
Simplifying Programs Extracted
from Classical Proofs

Yevgeniy Makarov

Indiana University, Bloomington, IN 47405, USA
emakarov@cs.indiana.edu

Abstract. Curry-Howard isomorphism extended to classical logic by
associating the rule of double-negation elimination with the control op-
erator C allows to view a natural deduction derivation of a Π0

2 formula as
a program. However, programs produced by this method are often hard
to understand, in part because of the presence of control operators. In
this paper, we show how to simplify such programs and make them more
readable. Simplification consists of two parts: normalizing with respect
to a certain set of reductions, and removing subterms of singleton type,
whose origin is subderivations of atomic formulas. The latter part can in
fact be applied to arbitrary functional program with side effects.

1 Introduction

Research about classical logic and computation received a powerful stimulus from
the discovery made by Griffin and Murthy some 15 years ago, but the question
of how best to extract demonstrably correct programs from classical proofs of Π0

2

formulas still awaits a satisfactory answer. The facts that classical proofs often do
not contain an obvious algorithm, and programs extracted from them are difficult
to understand, does not make things easier. In this paper, we show how programs
produced from classical proofs using Griffin-Murthy connection between control
operators and double negation elimination (DNE) can be dramatically simplified
so that they become amenable to human inspection.

Our contribution consists of two independent parts. The first describes rewrit-
ing rules for simplifying programs with control operators and free variables. Nor-
malizing a program with respect to these rules eliminates most of the control
operators and makes the program much clearer. The second part describes how
to remove program fragments which have singleton type. These fragments in-
evitably occur in programs obtained from proofs and arise from subderivations
of atomic formulas. In the case of programs obtained from constructive proofs,
singleton subterms are useless because they always evaluate to the same con-
stant, and their removal is achieved by an easy recursive mapping. However, in
the presence of control operators the task is much trickier because even subterms
of singleton type can produce side effects, which cannot be ignored.

We illustrate our method by two examples.1

1 Thierry Coquand attributes the first example to Gabriel Stolzenberg in [1]. We
learned it from Hugo Herbelin. The second example is taken from [2].

1

Example 1. For every function f : nat → bool, there are two numbers x1, x2 such
that x1 < x2 and f(x1) = f(x2).

Proof. This claim follows from the following much more general statement.

∀f ∃b ∀x∃y. y ≥ x ∧ f(y) = b (1)

Having fixed b, one can find any number of points which are mapped to b by f .
To prove (1), we claim that ∀x∃y. y ≥ x∧f(y) = > or ∀x∃y. y ≥ x∧f(y) = ⊥

(obviously, (1) follows from this disjunction). Suppose the contrary. Then we
have ∃x1¬∃y. y ≥ x0 ∧ f(y) = > and ∃x2¬∃y. y ≥ x1 ∧ f(y) = ⊥. Consider
y = max(x1, x2). Clearly y ≥ x1, y ≥ x2 and either f(y) = > or f(y) = ⊥. In
both cases we have a contradiction with the previous claims.

Example 2 (Integer root). Suppose f : nat → nat is unbounded, i.e., there exists
a function g such that f(g(y′)) > y′ for all y′. If f(0) ≤ y then there exists an
“integer root” for y, i.e., there exists such x that f(x) ≤ y < f(x + 1).

Proof. Toward contradiction, suppose no such x exists. We prove by induction
on x that f(x) ≤ y. The base case is given. For induction step, assume that
f(x) ≤ y. If y < f(x + 1) then we have a contradiction with our assumption,
so f(x + 1) ≤ y, which completes induction step. Putting x = g(y) we get
f(g(y)) ≤ y, contradicting the assumption that f(g(y)) > y.

The plan of the paper is as follows. Section 2 presents the pseudo-classical
type system which allows viewing derivations in classical logic as λ-terms with
control operators. It also contains programs obtained from the proofs of the
two examples shown above. Section 3 discusses reduction rules which simplify
extracted programs. Section 4 is devoted to eliminating as many subterms of
singleton type as possible. This is done by introducing a type-and-effect system
and identifying subterms which produce side effects. After that, singleton terms
without side effects can be erased. Finally, Section 5 describes related work and
concludes.

2 Viewing classical derivations as programs

2.1 Type system

The details about viewing classical proofs of Π0
2 formulas as programs using

Griffin’s connection between DNE and control operators are contained in our
paper [3]. Here we briefly remind the main ideas.

It is well-known that Curry-Howard isomorphism establishes correspondence
between three pairs of concepts: formulas and types, (natural deduction) deriva-
tion and terms, and reduction on derivations and reduction on terms. The last
property is called subject reduction: reductions on terms turn derivations into
derivations of the same formula.

Griffin extended Curry-Howard correspondence to classical logic by observing
a connection between DNE and the control operators C, a relative of call/cc

2

from the programming language Scheme. However, with this connection, subject
reduction no longer holds. To restore it, one has to replace all occurrences of
falsehood ⊥ in the derivation by the formula F being proved by this derivation.
This, of course, deforms DNE and ex-falso-quodlibet (EFQ) inferences, which
after substitution would take the shapes

(D → F) → F

D
and F

D
.

However, with the newly recovered subject reduction, all of these inferences can
be expunged by normalizing the derivation, provided F does not contain → or
∀. In the end, we obtain a valid derivation in minimal logic, from which one can
extract a witness for F .

Consider a first-order language L which includes simply typed λ-calculus.
Base types may include, for example, nat, int, bool and listnat. Terms of L occur
in formulas and are called object terms, as opposed to derivation terms which
encode derivations via Curry-Howard isomorphism. Object terms do not contain
any control operators.

Because the main interest of this paper lies in derivation terms, we choose
not to specify the exact syntax and typing rules of L. The typing judgments are
assumed to have the form x1 : ρ1, . . . , xn : ρn `L s : ρ where xi are variables, ρi

and ρ are types, and s is an object term. Also, we do not list reductions on object
terms but rather postulate that these reductions are computable, confluent, and
strongly normalizing. This ensures that the congruence ' generated by these re-
ductions is decidable (by normalizing terms and comparing their normal forms).
Besides β-reduction (λx.s)s′ �β s[s′/x], there may be so called δ-reductions, for
example, +(2, 3) �δ 5, which simulate the effect of built-in functions of a pro-
gramming language. We identify object terms s′ and s′′ for which s′ ' s′′ holds.
By dealing with these reductions on the metalevel we simplify formal proofs.

For the rest of the paper, ≡ denotes syntactic identity, C,D range over arbi-
trary formulas of L while A,B range over atomic formulas (or atoms), s ranges
over object terms and t ranges over arbitrary terms. The formula ¬D is a con-
traction for D → ⊥. If M is a syntactic object then FV(M) denotes the set of
free variables in M .

We assume that there is a consistent classical theory T whose judgments are
written as Γ ` D. It is also assumed that for each predicate symbol P there
is another predicate symbol P̄ which represents the complement of P , and if
A ≡ P (~s) then Ā denotes P̄ (~s). Moreover, we make a syntactic convention that
¯̄P is the same as P . Finally, we assume that for each closed decidable atom A,
either ` A or ` Ā holds.

We now define a pseudo-classical type system whose judgments Γ `F t : D
intend to convey “term t is extracted from a derivation of Γ ` D, given as a
subderivation of a derivation of formula F .” The type system is shown in Fig. 1.

The first column in Fig. 1 contains inference rules of minimal logic. The
second column contains different extensions which are necessary for real-world
proofs as well as classical rules with ⊥ replaced by F . As an example of ex-
tension, if an atom A is derivable in our theory T , the corresponding term is

3

Γ, u : D `F u : D

Γ `F t1 : C → D Γ `F t2 : C

Γ `F t1t2 : D

Γ `F t : ∀xρ D Γ `L s : ρ

Γ `F ts : D[s/x]

Γ, u : C `F t : D

Γ `F λu. t : C → D

Γ, x : ρ `F t : D

Γ `F λx. t : ∀xρ D

Γ `F t1 : D1 Γ `F t2 : D2

Γ `F 〈t1, t2〉 : D1 ∧D2

Γ `F t : D1 ∧D2

Γ `F πit : Di

Γ `F t : Di

Γ `F ini t : D1 ∨D2

Γ `F t : D[s/x] Γ `L s : ρ

Γ `F 〈s, t〉 : ∃xρ D

Γ `F t1 : ∃xρ C Γ, x : ρ, u : C `F t2 : D

Γ `F spread(t1; x, u. t2) : D

Γ `F t : C1 ∨ C2

Γ, u1 : C1 `F t1 : D
Γ, u2 : C2 `F t2 : D

Γ `F decide(t; u1.t1; u2.t2) : D

` A
Γ `F ε : A

Γ `F t : A A ` B

Γ `F t : B

Γ `F t1 : A1 . . . Γ `F tn : An A1, . . . , An ` B

Γ `F begin(t1, . . . , tn) : B

` s = s′ Γ `F t : D[s/x]

Γ `F t : D[s′/x]

Γ `F t1 : s = s′ Γ `F t2 : D[s/x]

Γ `F begin(t1, t2) : D[s′/x]

Γ, u1 : P (~t) `F t1 : D Γ, u2 : P̄ (~t) `F t2 : D

Γ `F if P (~t) then t1[ε/u1] else t2[ε/u2] : D

Γ `F t1 : D[0/x]
Γ `F t2 : ∀x (D → D[s x/x]) Γ `L t3 : nat

Γ `F nrec(t1, t2, t3) : D[t3/x]

Γ `F t1 : A Γ `F t2 : Ā

Γ `F false(t1, t2) : F

Γ `F t : F

Γ `F At : D

Γ `F t : (D → F) → F

Γ `F Ct : D

Fig. 1. Pseudo-classical type system

ε (regardless of whether A is an axiom or has a nontrivial derivation). If sev-
eral atoms A1, . . . , An with proof terms t1, . . . , tn imply another atom B, the
proof term for B is begin(t1, . . . , tn). As one can see from reductions shown in
Fig. 2, begin(t1, . . . , tn) just evaluates all its arguments and returns the last one
of them. Another addition is a term false(t1, t2) which proves F from two com-
plementary atoms A and Ā (in T , before we replaced ⊥ by F , A and Ā implied
⊥). There are no reduction rules involving false, but this term cannot come up
during evaluation if T is consistent. For more details, see [3].

In Fig. 2, E denotes an evaluation context defined by the following grammar:

E ::= [] | Et | vE | 〈E, t〉 | 〈v,E〉 | πi E | ini E | decide(E;u1.t;u2.t) |
spread(E;x, u.t) | begin(~v, E,~t) | nrec(~v, E,~t) | false(E, t) | false(v,E) | CE | AE

where v ranges over the set of values defined as follows.

v ::= x | s (object term) | λx. t | 〈v, v〉 | ini v

4

(λx.t)s �β t[s/x] nrec(t1, t2, 0) �β t1

πi〈t1, t2〉 �β ti nrec(t1, t2, s t3) �β t2t3 nrec(t1, t2, t3)

spread(〈t1, t2〉; x, u.t) �β t[t1/x, t2/u] if P (~t) then t1 else t2 �β t1 if ` P (~t)

decide(ini t; u1.t1; u2.t2) �β ti[t/ui] if P (~t) then t1 else t2 �β t2 if ` P̄ (~t)

begin(ε,~t, t) �β begin(~t, t) E[At] 7→c t

begin(ε, t) �β t E[Ct] 7→c t(λx.AE[x])

Fig. 2. Reductions

Concerning reductions, the following syntactic conventions are adopted. Lo-
cal reductions (i.e., the ones which can be performed anywhere in the term)
are denoted by � with possible indexes. Their compatible closures are denoted
by →. The reflexive-transitive closure of → is written as �. Next, 7→ denotes
computational rule, which can be applied only to the term as a whole. Several
indexes indicate union of reductions. If →~ı is a reduction with some indexes ~ı
then =~ı is the corresponding convertibility relation.

2.2 Programs produced from examples

The program produced from proof of Theorem 1 via typing rules in Fig. 1 is
shown in Fig. 3. It consists of three parts: neguniv is a proof of ¬(∀x.D) →
∃x.¬D, infinity is a proof of (1), and example1 combines the parts into the final
proof. The program obtained from the proof of Example 2 is shown in Fig. 4.

neguniv = λu. Cλk. uλx. Cλk1.k〈x, k1〉
infinity = λf. decide(

Cλk. spread(neguniv(λw1. k(in1 w1));

x1, k1. spread(neguniv(λw2. k(in2 w2));

x2, k2. if f(max(x1, x2)) then k1〈max(x1, x2), 〈ε, ε〉〉
else k2〈max(x1, x2), 〈ε, ε〉〉));

u1. 〈>, u1〉; u2. 〈⊥, u2〉)
example1 = spread(infinity(f);

b, u. spread(u0;

x1, u1. spread(u1(x1 + 1);

x2, u2.〈〈x1, x2〉, 〈begin(π2 u1, π2 u2)〉, π1 u2〉〉)))

Fig. 3. Program extracted from the proof of Example 1

5

example2 = Cλk. false(nrec(ε,
λxλz. if f(x + 1) > y then A(k〈x, 〈z, ε〉〉) else ε,
g(y)),

ε)

Fig. 4. Program extracted from the proof of Example 2

It is possible to discern the structure of the proof in the program in Fig. 3.
For example, in infinity, the last step uses the disjunction (∀x∃y. y ≥ x∧ f(y) =
>)∨(∀x∃y. y ≥ x∧f(y) = ⊥) (decide), which is proved by contradiction (Cλk . . .).
However, it is hard to understand the algorithm behind this program, in partic-
ular because the term with expanded definitions contains at least three nested
control operators.

The program in Fig. 4 is much clearer. One can see that it is a loop which
starts at x = 0 (recall that by assumption f(0) ≤ y) and goes until x = g(y)−1.
The first time when f(x + 1) > y, x turns out to be the answer, so the loop is
terminated and this x is returned. However, this program contains some unnec-
essary fragments, like false(·, ε). Also, both programs have many occurrences of
ε which came from subderivations of atomic formulas. As explained in the In-
troduction, subterms of singleton type without side effects are computationally
useless and should be removed.

3 Simplifying extracted programs

Programs in Figs. 3 and 4 have free variables, namely f , g and y; therefore, they
cannot be normalized to a value. Simplifying programs with free variables seems
to require reductions which depend on the class of the programs and the final
form we are willing to accept. One set of such rules is suggested in Fig. 5. Before
applying these rules, operator A is converted to C according to the definition
At ≡ Cλk. t where k /∈ FV(t).

The rule (simp2) is a local rule for C which, in contrast to 7→c, can be applied
anywhere in the term. Its intention is to lift control operators as much as possible
and then contract multiple occurrences of C using rule (simp3). The idea of the
latter rule is that after reducing the first operator C, the term Cλk2.t is going
to be on the top level, therefore, the continuation stored into k2 is going to be
λx.Ax. However, (simp3) lacks A in front of x. In fact, if one adds operators A
in front of k′ in (simp2) and x in (simp3), one would get the rules from Felleisen
and Hieb’s calculus λC (see [4] and [5]). We will return to this momentarily.

The rule (simp4) is also standard and is found, for example, in λC− calculus
in [5]. It is used when t represents a derivation made in constructive logic and
ended by a superfluous DNE.

k : D → ⊥ t : D
kt : ⊥

CλkD→⊥. kt : D

6

Arbitrary β-reductions (simp1)

E[Cλk.t] �simp Cλk′. t[λx. k′E[x]/k] (simp2)

Cλk1. Cλk2. t �simp Cλk1. t[λx. x/k2] (simp3)

Cλk. kt �simp t k /∈ FV(t) (simp4)

Cλk. t 7→simp t k /∈ FV(t) (simp5)

if A then Cλk1. t1 else Cλk2. t2 �simp Cλk. if A then t1[k/k1] else t2[k/k2] (simp6)

if A then Cλk1. t1 else t2 �simp Cλk. if A then t1[k/k1] else kt2 (simp7)

if A then t1 else Cλk2. t2 �simp Cλk. if A then kt1 else t2[k/k2] (simp8)

ktF �simp t (simp9)

Fig. 5. Reductions for simplifying extracted programs

The rule (simp5) is only applied on the top level and corresponds to removing
the top-level A.

The rules (simp6–8) are introduced for pragmatic reasons. Without them,
many control operators are stuck under if and never get eliminated by (simp3).
However, sometimes it is better not to lift control operator over if. For example,
if lifting is applied to the program from Example 2 in Fig. 4, then the if statement
is converted into

Cλk′. if f(x + 1) > y then k〈x, 〈p, ε〉〉 else k′ε

(and C cannot be lifted further because of λ-abstraction), which is arguable less
clear.

The rule (simp9) means that an application of a continuation variable to
a term t which proves the final formula F can be replaced by t (this requires
having a separate syntactic class for continuation variables). This rule is special
because all other rules (when A is inserted in the right-hand sides of (simp2) and
(simp3), as described above) preserve semantics and are validated by CPS trans-
lation, in the sense that the CPS translations of the left- and right-hand sides
are convertible into each other. The rule (simp9) does not necessarily preserve
semantics; however, it satisfies subject reduction w.r.t. type system in Fig. 1
because in this case k has type F → F (the range of continuations is always F)
and can therefore be replaced by the identity function. Therefore, even if after
applying (simp9) a program may return a different answer, this answer will still
be a witness for F .

The reason for introducing (simp9) is the following. During simplification one
often encounters terms of the following form.

Cλk. . . . kt1 . . . kt2 . . .

Moreover, it turns out that at least some of the subterms kti are going to be
executed on the top level (i.e., in the empty context). The presence of the con-
tinuations k prevents removing the top-level C. It is clear that k is going to be

7

bound to λx.Ax and that invoking k on the top level is useless. Therefore, it
would be possible to remove k from such subterms. However, it seems difficult
to ascertain which parts of the program are going to be executed in the empty
context. For example, one can see that in Fig. 4, the if construct is not going to
be executed on the top level. However, in the case of the normalized CPS trans-
formation of that program shown in Fig. 6, if statement is going to be executed
on the top level. (The CPS translation we used is described in [6].)

nrec(λk. k,
λxλf. λk. fλz. if f(x + 1) > y then 〈x, 〈z, ε〉〉 else kε,
g(y))(λz. z)

Fig. 6. The result of CPS transformation of the program from Example 2

Therefore, instead of trying to figure out if a particular subterm is going to
be executed in the empty context, one can note that the subterms for which this
is true must necessarily have type F . Thus by replacing kt with t when t has
type F , we will remove the application of the continuation from all subterms of
the form kt which were supposed to be executed on the top level (and possibly
some others, which is no harm due to preservation of subject reduction).

Returning to the rule (simp3), one observes that, similar to the case of
(simp9), it preserves subject reduction even if it does not preserve the seman-
tics. However, replacing λx. x by λx.Ax in the right-hand side leads to non-
termination in the following example.

Cλk1. Cλk2. if A then k20 else ε

→ Cλk1. if A then (λx. Cλk′. x)0 else ε (simp3)
→ Cλk1. if A then Cλk′. 0 else ε (β)
→ Cλk1. Cλk2. if A then 0 else k2ε (simp7)
� Cλk1. Cλk2. if A then k20 else ε (simp3,8)(β)

As for adding A to (simp2), [5] points out that it is not necessary for eval-
uation but is important for the correspondence between the operational and
reduction semantics. If k′E[x] occurs inside some context, it should be possible
to erase this context because k′ is an abortive continuation. In our examples,
though, we have not encountered this situation. In any case, it is easy to add a
rule

E[kt] �simp kt

which will take care of this.
We created a program for simplifying extracted terms, which used the first

applicable rule (simp1–9) during the recursive traversal of the term. At this
point, we don’t know if the simplifying rules are strongly normalizing on well-
typed programs.

8

if f(0)

then if f(1)

then 〈〈0, 1〉〈ε, ε〉〉
else if f(2) then 〈〈0, 2〉〈ε, ε〉〉 else 〈〈1, 2〉〈ε, ε〉〉

else if f(1)

then if f(2)

then 〈〈1, 2〉〈ε, ε〉〉
else if f(3) then 〈〈1, 3〉〈ε, ε〉〉 else 〈〈2, 3〉〈ε, ε〉〉

else 〈〈0, 1〉〈ε, ε〉〉

Fig. 7. Simplified program from Example 1

false(nrec(ε,
λxλz. Ck′. if f(x + 1) > y then 〈x, 〈z, ε〉〉 else k′ε,
g(y)),

ε)

Fig. 8. Simplified program from Example 2

After performing simplifying reductions 153 times, the program from Exam-
ple 1 in Fig. 3 is turned into the one in Fig. 7. The program from Example 2 is
normalized after only three reductions: the first removes the application of the
continuation k according to (simp9), the second lifts A over if, and the third
removes the top-level control operator which functions as A. The result is shown
in Fig. 8.

It is clear that false can also be removed, but it functions as a type cast
since recursion is done on singleton type I while the type of the whole program
is nat × (I × I). As explained before, lifting A over if does not necessarily make
the program more readable.

A natural question is how normalizing a program using rules from Fig. 5
compares with first applying CPS translation and then normalizing the obtained
purely functional program. The second method produces exactly the same result
in the case of Example 1. In the case of Example 2, the result, shown in Fig. 6,
involves recursion over a functional type, unlike the one in Fig. 8. If a language
has an operator similar to call/cc then we believe that the latter program is
preferable for human inspection.

One can see, especially from the first example, that simplifying rules make
a big difference in readability of extracted programs. However, both resulting
programs still contain many unnecessary occurrences of the constant ε of type
I. In fact, one can freely remove them from the program of Example 1, but this
is an exception rather than a rule. As was pointed out, the whole recursion
operator in the second program has a singleton type, so it cannot be removed.
Distinguishing which subterms of singleton type can be removed is the goal of
the next section.

9

4 Removing terms of singleton type

In this section, in contrast to the previous one, we develop semantics-preserving
means of manipulating programs which are used in removing subterms of sin-
gleton type wherever possible. This means that this technique is applicable not
only to programs extracted from proofs, but to those written by hand as well.
On the other hand, this approach relies on having a definite evaluation strategy.
Since both Scheme and SML/NJ, languages which have call/cc construct, use
call-by-value (CBV) strategy, we adopt it here as well.

4.1 Simple types

Since the techniques of this section are applicable to arbitrary well-typed pro-
grams, we’d like to move from the type system which associates terms with
formulas to the one which associates terms with simple types. The latter are
given by the following grammar.

ρ ::= I | nat | bool | . . . (other base types) | ρ1 × ρ2 | ρ1 + ρ2 | ρ → ρ

The mapping from formulas to types is the following.

κ(A) = I A atomic
κ(C → D) = κ(C) → κ(D)

κ(D1 ∧D2) = κ(D1)× κ(D2)

κ(D1 ∨D2) = κ(D1) + κ(D2)
κ(∀xρ. D) = ρ → κ(D)
κ(∃xρ. D) = ρ× κ(D)

Let us denote ϕ ≡ κ(F).
Along with the shift to simple types, we can introduce a new construct

let x = t1 in t2 .

Define let x1 = t1; . . . ;xn = tn in t to be an abbreviation for let x1 = t1 in . . . let
xn = tn in t. Now we can dispense with some other constructs according to the
following definitions.

spread(t1;x1, x2.t2) ≡ let z = t1 in let x1 = π1 z;x2 = π2 z in t2

false(t1, t2) ≡ let x1 = t1 in let x2 = t2 in cϕ

begin(t1, t2) ≡ let x = t1 in t2 x /∈ FV(t2)

Here cϕ is some constant of type ϕ.
The typing rules are shown in Fig. 9. For the rest of this section, we assume

that all programs considered here are well-typed.
Call-by-value reductions for this calculus are shown in Fig. 10.
Define t1 7→βc t2 if either t1 7→c t2 or t1 ≡ E[t′1], t2 ≡ E[t′2] and t′1 �β t′2. Also

let eval(t1) = t2 if t1 7�βc t2 and 7→βc is not applicable to t2. It is straightforward
to show that the output of eval on closed terms is a value. In his thesis ([7,
Theorem 9.10.3]), Murthy proved that eval is defined on all well-typed terms in
our language.

Let us define t1 ∼ t2 to mean that eval(t1) = eval(t2). This is not contextual
equivalence because 7→c is a computational rule (i.e., it can be applied only to
the whole term), but it is sufficient for our purposes.

10

Γ, x : ρ `ϕ x : ρ

Γ `ϕ t1 : ρ1 → ρ2 Γ `ϕ t2 : ρ1

Γ `ϕ t1t2 : ρ2

Γ, x : ρ1 `ϕ t : ρ2

Γ `ϕ λx. t : ρ1 → ρ2

Γ `ϕ t1 : ρ1 Γ `ϕ t2 : ρ2

Γ `ϕ 〈t1, t2〉 : ρ1 × ρ2

Γ `ϕ t : ρ1 × ρ2

Γ `ϕ πi t : ρi

Γ `ϕ t : ρi

Γ `ϕ ini t : ρ1 + ρ2

Γ `ϕ t : ρ1 + ρ2

Γ, x1 : ρ1 `ϕ t1 : ρ
Γ, x2 : ρ2 `ϕ t2 : ρ

Γ `ϕ decide(t; x1.t1; x2.t2) : ρ

Γ `ϕ t1 : ρ1 Γ, x : ρ1 `ϕ t2 : ρ2

Γ `ϕ let x = t1 in t2 : ρ2

Γ `ϕ t : bool Γ `ϕ t1 : ρ Γ `ϕ t2 : ρ

Γ `ϕ if t then t1 else t2 : ρ

Γ `ϕ t1 : ρ
Γ `ϕ t2 : nat → ρ → ρ Γ `ϕ t3 : nat

nrec(t1, t2, t3) : ρ

Γ `ϕ t : ϕ

Γ `ϕ At : ρ

Γ `ϕ t : (ρ → ϕ) → ϕ

Γ `ϕ Ct : ρ

Fig. 9. Typing rules for λ-calculus with control operators

(λx.t)v �β t[v/x]

πi〈v1, v2〉 �β vi

nrec(v1, v2, 0) �β v1

nrec(v1, v2, s v3) �β v2v3 nrec(v1, v2, v3)

let x = v in t �β t[v/x]

decide(ini v; x1.t1; x2.t2) �β ti[v/xi]

if true then t1 else t2 �β t1

if false then t1 else t2 �β t2

E[At] 7→c t

E[Ct] 7→c t(λx.AE[x])

Fig. 10. CBV reductions

4.2 Rationale for extended reductions

For the purpose of pruning terms of singleton type from programs we need to
consider more general reductions than CBV ones, where, for example, procedure
arguments are not necessarily values. The reason for this is the following.

We define a singleton type-erasing mapping erase both on types and on terms.
In the simplest case, a function from a singleton type to some other type ρ should
be mapped into a constant of type erase(ρ). However, this in general cannot
be done when the body of the function uses control operators. The simplest
counterexample is given by the term

(λf I→nat. 0)(λxI.A1) (2)

If we put erase(I → nat) = nat and change the terms correspondingly, we get

erase((λf I→nat. 0)(λxI.A1)) ≡ (λfnat. 0)(A1) (3)

Now under CBV strategy, (2) evaluates to 0 while (3) evaluates to 1.
The problem here is that even though the argument λxI.A1 is a value, the

result of simplification A1 is not. Nevertheless, the idea of turning functions from

11

singleton type into constants works provided evaluation of the function’s body
does not invoke control operators (this is the case, for example, with programs
extracted from proofs in minimal logic).

To clarify our task, consider the following diagram.

(λf I→ρ. t1)λxI. tρ2
�β - t1[λxI. t2/f]

(λf erase(ρ). erase(t1)) erase(t2)

erase
?

? - erase(t1)[erase(t2)/f]

erase
?

In order to explain how erase preserves the semantics, we need to relate the bot-
tom terms, t′ ≡ (λf erase(ρ). erase(t1)) erase(t2) and t′′ ≡ erase(t1)[erase(t2)/f]. It
is clear that t′ does not in general evaluate to t′′ according to CBV strategy
because erase(t2) does not have to be a value, and when it is not, it is going
to be evaluated first. However, if evaluation of erase(t2) does not invoke control
operators, it does not matter when to evaluate erase(t2)—when it is in the argu-
ment position or when it is substituted for f in erase(t1). The result of complete
evaluation of t′ and t′′ should be the same.2 (Of course, the number of times
erase(t2) is evaluated may be different in the two cases.) Therefore, this is the
conjecture which we are going to justify.

Terms which (even though they may contain control operators) do not invoke
control reductions during their evaluation are called pure. From the standpoint
of evaluation pure terms are equivalent to values. Therefore, we are going to
to extend CBV β-reductions systematically replacing the word “value” by the
phrase “pure term.”

4.3 Extending β-reductions

The idea is to take typing information into account. Inspired by Moggi’s monadic
metalanguage (MML), we introduce a distinction between computation and val-
ues. Namely, a new unary connective M on types is introduced, and types of the
form M σ are called computational types while those which do not start with M
are called pure types. Similarly, terms of computation types are called compu-
tational terms while terms of pure types are called pure terms. Evaluating pure
terms never invokes a control reduction while evaluating computation terms may
do so. In the future, p with possible indexes will range over pure terms.

While our types are similar to those in MML, we do not consider a translation
of our language into MML. This would require in particular proving correctness
of such translation. It turns out that it is possible to justify the extension of
β-reductions in our language with extended type system.

2 To remind, we only consider terms whose evaluation terminates. It is clear that the
statement above is in general false when evaluation of erase(t2) diverges. Potential
nontermination, along with control reduction, should be considered a side effect.

12

Γ, x : σ `M
ϕ x : σ

Γ, x : σ `M
ϕ t : τ

Γ `M
ϕ λx : σ. t : σ → τ

Γ `M
ϕ t1 : Ma1(σ1 → Ma2 σ2) Γ `M

ϕ t2 : Ma3 σ1

Γ `M
ϕ t1t2 : Ma1∨a2∨a3 σ2

Γ `M
ϕ t1 : Ma1 σ1 Γ `M

ϕ t2 : Ma2 σ2

Γ `M
ϕ 〈t1, t2〉 : Ma1∨a2(σ1 × σ2)

Γ `M
ϕ t : Ma(σ1 × σ2)

Γ `M
ϕ πi t : Ma σi

Γ `M
ϕ t : Ma σi

Γ `M
ϕ ini t : Ma(σ1 + σ2)

Γ `M
ϕ t : Ma1(σ1 + σ2)

Γ, x1 : σ1 `M
ϕ t1 : Ma3 σ

Γ, x2 : σ2 `M
ϕ t2 : Ma2 σ

Γ `M
ϕ decide(t; x1 : σ1.t1; x2 : σ2.t2) : Ma1∨a2∨a3 σ

Γ `ϕ t1 : Ma1 σ1 Γ, x : σ1 `ϕ t2 : Ma2 σ2

Γ `ϕ let x = t1 in t2 : Ma1∨a2 σ2

Γ `M
ϕ t : Ma1 bool Γ `M

ϕ t1 : Ma2 σ Γ `M
ϕ t2 : Ma3 σ

Γ `M
ϕ if t then t1 else t2 : Ma1∨a2∨a3 σ

Γ `M
ϕ t1 : Ma1 σ Γ `M

ϕ t2 : Ma2(nat → Ma3(σ → Ma4 σ)) Γ `M
ϕ t3 : Ma5 nat

nrec(t1, t2, t3) : Ma1∨a2∨a3∨a4∨a5 σ

Γ `M
ϕ t : Ma ϕ

Γ `M
ϕ At : M σ

Γ `M
ϕ t : Ma1((σ → M ϕ) → Ma2 ϕ)

Γ `M
ϕ Ct : M σ

Fig. 11. Type-and-effect system for CBV λ-calculus with control operators

Extended type system Consider types defined by the following grammar.

σ ::= I | nat | bool | . . . (other base types) | σ1 × σ2 | σ1 + σ2 | σ → τ

τ ::= σ | M σ

A simple type σ which has no occurrences of M can be converted into τ by
inserting M in certain places, namely, in the beginning of σ and after some or all
of →’s. We introduce a metalevel notation Ma where a is a proposition. If a is
true then Ma must be replaced by M, and if a is false, then Ma must be removed.
For example, Ma1(I → Ma2 nat) ≡ I → M nat if a1 is false and a2 is true.

In order to reveal evaluation of which subterms in CBV language can cause
a side effect, programs are converted into the type-and-effect system shown in
Fig. 11 (in the context Γ, all types are from the class σ).

The elements of Fig. 11 are schemata which ranges not only over terms and
types but also over truth values of variables a, a1, For example, the schema

13

for term application expands into eight variants based on the values of a1, a2

and a3.

Theorem 3. If Γ `ϕ t : ρ then Γ `M
ϕ t : τ for some τ .

The proof relies on the fact that a term monotonically inherits computational
type from its subterms. Therefore, it is possible to go through a typing derivation
top to bottom and put M where they are necessary according to the typing rules.
In this process we won’t encounter a contradiction because no rule demands the
absence of M.

Extended reduction rules As was said before, the idea of extended reductions
is to replace the word “value” by the phrase “pure term.” Extended β-reductions
are defined in Fig. 12.

(λx. t)p �e
β t[p/x]

π1〈t, p〉 �e
β t

π2〈p, t〉 �e
β t

let x = p in t �e
β t[p/x]

decide(ini p; x1. t1; x2. t2) �e
β ti[p/xi]

nrec(t, p, 0) �e
β t

nrec(p1, p2, s p3) �e
β p2p3 nrec(p1, p2, p3)

if true then t1 else t2 �e
β t1

if false then t1 else t2 �e
β t2

Fig. 12. Extended β-reductions

Theorem 4. The reduction →e
β ∪ 7→c is confluent and enjoys subject reduction.

Proof. Subject reduction relies on the fact that only pure subterms are sub-
stituted for variables, which are themselves always pure. Confluence of →e

β is
proved by regular Tait-Martin-Löf method, and then →e

β is shown to have a
commuting diamond property with 7→c (the latter relation is a partial function
and is therefore trivially confluent).

Corollary 5. If t1 and t2 are closed terms of arrow-free type and t1 =e
βc t2 then

t1 ∼ t2.

Proof. Since evaluation always terminates, denote v1 ≡ eval(t1), v2 ≡ eval(t2).
By the definition of eval, t1 7�βc v1 and t2 7�βc v2; therefore, v1 =e

βc v2. Since
confluence implies Church-Rosser property, v1 and v2 must be reducible to a
common term. However, it is easy to see by induction on type that a value of an
arrow-free type is normal. Therefore, v1 ≡ v2.

Another reduction will be useful for simplifying terms.

let x = t in E[x] �let E[t]

14

Even though, unlike all reductions so far, it may substitute computational terms
for variables, it is easy to show that it also enjoys subject reduction. Moreover,
→let ∪ 7→βc is confluent. Therefore, as before, if t1 and t2 are closed terms of
arrow-free type and t1 =let t2 then t1 ∼ t2.

4.4 Removing singleton terms

Removal of subterms of singleton type is done in three stages. During the first
stage the immediate subterms of a given term are lifted up to be evaluated by a
newly introduced let construct. For example,

t1t2 is converted to let x1 = t1;x2 = t2 in x1x2

This transformation makes immediate subterms of most term constructors pure,
which significantly simplifies the second stage.

The second stage is the main part of the simplification, where the type of the
term changes and subterms of singleton type are erased. For example, a function
of a singleton argument is turned into a constant unless the body of the function
uses side effects. (In the latter case the function is a thunk and delays execution
of the body until it is invoked; in such case λ-abstraction must be preserved.)
This stage is similar to the construction of pure λ-terms from derivations in the
proof of soundness of modified realizability in [8], which was later streamlined
by Schwichtenberg in [9].

The third stage is the reverse of the first one and consists of bringing down the
terms evaluated in let, whenever possible. It is always possible to bring down pure
terms using extended β-reductions. Computational terms can be brought down
using let-reduction if the body of the let is an evaluation context. Otherwise,
eliminating let is generally impossible. In particular, nothing can be done if the
variable in the left-hand side of let is not used in the let’s body. For an example
of this situation, consider two terms t1 : M(I → σ) and t2 : M I. After the first
stage, the application t1t2 is converted into

let x1 = t1;x2 = t2 in x1x2

After the second stage x1, which was a function from I to σ, becomes a constant
and the argument x2 of type I is erased; therefore, the term becomes

let x1 = t′1;x2 = t′2 in x1

where t′1 and t′2 are the results of transformation of t1 and t2, respectively.
The third stage does not change the term because the body of let cannot be
represented as E[x2] for an evaluation context E. Neither can t′1 be substituted
for x1 since this would change the order of execution (which involves side effects)
of t′1 and t′2.

15

lift(x) = x

lift(t1t2) = let x1 = lift(t1); x2 = lift(t2) in x1x2

lift(λx. t) = λx. lift(t)

lift(〈t1, t2〉) = let x1 = lift(t1); x2 = lift(t2) in 〈x1, x2〉
lift(πi t) = let x = lift(t) in πi x

lift(ini t) = let x = lift(t) in ini x

lift(decide(t; x1.t1; x2.t2)) = let x = lift(t) in
decide(x; x1. lift(t1); x2. lift(t2))

lift(let x = t1 in t2) = let x = lift(t1) in lift(t2)

lift(if t then t1 else t2) = let x = lift(t) in if x then lift(t1) else lift(t2)

lift(nrec(t1, t2, t3)) = let x1 = lift(t1); x2 = lift(t2); x3 = lift(t3) in
nrec(x1, x2, x3)

lift(At) = let x = lift(t) in Ax

lift(Ct) = let x = lift(t) in Cx

Fig. 13. First stage of singleton-removing transformation

First stage: lifting subterms The first part of the transformation is shown
in Fig. 13.

The mapping lift does not essentially change terms because it preserves the
semantics.

Theorem 6. For any term t, lift(t) �let t. Therefore, for closed t of arrow-free
type, lift(t) ∼ t.

Proof. By induction on t. Note that for every innermost let introduced by lift,
its body is an evaluation context with respect to that let’s variable.

Now that we have immediate subterms having pure type, the second stage
can be significantly simplified.

Second stage: removing singleton subterms The mapping erase is first
defined on types (see Fig. 14) and then extended to terms.

Let us call types σ for which erase(σ) = I, trivial types, and terms of trivial
type, trivial terms.

Definition of erase on terms is shown in Fig. 15.
Some explanation of the definition may be helpful. As was said before, a

function of a trivial argument, represented by λ-abstraction, is converted into a
constant unless the body of the λ-abstraction is computational. In the latter case,
removing λ-abstraction would result in execution of the body (and invocation
of a side effect) when it is encountered and not when it is applied, which would
change the semantics of the program. Therefore, λ-abstraction is preserved if

16

erase(σ) = σ σ a base type

erase(σ1 × σ2) =

(
erase(σi)

erase(σ1)× erase(σ2)

erase(σ3−i) = I

otherwise

erase(σ1 + σ2) = erase(σ1) + erase(σ2)

erase(σ1 → Ma σ2) =

8><>:
erase(σ2)

erase(σ1) → erase(σ2)

a = ⊥, (erase(σ1) = I or

erase(σ2) = I)

otherwise

erase(M σ) = Merase(σ)

Fig. 14. Definition of erase on types

erase(tσ) = ε if erase(σ) = I

otherwise:

erase(xσ) = xerase(σ)

erase(λxσ1 . tMaσ2) =

(
erase(t) a = ⊥, erase(σ1) = I

λxerase(σ1). erase(t) otherwise

erase(tσ1→Ma σ2
1 tσ1

2) =

(
erase(t1) a = ⊥, erase(σ1) = I

erase(t1) erase(t2) otherwise

erase(〈tσ1
1 , tσ2

2 〉) =

(
erase(ti) erase(σ3−i) = I

〈erase(t1), erase(t2)〉 otherwise

erase(πi tσ1×σ2) =

(
erase(t) erase(σ3−i) = I

πi erase(t) otherwise

erase(ini t) = ini erase(t)

erase(decide(t; x1.t
Ma1 σ
1 ; x2.t

Ma2 σ
2))

= decide(erase(t); x1. erase(t1); x2. erase(t2))

erase(if t then tM
a1 σ

1 else tM
a2 σ

2)

= if erase(t) then erase(t1) else erase(t2)

erase(let x = tM
a1 σ1

1 in tM
a2 σ2

2)

=

8><>:
erase(t2) a1 = ⊥, erase(σ1) = I

let x = erase(t1) in

erase(t2)

otherwise

erase(nrec(tσ
1 , t

nat→Ma1 (σ→Ma2 σ)
2 , tnat

3))

= nrec(erase(t1), erase(t2),

erase(t3))

a1 = ⊥

erase(At) = A erase(t)

erase(Ct(σ→M ϕ)→Ma ϕ) = C erase(t) erase(ϕ) 6= I

Fig. 15. Definition of erase on terms

17

the body is computational. In the case of let, however, even though let can be
expressed using λ, one does not have to check if the body is computational
because the body is executed when it is encountered.

Theorem 7. If t1 →βc t2 then erase(t1) =e
βc erase(t2).

Third stage: bringing down subterms In the third stage, we apply let-
reduction to bring down subterms whenever possible. These reduction must
be applied “inside out,” i.e., starting with the inmost let. After no more let-
reductions can be applied, extended β-reductions for let may still be applicable.
Let us slightly modify the example in the beginning of the subsection by assum-
ing that t1 : I → σ and t2 : M I. Then the first two stages convert the term t1t2
into

let x1 = t′1;x2 = t′2 in x1

where t′i ≡ erase(lift(ti)), i = 1, 2 and t′1 of type erase(σ) is a pure term. The
term t′2 cannot be brought down but t′1 can (using extended β-reduction) with
the following result.

let x2 = t′2 in t′1

Let us denote the transformation of the third stage down, and let prune(t)
denote down(erase(lift(t))). The following statement holds.

Theorem 8. Suppose t is a closed term of an arrow-free type and let eval(t) ≡ v.
Then eval(prune(t)) ≡ prune(v).

Proof. Suppose that t ≡ t1 7→βc · · · 7→βc tn ≡ v. By induction on n we show
that prune(t) ∼ prune(v). Then it is easy to see that prune(v) is a value and
therefore, eval(prune(t)) ≡ prune(v). As for the fact that ti 7→βc ti+1 implies
prune(ti) ∼ prune(ti+1), it follows from Corollary 5 and Theorems 6 and 7.

4.5 Examples

The result of applying prune to programs extracted from our examples is shown
in Figs. 16 and 17 (in the second program we removed false and left A inside if).

5 Conclusion

We described two ways to simplify programs extracted from classical proofs:
normalizing with respect to a certain set of rules and removing trivial subterms.
The latter transformation is applicable to arbitrary functional programs with
side effects, not only to those obtained from proofs.

Perhaps the best-known project of classical proof extraction is Minlog which
is done by Schwichtenberg’s group in Munich [9]. This method produces purely
functional programs. Its advantage over CPS translation is that the result is op-
timized with respect to type rank. For example, the result of program extraction

18

if f(0)

then if f(1)

then 〈0, 1〉
else if f(2) then 〈0, 2〉 else 〈1, 2〉

else if f(1)

then if f(2)

then 〈1, 2〉
else if f(3) then 〈1, 3〉 else 〈2, 3〉

else 〈0, 1〉

Fig. 16. Result of removing trivial subterms from the program from Example 1

nrec(ε, λxλz. if f(x + 1) > y then Ax else ε, g(y))

Fig. 17. Result of removing trivial subterms from the program from Example 2

for Example 1 is the same as in Fig. 16, but the result for Example 2 is as follows
(see [2]).

nrec(0, λxλz. if f(x) > y then z else x, g(y))

This program searches through every 0 ≤ x < g(y) and returns the largest x
such that f(x) ≤ y < f(x + 1).

One can conclude that Schwichtenberg’s method, in order to produce a pro-
gram without control operators and with recursion on natural numbers instead
of functions (as in Fig. 6), performs a nontrivial modification of the algorithm.
(This is also supported by the fact that a program extracted in Minlog from
a classical existence proof of Fibonacci numbers passes λ-expressions and not
pairs, see [10], while our method produces a program which passes pairs of num-
bers, as one would expect.) However, one can argue that the original algorithm,
which throws the first found solution to the top level, is more natural and is
in general faster. Therefore, there appears to be some benefit in leaving some
control operators in simplified programs.

In our type-and-effect system in Fig. 11, computational types of subterms
are inherited by terms that contain them. More sophisticated type-and-effect
systems, like the one used by Thielecke in [11], is able to mask side effects so
that even terms which invoke control operators can be pure if side effects are
not observable from the outside. Using this type-and-effect system would allow
to do more thorough pruning of trivial terms.

Acknowledgments

I’d like to thank Amr Sabry and anonymous referees for useful feedback.

19

References

1. Coquand, T.: A semantics of evidence for classical arithmetic. The Journal of
Symbolic Logic 60 (1995) 325–337

2. Berger, U., Schwichtenberg, H.: Program extraction from classical proofs. In
Leivant, D., ed.: Logic and Computational Complexity, International Workshop
LCC ’94. Volume 960 of Lecture Notes in Computer Science., Springer-Verlag
(1995) 177–194

3. Makarov, Y.: Practical program extraction from classical proofs. In Escardó,
M., Jung, A., Mislove, M., eds.: Proceedings of the 21st Annual Conference on
Mathematical Foundations of Programming Semantics (MFPS XXI). Volume 155
of Electronic Notes in Theoretical Computer Science., Elsevier B.V. (2006) 521–542

4. Felleisen, M., Hieb, R.: A revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science 103 (1992) 235–271

5. Ariola, Z.M., Herbelin, H., Sabry, A.: A proof-theoretic foundation of abortive
continuations. Higher-Order and Symbolic Computation To appear (2005)

6. Friedman, D.P., Wand, M., Haynes, C.T.: Essentials of Programming Languages.
2nd edn. MIT Press (2001)

7. Murthy, C.R.: Extracting Constructive Content from Classical Proofs. PhD thesis,
Cornell University, Department of Computer Science (1990)

8. Troelstra, A.S., ed.: Mathematical Investigation of Intuitionistic Arithmetic and
Analysis. Volume 344 of Lecture Notes in Mathematics. Springer-Verlag (1973)

9. Berger, U., Schwichtenberg, H., Seisenberger, M.: The Warshall algorithm and
Dickson’s lemma: Two examples of realistic program extraction. Journal of Auto-
mated Reasoning 26 (2001) 205–221

10. Berger, U., Buchholz, W., Schwichtenberg, H.: Refined program extraction from
classical proofs. Annals of Pure and Applied Logic 114 (2002) 3–25

11. Thielecke, H.: From control effects to typed continuation passing. In: POPL’03
(The 30th SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages), ACM (2003)

20

	Simplifying Programs Extracted from Classical Proofs
	Yevgeniy Makarov

