f(ni) >
. . . by its construction. From f(ni) ∈ N we conclude the algorithm eventually
reaches some solution.

We can see this “learning” algorithm as a winning strategy for 1-bck. plays
of Tarski game of the formula ∃n.f(n) ≤ f(g1(n)) ∧ f(n) ≤ f(g2(n)) with 1-
backtracking. First, Eloise chooses 0 as n. Abelard chooses either f(0) ≤ f(g1(0))
or f(0) ≤ f(g2(0)). If the formula Abelard chooses is true, then Eloise wins.
Otherwise, Eloise backtracks to ∃n.f(n) ≤ f(g1(n)) ∧ f(n) ≤ f(g2(n)) and
chooses another n by using Abelard’s move, as follows. If Abelard chooses
f(0) ≤ f(g1(0)), then Eloise chooses g1(0) as a new n. If Abelard chooses
f(0) ≤ f(g2(0)), then Eloise chooses g2(0) as a new n. Next, Abelard chooses
either f(n) ≤ f(g1(n)) or f(n) ≤ f(g2(n)), and Eloise uses this information to
refine n further. E repeats this sequence of moves over and over again. Eloise
always wins by the same reason why the algorithm above is terminating.

We can translate this strategy to the proof of ∃n.f(n) ≤ f(g1(n)) ∧ f(n) ≤
f(g2(n)). Backtracking corresponds to introducing f(0) ≤ f(g1(0)) or f(0) ≤
6 If f(g1(n)) and f(g2(n)) are both smaller than f(n), we can choose g1(n) or g2(n)

randomly.

f(g2(0)) by Weakening. Let A(n) be f(n) ≤ f(g1(n)) ∧ f(n) ≤ f(g2(n)) and
m = gi0(. . . gik

(0))), where ij = 1, 2 for 0 ≤ j ≤ k. In the picture below,
we assume that the only atomic true formula is (f(m) ≤ f(g2(m))). Then,
the proof has the following form. We write boldface all formulas introduced by
some rule, and crossed out all formulas added by Weakening. We construct our
proof by bottom-up fashion. For each step, we try to prove ∃nA(n), A(m) where
m = 0 at first. ∃nA(n), A(m) is derived from ∃nA(n), (f(m) ≤ f(g1(m)) and
∃nA(n), (f(m) ≤ f(g2(m)). If, say f(m) ≤ f(g2(m) is true, we are done. If, say
f(m) ≤ f(g1(m)) is false, we try to prove ∃nA(n), A(g1(m)). Since f(g1(m)) <
f(m), this process should be stopped somewhere. If we prove ∃nA(n), A(g1(m)),
we can obtain ∃nA(n), (f(m) ≤ f(g1(m)) by simultaneously merging A(g1(m))
to ∃nA(n) and introducing f(m) ≤ f(g1(m)) by weakening.

....
∃nA(n),A(g1(m))

∃nA(n), (f(m) ≤ f(g1(m)))−−−−−−−−−−−−−−−−−− ∃nA(n), (f(m) ≤ f(g2(m)))
true

∃nA(n),A(m)
....

∃nA(n),A(g1(0))

∃nA(n), (f(0) ≤ f(g1(0)))−−−−−−−−−−−−−−−

....
∃nA(n),A(g2(0))

∃nA(n), (f(0) ≤ f(g2(0)))−−−−−−−−−−−−−−−
∃nA(n),A(0)

∃nA(n)

For the reverse direction, it is easy to see that the proof corresponds the
strategy given above. In the workshop version of the paper, we cut here the
example section for reason of space. In the technical report, instead, we include
two more elaborated examples of the correspondence proof-strategy. We take an
algorithm learning some minimum point of f : N → N, and we turn it into a
proof that the minimum point exists. Then we define an algorithm learning an
infinite weakly increasing subsequence from any infinite sequence over N, and
we turn it into a proof that such infinite subsequence exists.

In appendix we generalize to all proofs and all strategies the correspondence
we just defined between some proofs and some strategies.

References

[0] S. Berardi, Y. Yamagata. A sequent calculus for 1-backtracking, Technical Re-
port, Turin University, December 2005. http://www.di.unito.it/ stefano/Yamagata-
Berardi-report.pdf.

[1] S. Berardi, Th. Coquand., S. Hayashi. Games with 1-backtracking, Proceedings of
GaLop, Edinburgh, April 2005.

[2] Th. Coquand. A semantics of evidence for classical arithmetic. Journal of Symbolic
Logic 60 (1995), pp. 325–337.

[3] S. Hayashi, Mathematics based on Learning, Algorithmic Learning Theory, LNAI
2533, Springer, pp.7-21.

[4] Hayashi, S.: Can proofs be animated by games?, in P. Urzyczyn ed., TLCA 2005,
LNCS 3461, pp.11-22, 2005, invited paper.

[5] H. Herbelin, Sequents qu’on calcule: de l’interpretation du calcul des sequents
comme calcul de lambda-termes et comme calcul de strategies gagnantes, Ph. D.
thesis, University of Paris VII, 1995.

[6] W. Hodges, ”Logic and Games”, The Stanford Encyclopedia of Philosophy (Winter
2004), Edward N. Zalta (ed.).
http://plato.stanford.edu/archives/win2004/entries/logic-games/

6 Trees

In this section we introduce some (routine) coding and some terminology for
trees.

We denote with List(I) the set of finite lists of a set I. For any x, y ∈ List(I),
we denote “x is a prefix of y” and “x is a proper prefix of y” with x ≤ y and
x < y. Let x = 〈i0, . . . , ik−1〉 ∈ List(I) denote any list. If x is not empty,
we denote with drop(x) = 〈x0, . . . , xk−2〉 ∈ List(I) and last(x) = xk−1 ∈ I
the list x with the last element dropped, and the last element of x. For any
0 ≤ h < k we denote 〈i0, . . . , ih〉 the prefix of x with all elements up to the
index h, with xdh. If f : I → J , we define a map Map(f) : List(I) → List(J)
by applying f to each item in x: Map(f)(x) = 〈f(i0), . . . , f(ik−1)〉. If i ∈ I, we
denote 〈i0, . . . , ik−1, i〉 with x::i. We call any x::i a one-step extension of x. We
associate :: to the left: x::i::j is short for (x::i)::j. We have drop(x::i) = x and
last(x::i) = i and Map(f)(x::i) = Map(f)(x)::f(i).

Definition 12. Let E be any set and ∗E ∈ E. A tree T over E, ∗E is a set of
finite non-empty lists 〈e0, . . . , ek〉, with e0, . . . , ek ∈ E and e0 = ∗E , such that:

1. 〈∗E〉 is the minimum of T under prefix.
2. T is closed under non-empty prefixes: if p ∈ T and 〈〉 6= q < p, then q ∈ T .

When no ambiguity arises we write ∗ for ∗E . If T is a tree on E, ∗, we call
〈∗〉 ∈ T the root of T , and ∗ the starting symbol of T .7 If both x, x::i ∈ T , we say
that x::i is the child of x of index i, and that x is the father of x::i. We say that
x is an ancestor of y if x ≤ y. An infinite branch of T is any infinite sequence
〈e0, e1, e2 . . .〉 whose non-empty finite prefixes are all in T . A subtree U of T is
a subset U of T which is still a tree. Assume U is a tree over some F, ∗F . Then
a morphism φ : T → U between T,U is any map sending the root of T into the
root of U , and compatible with father/child relation (that is, φ(〈∗E〉) = 〈∗F 〉,
and for all x::a ∈ T there is some b ∈ F such that φ(x::a) = φ(x)::b). φ is an
isomorphism if and only if φ is invertible, and φ−1 is still a morphism.

7 ∗ is some dummy symbol we introduced in order to avoid empty lists in the coding of
a tree. Introducing ∗ is just an arbitrary choice. Proofs and definitions of this paper
become a bit simpler skipping empty lists.

Definition 13. We say that two classes C,D of trees are pointwise isomorphic
if there are opposite bijections Φ : C → D and Ψ : D → C, such that any two
trees corresponding through Φ, Ψ are isomorphic.

By definition unfolding, we can now precise the details of the coding of bckcf .
8

7 First properties of proofs

We list here a few well-known combinatorial properties we will need while proving
the main theorem. We use the tree terminology from §6. For proofs we refer to
the technical report [0].

Lemma 14. Let φ : T → U be any morphism between two trees T,U . Let
f : A → B and g : B → A. Denote the identities over A,B with idA, idB.

1. φ is an isomorphism if and only if φ is a bijection (i.e.: if φ is invertible,
then its inverse is a morphism).

2. For any x ∈ T , x and φ(x) have the same length.
3. If gf = idA, then f is an injection and g a surjection.
4. If gf = idA, and either fg = idB, or f is a surjection, or g is an injection,

then f, g are opposite bijections.

The first property of proofs we derive is the following:

Lemma 15. 1. If π is a proof of a sequent Γ , and all formulas in Γ before the
last one are disjunctive, then the same holds for all sequents in the proof.

2. If π is a proof a singleton sequent {A}, then all introductions of conjunc-
tive formulas in π use no weakening, that is, they always introduce the last
formula of the sequent.

A well-known property of (cut-free) proofs is the following. All sequents Γ
decorating a proof π of a formula A consist of subformulas of A (proof: by
induction over π, using the fact we have no cut rule in PA1). Our next step is
to fix some canonical choice for the list of positions of all sequent Γ labelling a
proof π.

Definition 16. Let π be any proof of a formula A. We say that ψπ : T →
List(TA) is a decoration of π with list of positions if for all p ∈ π, ψπ(p) is a
position of dπ(p). We say that ψπ is canonical if for all p::i ∈ π, M = ψπ(p) and
L = ψπ(p::i), we have L = M ′::(x::i), for some M ′ ≤ M and some x in M .

8 Let E be the set of moves of G. Then Tcf is a tree over the set T of positions of
the game G, therefore Tcf ⊆ List(T). Since T ⊆ List(E), we are coding the set Tcf

of positions of bckcf (G) with some subset of List2(E) (some set of lists of lists of
moves of the original game G). The starting symbol of Tcf is 〈∗E〉 (a list), while the
root is 〈〈∗E〉〉 (a list of lists).

Using drop, last from §6 , we can reformulate the definition of canonical
decoration by: drop(L) ≤ M and drop(last(L)) is in M , and last(last(L)) =
i, for all L,M as above. For each π = 〈T, dπ, dπ〉 proof of formula A there is
exactly one canonical decoration. We define ψπ by induction over p, as follows.

Definition 17. 1. ψπ(〈∗〉) = 〈〈∗〉〉.
2. Assume p0, p0::i ∈ T and ψπ(p0) = 〈x0, . . . , xm〉 and dπ(p0) = B0, . . . , Bm.

– Suppose Bm is conjunctive and dπ(p) = B0, . . . , Bm−1, Bm,i, for some
Bm,i one-step subformula of Bj . Then ψπ(p) = 〈x0, . . . , xm−1, xm::i〉.

– Suppose Bj , . . . , Bm are disjunctive and dπ(p) = B0, . . . , Bj , Bj,i, for
some Bj,i one-step subformula of Bj , of index i. Then we set ψπ(p) =
〈x0, . . . , xj , xj ::i〉.

The two cases in the definition of ψπ cannot superpose, because Bm is either
conjunctive or disjunctive. The two cases cover all proofs of a formula A by
Lemma 15.2. If p is any node of the proof π of A, we call ψπ(p) the list of positions
associated to p in the canonical decoration. Now we derive some property of
canonical decorations.

Lemma 18. Assume that π, π′ are any proofs of A. Then:

1. A canonical decoration of π is unique.
2. For all p ∈ π, ψπ(p) is some A-disjunctive chain.
3. ψπ is a canonical decoration of π with lists of positions, and last2(ψ(p)) =

last(p) for all p ∈ π.
4. If π, π′ have equal trees, and equal decorations ψπ, ψπ′ on these trees, then

they are equal proofs.

8 An intermediate step between proofs and strategies

Fix any A ∈ Lpos. We define a class of trees associated to A we call proof-
strategy trees. A proof-strategy tree can be seen either as a proof of A, or as
a winning strategy for the Tarski game for A. In order to achieve such effect,
proof-strategies are heavily cluttered with redundant information. In the next
sections we will show that both proofs and proof-strategies, and proof-strategies
and winning strategies are pointwise isomorphic classes of trees. Besides, all
these isomorphisms preserve the sequent labelling each node. We will conclude
the same result for proofs and strategies.

Intuitively, a proof-strategy of A is a proof π of A in which we replaced
each sequent Γ of π by its canonical list of positions. The list of positions of
any sequent Γ is an extra information we can add to a proof. It is not strictly
required, because it can be recovered from the proof. We only consider it in order
to make the correspondence between proofs and strategy more evident.

Intuitively again, a proof-strategy can be seen as a strategy in which we
replaced each move x with the A-disjunctive chain of x (the list L = 〈x0, . . . , xm〉
of moves E can backtrack to, including x itself, which is xm). This list L is an
extra information we can add to a winning strategy, not strictly required in order
to code a winning strategy, because it can be recovered from the position x.

Definition 19. A proof-strategy is any tree P over List(TA) (over the set of
all lists of positions), having 〈〈∗〉〉 ∈ List(TA) as starting symbol, and such that,
for all Y = X::(L::x) ∈ S:

– If x is an A-node, then the one-step extensions Z of Y in S are exactly all
Z = Y ::(L::(x::i)), for all x::i ∈ TA.

– If x is an E-node, then Y has a unique one-step extension Z in S, and
Z = Y ::(M ::y::(y::i)), for some prefix M ::y ≤ L::x, and some y::i ∈ TA.

If X ∈ P , we call the sequent Γ of position last(X) the canonical sequent
labelling X.

By induction on X ∈ P we can prove that all X ∈ P are lists of A-disjunctive
chain. A remark about coding: A-disjunctive chains are in List2(N), therefore
P is (coded by) some subset of List3(N), or some set of: lists of lists of lists of
integers.

The next Lemma states a first relationship between proof-strategies and
proofs. Assume that a proof π and a proof-strategy P are isomorphic trees, that
the isomorphism preserves the last integer in a node, and that the isomorphism
defines a list decoration of π. In this case, the isomorphism defines a canonical
list decoration of π.

Lemma 20. Assume p 7→ Xp is an isomorphism between some proof-strategy
P and some proof-tree π, such that last(p) = last3(Xp) for all p ∈ π. Assume
furthermore that p 7→ last(Xp) is a list decoration of the proof-tree. Then this
list decoration is canonical.

9 proof-strategies and strategies are pointwise isomorphic

In this section we show that we can interpret a proof-strategy for A as a strategy
for the cut-free 1-backtracking game for A.

We can define a pair Ψ2, Φ2 of pointwise isomorphisms between strategies and
proof-strategies for A, as follows. Intuitively, we replace each list of positions with
its last element to turn a proof-strategy into a strategy. Conversely, we replace
each position of Tarski game TA with the A-disjunctive list of position associated
to it, in order to turn a strategy into a proof-strategy .

Here is the formal definition. Let last : List(TA) → TA be the map taking
the last element of a list over TA. Then we set ψ2 = Map(last) : List2(TA) →
List(TA). Conversely, let disj : TA → List(TA) be the map computing the A-
disjunctive chain for a given x ∈ TA. Then we set φ2 = Map(disj) : List(TA) →
List2(TA). Eventually, for any proof-strategy P we define a strategy W =
Ψ2(P) = {ψ2(X)|X ∈ P}. For any strategy W we define a proof-strategy
P = Φ2(W) = {φ2(L)|L ∈ W}.

Lemma 21. 1. ψ2φ2(L) = L, for all L ∈ List(TA), and ψ2φ2(X) = X, for
all lists X of A-disjunctive chains.

2. If P is a proof-strategy , then ψ2, φ2 are opposite tree isomorphisms, and
Ψ(W) is a winning strategy.

3. If W is a winning strategy, then φ2, φ2 are opposite tree isomorphisms, and
Φ2(W) is a proof-strategy .

4. Ψ2, Φ2 are pointwise isomorphisms. If a node X ∈ P and a play p ∈ W are
in correspondence through ψ2, φ2, then they are labelled by the same sequent.

10 Proofs and proof-strategies are pointwise isomorphic

In this section we show that we can interpret any proof-strategy P as the canon-
ical decoration of some proof π with lists of positions.

Fix any A ∈ Lpos. We define a pair Ψ1, Φ1 of pointwise isomorphism between
proofs and proof-strategies for A, as follows. Intuitively, we get a proof-strategy
from a proof by replacing each sequent by its canonical position. We get a proof
from a proof-strategy by replacing back each list of position of a sequent by
the sequent. Formally, for any proof π of A, if p = 〈i0, . . . , ik〉 ∈ π, we set
ψ1(p) = 〈ψπ(pd0), . . . , ψπ(pdk)〉 (where pdk is p itself). By definition, the last
element of ψ1(p) is ψπ(pdk) = ψπ(p), the canonical list of positions decorating
p. Alternatively, we set ψ1(〈∗〉) = 〈〈〈∗〉〉〉, and ψ1(p::i) = ψ1(p)::ψπ(p::i). Then
we define a proof-strategy P = Ψ1(π) as the set {ψ1(p)|p ∈ π} of lists of A-
disjunctive chains. Each A-disjunctive chain is a list of formula, and formulas
are coded by lists. Therefore each ψ1(p) is coded by a lists of lists of lists, a list
nested three times.

We define the opposite map φ1 taking a list Y nested three times and re-
turning a list. φ1 takes, for each element of Y (some list nested twice), the
last element of its last element: that is, we set φ1 = Map(last2). Alterna-
tively, φ1(〈〉) = 〈〉, and if Y ∈ List3(N) is a one-step extension of X, then
φ(Y) = φ(X)::last3(Y). For any proof-strategy P , we define a proof π. The
proof-tree is T = {φ1(X)|X ∈ P}. We claim that φ1 is a tree-isomorphism
: P → T . Let X = φ−1

1 (p) = 〈L0, . . . , Lm〉. We define the decoration dπ(p) of
the node p ∈ T as the only sequent having list of positions Lm = last(X) (i.e.,
dπ(p) = Form(last(X))). Eventually, for any proof-strategy P we define the
proof π = Φ1(P) = 〈T, dπ〉.

Lemma 22. 1. If π is any proof, then ψ1, φ1 are opposite tree isomorphisms,
and Ψ1(π) is a proof-strategy .

2. If P is any proof-strategy , then φ1 is a tree isomorphism, π′ = Φ1(P) is a
proof, and last(φ−1

1 (p)) is a canonical list of positions for π′, and ψ1 = φ−1
1 .

3. Ψ1, Φ1 are pointwise isomorphisms. These isomorphisms preserve the sequent
labelling a node.

From Lemma 21.4 and Lemma 22.3 we deduce the Main Theorem:

Theorem 23. (Isomorphism Theorem) For all A ∈ Lpos, the class of proof-trees
of the sequent {A} in PA1 is pointwise isomorphic to the class of the recursive
winning strategy for the 1-backtracking game for A. Besides, if a node of a proof

and a position in a winning strategy are in correspondence in such isomorphism,
then they are labelled with the same sequent.

