
A classical version of system Fω

Stéphane Lengrand1,2 and Alexandre Miquel1
1 PPS & Université Paris 7

175 rue du Chevaleret, 75013 Paris, France
2 School of Computer Science, University of St Andrews
North Haugh, St Andrews, Fife, KY16 9SX, Scotland

Abstract

We present a version of system Fω in which the layer of type construc-
tors is essentially the same as in the traditional presentation of Fω [Gir72],
whereas provability of types is classical. The proof-term calculus accounting
for the classical reasoning is a variant of Barbanera and Berardi’s symmetric
λ-calculus [BB96].

We prove that the whole calculus is strongly normalising. For the layer of
type constructors, we use Tait and Girard’s reducibility method combined with
orthogonality techniques. For the (classical) layer of terms, we use Barbanera
and Berardi’s method based on a symmetric notion of reducibility candidate
which does not seem to be captured by orthogonality.

1 Introduction
Approaches to a Curry-Howard correspondence for classical logic seem to converge
towards the idea of programs equipped with some notion of control [Par92, BB96,
Urb00, Sel99, CH00]. The general notion of reduction/computation is non-confluent
but there are possible ways to restrict reductions and thus recover confluence. Two
such canonical ways are related to CBV and CBN, with associated semantics given
by CPS-translations, which correspond to the usual encodings of classical logic into
intuitionistic logic known as “not-not”-translations.

It is then tempting to try and build, on such a correspondence for classical logic,
powerful type theories, such as those developed in intuitionistic logic (Pure Type
Systems, Martin-Löf type theories).

The latter however exploit the fact that predicates are pure functions, which,
when fully applied, give rise to formulae with logical meanings. The Curry-Howard
correspondence in intuitionistic logic can then describe these pure functions as the
inhabitants of implicative types in a higher type layer (often called the layer of
kinds).

On the other hand, inhabitants of implicative types in classical logic can be
much wilder than pure functions (owing to the aforementioned notion of control),
so it is not clear what meaning could be given to those simili-predicates, built from
classical inhabitants of implicative types, and whose reductions may not even be
confluent.

However this is for the layer of types, which various type theories cleanly separate
from the layer of terms. This is what system Fω [Gir72] does as a completely
intuitionitic system.

This paper shows that it is perfectly safe to have cohabiting layers with different
logics, provided that the layer of types is free from any dependency on terms, i.e.
that the system has no dependent types.

1



System Fω is thus the most powerful system of Barendregt’s Cube without such
dependencies [Bar91]. We present here a version of it called F Cω that is classical in
the following sense:

The layer of type constructors is purely functional, i.e. intuitionistic: it is in
fact the lambda-calculus extended with constants for logical connectives. Then, for
those objects of the layer that are formulae, we have a notion of provability with
proof derivations and proof-terms, which is here classical instead of intuitionistic.

Obviously, weaker systems than Fω (System F , simply-typed λ-calculus) also
cleanly separate the layer of types from that of terms, but the former is trivial as
no computation happens there.

System Fω features notions of computation in both layers, both strongly normal-
ising. But in contrast to the traditional intuitionistic version, our classical version
F Cω has two different notions of computation (one intuitionistic and confluent, the
other one classical and non-confluent), so two different proof techniques are used.
This system is thus particularly adequate to illustrate and compare these two tech-
niques.

The former, used to prove strong normalisation of the intuitionistic layer of
types, adapts Tait and Girard’s reducibility method, rephrased with the terminol-
ogy and concepts of orthogonality, which provides a high level of abstraction and
potential for modularity.

The latter, used to prove strong normalisation of the classical layer of terms,
adapts Barbanera and Berardi’s method based on a symmetric notion of reducibility
candidate [BB96]. To our knowledge, the method had not been pushed to such a
typing system as that of Fω, but it works without any surprise. Difficulties would
come with dependent types (the only feature of Barendregt’s Cube missing here),
precisely because they would pollute the layer of types with non-confluence and
unclear semantics.

Finally, the main purpose of presenting these two proof techniques in the same
paper is to express them whilst pointing out similarities, and to examine whether
or not the concepts of the symmetric candidates method can be captured by the
concept of orthogonality. Such an open problem is raised in the conclusion.

Section 2 introduces F Cω , section 3 establishes strong normalisation of the layer of
types, section 4 establishes strong normalisation of the layer of terms, and section 5
establishes some logical properties of Fω such as consistency.

2 Syntax, Reduction and Typing of F C
ω

2.1 Syntax
F Cω distinguishes four syntactic categories: kinds, type constructors (or constructors
for short), terms and programs:

Kinds

Constructors

Terms

Programs

K, K ′ ::= ? | K → K ′

A,B,C, . . . ::= α | α⊥ | λα :K . B | B A
| A ∧B | A ∨B
| ∀α :K . B | ∃α : K . B

t, u, v, . . . ::= x | µxA.p
| 〈t, u〉 | λxAyB .c
| λα : K . t | 〈A, t〉

p ::= {t | u}
Kinds, that are exactly the same as in system Fω [Gir72, BG01], are a system of
simple types for type constructors. (We use the word ‘kind’ to distinguish kinds

2



from the types which appear at the level of type constructors.) The basic kind ? is
the kind of types, that is, the kind of all type constructors that represent types of
terms—or propositions through the Curry-Howard correspondence.

Type constructors are basically simply-typed λ-terms with two binary opera-
tors A ∧ B (conjunction), A ∨ B (disjunction) and two extra binders ∀α :K . A
and ∃α :K . A to represent universal and existential quantification. (There is no
primitive implication in the system.)

As in linear logic, negation α 7→ α⊥ is only primitive on variables, but the
extension as an involution A 7→ A⊥ on all type constructors is defined via de
Morgan laws:

(α)⊥ = α⊥ (α⊥)⊥ = α

(A ∧B)⊥ = A⊥ ∨B⊥ (A ∨B)⊥ = A⊥ ∧B⊥

(∀α : K . B)⊥ = ∃α : K .B⊥ (∃α :K . B)⊥ = ∀α :K . B⊥

(λα : K . B)⊥ = λα : K . B⊥ (B A)⊥ = B⊥ A

Notice how negation propagates through λ-abstraction and application. In our
calculus, the notation A⊥ is not only meaningful for types (that is, constructors of
kind ?), but it is defined for all type constructors.

With negation extended to all type constructors we can define implication A ⇒
B as (A⊥) ∨B.

However, one must take care in the way constructor variables are bound. In
what follows, we assume that the constructions ∀α :K . B, ∃α : K . B and λα : K . B
bind all free occurrences of the variable α in B, including those which correspond
to a subterm of the form α⊥. (In other words, the syntactic construction α⊥ is not
a variable.) For instance, the type constructor

¬ = λα : ? . α⊥

is closed; this is the type constructor which represents negation as a function of
kind ? → ?. The computation rules of negation are incorporated in the calculus by
extending the definition of the (external) operation of substitution written B{α\A}
to the case where B is a negated variable, setting:

α⊥{α\A} = A⊥

β⊥{α\A} = β⊥ (if β 6= α)

(The notation B{α\A} is defined as usual for the other constructions.)
The (proof-)terms of our calculus are basically the terms of Barbanera and

Berardi’s symmetric λ-calculus, with the difference that connectives are treated
multiplicatively. In particular, disjunction is treated as a negative connective whose
proofs are built using a double binder written λxAyB .p. On the other hand, proofs
of conjunction are introduced as usual, using the pairing construct written 〈t, u〉.

Finally, programs are built by making two terms t and u interact using a con-
struction written {t | u}, where each term can be understood as the evaluation
context of the other term. We assume that this construction is symmetric, that is,
that {t | u} and {u | t} denote the same program. Henceforth, terms and programs
are considered up to this equality together with α-conversion.

3



2.2 Reduction and Typing for Types
The reduction relation on the layer of type constructors is β-reduction, which is
defined as usual as the contextual closure of the relation

(λα :K . B)A −→β B{α\A} .

However, the extension of the definition of substitution to negated variables me-
chanically enhances β-reduction in such a way that we get de Morgan equalities for
free:

¬(A ∧B) =β ¬A ∨ ¬B ¬(A ∨B) =β ¬A ∧ ¬B
¬(∀α : K .B) =β ∃α : K .¬B ¬(∃α : K . B) =β ∀α : K .¬B

(Here, ¬ denotes the type constructor λα : ? . α⊥.)

Proposition 1 — The (enhanced) β-reduction on type constructors is confluent.

Proof: This is proved by introducing the corresponding notion of parallel
reduction, following Tait and Martin-Löf [Bar84]. 2

Typing contexts for variables of type constructors, that we call signatures, are
(unordered) lists of declarations of the form (α : K):

Signatures Σ ::= α1 : K1, . . . , αn : Kn

The inference rules of the typing judgment Σ ` A : K (‘In the signature Σ, A is a
constructor of kind K’) are given in Fig. 1.

(α : K) ∈ Σ
Σ ` α : K

(α : K) ∈ Σ
Σ ` α⊥ : K

Σ, α : K ` B : K ′

Σ ` λα : K .B : K → K ′
Σ ` B : K → K ′ Σ ` A : K

Σ ` B A : K ′

Σ ` A : ? Σ ` B : ?

Σ ` A ∧B : ?

Σ ` A : ? Σ ` B : ?

Σ ` A ∨B : ?

Σ, α : K ` B : ?

Σ ` ∀α :K . B : ?

Σ, α : K ` B : ?

Σ ` ∃α : K . B : ?

Figure 1: Typing rules for type constructors

The type system for type constructors enjoys good properties such as:

Proposition 2 (Subject-reduction) — If Σ ` A : K and if A −→β A′, then
Σ ` A′ : K.

4



2.3 Reduction and Typing for Terms and Programs
At the level of (proof-)terms and programs, reduction is defined by the rules of
Fig. 2.

{µxA.p | t} −→µ p{x\t}
{〈t1, t2〉 | λx1

Ax2
B .p} −→∧∨l

{t1 | µx1
A.{t2 | µx2

B.p}}
or −→∧∨r {t2 | µx2

B.{t1 | µx1
A.p}}

{λα : K . t | 〈A, u〉} −→∀∃ {t{α\A} | u}

Figure 2: Reduction rules on terms and programs

As in Barbanera and Berardi’s symmetric λ-calculus [BB96] or in Curien and
Herbelin’s λµµ̃-calculus [CH00], the critical pair

{µxA.p | µyA′.q}
↙ ↘

p{x\µyA′.q} q{y\µxA.p}
cannot be closed, so that reduction is not confluent at this level.

Typing contexts for variables of terms, that we simply call contexts, are lists of
declarations of the form (x : A):

Contexts Γ ::= x1 : A1, . . . , xn : An

Since types A that appear in a context may depend on constructor variables, each
context Γ only makes sense in a given signature Σ. In what follows, we say that a
context Γ is well-formed in a signature Σ and write wfΣ(Γ) if for all declarations
(x : A) ∈ Γ, the judgment Σ ` A : ? is derivable.

From this, we define two judgments, namely:

Γ `Σ t : A ‘In the signature Σ and context Γ, the term t has type A’
Γ `Σ p ¦ ‘In the signature Σ and context Γ, the program p is well-formed’

Both judgments are defined by mutual induction from the rules given in Fig. 3.

wfΣ(Γ)
(x : A) ∈ Γ

Γ `Σ x : A

Γ, x : A `Σ p ¦
Γ `Σ µxA.p : A⊥

Γ `Σ t : A Γ `Σ u : B

Γ `Σ 〈t, u〉 : A ∧B

Γ, x : A, y : B `Σ p ¦
Γ `Σ λxAyB .p : A⊥ ∨B⊥

Γ `Σ,α:K t : B

Γ `Σ λα :K . t : ∀α : K .B

Σ ` A : K Γ `Σ u : B{α\A}
Γ `Σ 〈A, u〉 : ∃α : K . B

Γ `Σ t : A Σ ` A′ : ?
A =β A′

Γ `Σ t : A′
Γ `Σ t : A Γ `Σ u : A⊥

Γ `Σ {t | u} ¦

Figure 3: Typing rules for terms and programs

Again, the type system for proof-terms enjoys the subject-reduction property,
despite the non-deterministic nature of reduction:

5



Proposition 3 (Subject-reduction)

1. If Γ `Σ t : A and t −→µ,∧∨l,∧∨r,∀∃ t′, then Γ `Σ t′ : A.

2. If Γ `Σ p ¦ and p −→µ,∧∨l,∧∨r,∀∃ p′, then Γ `Σ p′ ¦.

Proof: By mutual induction on the judgments Γ `Σ t : A and Γ `Σ p ¦. 2

Example 1 Here is a proof of the Law of excluded middle:

x : α⊥, y : α `α : ? x : α⊥ x : α⊥, y : α `α : ? y : α

x : α⊥, y : α `α : ? {x | y} ¦
`α : ? λxα⊥yα.{x | y} : α ∨ (α⊥)

` λα : ? . λxα⊥yα.{x | y} : ∀α : ? . α ∨ (α⊥)

Example 2 Here is Lafont’s example of non-confluence. Suppose Γ `α : ? p1 ¦ and
Γ `α : ? p2 ¦. With x 6∈ FV(p1) and y 6∈ FV(p2), by weakening (admissible in F Cω )
we get

Γ, x : α `α : ? p1 ¦
Γ `α : ? µxα.p1 : α⊥

Γ, y : α⊥ `α : ? p2 ¦
Γ `α : ? µyα⊥.p2 : α

Γ `α : ? {µxα.p1 | µyα⊥.p2} ¦
But {µxα.p1 | µyα⊥.p2} −→∗

µ p1 or {µxα.p1 | µyα⊥.p2} −→∗
µ p2. And unless the

system is proof-irrelevant, p1 and p2 can be completely different.

Note that, in constrast to Barbanera and Berardi’s symmetric λ-calculus, our
design choices for the typing rules are such that, by constraining terms and programs
to be linear, we get exactly the multiplicative fragment of linear logic [Gir87].

3 Strong normalisation of type constructors
We now prove that all well-typed constructors are strongly normalisable. For that,
let us write SNC the set of all strongly normalisable type constructors.

We call a stack (of type constructors) any finite sequence S = (A1, . . . , An) of
type constructors. Given a type constructor B and a stack S = (A1, . . . , An), we
define the application BS by setting BS = BA1 · · ·An.

We say that a stack S = (A1, . . . , An) is strongly normalisable when all its
elements A1, . . . , An are strongly normalisable. The set of all strongly normalisable
stacks is written SN∗C. In general, applying a strongly normalisable constructor B ∈
SNC to a strongly normalisable stack S ∈ SN∗C does not yield a strongly normalisable
constructor BS. In the case where BS ∈ SNC, we thus say that B and S are
orthogonal, and write B ⊥ S.

Given a subset X ⊂ SNC, we write X⊥ the subset of SN∗C called the orthogonal
of X and defined by

X⊥ = {S ∈ SN∗C | B ⊥ S for all B ∈ X} .

(The orthogonal Y ⊥ ⊂ SNC of a subset Y ⊂ SN∗C is defined dually.) As for any
negation defined by orthogonality, the operation X 7→ X⊥ fulfils the following
properties on SNC (as well as on SN∗C):

1. X ⊂ Y entails Y ⊥ ⊂ X⊥ (contravariance)

2. X ⊂ X⊥⊥ (closure)

6



3. X⊥⊥⊥ = X⊥ (tri-orthogonal)

Definition 1 (Reducibility candidate) — We call a reducibility candidate any
subset X ⊂ SNC such that X = X⊥⊥.

Notice that reducibility candidates are precisely the subsets X ⊂ SNC of the
form X = Y ⊥ for some subset Y ⊂ SN∗C. In particular, SNC is a reducibility
candidate, since SNC = {()}⊥ (writing () the empty stack).

Reducibility candidates enjoy the following properties:

Proposition 4 — For all reducibility candidates X:

1. X ⊂ SNC;

2. X contains all variables α and negated variables α⊥;

3. X is closed under β-reduction, that is:
if B ∈ X and B −→β B′, then B′ ∈ X;

4. X is closed under head β-expansion, that is:
if B{α\A} ∈ X and A ∈ SNC, then (λα :K . B)A ∈ X.

Proof: Item 1 holds by definition. Item 2 holds since αS (resp. α⊥S) is
strongly normalisable as soon as the stack S is strongly normalisable. Item 3 holds
since strongly normalisable type constructors are closed under β-reduction. 2

Finally, item 4 is a consequence of the following lemma:

Lemma 5 — If the type constructors A and B{α\A}A1 · · ·An are strongly nor-
malisable, then so is (λα : K .B)AA1 · · ·An.

Given two subsets X, Y ⊂ SNC, we write X → Y = {B | ∀A∈X (BA)∈Y }.

Lemma 6 — If both X and Y are reducibility candidates, then so is X → Y .

Proof: First remark that for all subsets X ⊂ SNC and Z ⊂ SN∗C one has:

X → Z⊥ = (X :: Z)⊥ = {A :: S | A∈X and S∈Z}⊥

(where A,S denotes the consing operation on stacks). Then, if Y is a reducibility
candidate, we get X → Y = X → Y ⊥⊥ = (X :: Y ⊥)⊥. 2

From this, we interpret each kind K as a reducibility candidate written [K] and
recursively defined by [?] = SNC and [K → K ′] = [K] → [K ′].

Lemma 7 — If the typing judgment α1 : K1, . . . , αn : Kn ` B : K is derivable,
then for all A1 ∈ [K1], . . . , An ∈ [Kn] one has

B{α1, . . . , αn\A1, . . . , An} ∈ [K]

(where B{α1, . . . , αn\A1, . . . , An} denotes the parallel substitution of the type con-
structors A1, . . . , An to the variables α1, . . . , αn in the type constructor B).

Proof: By induction on the derivation of α1 : K1, . . . , αn : Kn ` B : K. 2

From this we get:

Theorem 8 — It Σ ` B : K, then B is strongly normalisable.

Proof: Apply lemma 7 with A1 = α1, . . . , An = αn (identity substitution),
using item 2 of Prop. 4. 2

7



4 Strong normalisation of terms
This proof is adapted from [BB96, Pol04, DGLL05].

Let us consider terms and programs without their type annotations, a.k.a. Curry-
style terms and programs, whose syntax is the following:

Curry-style terms
Curry-style programs

t, u, v, . . . ::= x | µx.p | 〈t, u〉 | λxy.p | λ_.t | 〈_, t〉
p ::= {t | u}

The corresponding reduction rules, that are shown in Fig. 4, define the set SN
of Curry-style terms and Curry-style programs.

{µx.p | t} −→µ p{x\t}
{〈t1, t2〉 | λx1x2 .p} −→ {t1 | µx1.{t2 | µx2.p}}

or {t2 | µx2.{t1 | µx1.p}}
{λ_.t | 〈_, u〉} −→ {t | u}

Figure 4: Reductions without types

Definition 2 — The type-erasure operation from terms (resp. programs) to Curry-
style terms (resp. Curry-style programs) is recursively defined by:

‖x‖ = x
‖〈t, u〉‖ = 〈‖t‖, ‖u‖〉
‖λxAyB .p‖ = λxy.‖p‖
‖µxA.p‖ = µx.‖p‖
‖λα : K . t‖ = λ_.‖t‖
‖〈A, t〉‖ = 〈_, ‖t‖〉
‖{t | u}‖ = {‖t‖ | ‖u‖}

Lemma 9 — Provided all types in a term t are strongly normalising (for β), if
‖t‖ ∈ SN then t ∈ SN.

Proof: LetM(t) be the multiset of all the types and kinds appearing in t, equipped
with the multiset order based on the terminating β-reduction on types.
Every reduction from t decrease the pair (‖t‖,M(t)) in lexicographic order. 2

Definition 3 (Orthogonality) • We say that that a Curry-style term t is
orthogonal to a Curry-style term u, written t ⊥ u, if {t | u} ∈ SN.

• We say that that a set U of Curry-style terms is orthogonal to a set V of
Curry-style terms, written U ⊥ V, if ∀t ∈ U ,∀u ∈ V, t ⊥ u.

Remark 10 — If t{x\v} ⊥ u{x\v}, then t ⊥ u and µx.{t | u} ∈ SN.

Definition 4 — A set U of Curry-style terms is simple if it is non-empty and it
contains no Curry-style term of the form µx.p.

Definition 5 — A pair (U ,V) of sets of Curry-style terms is saturated if:

• Var ⊆ U and Var ⊆ V
• {µx.{t | u} | ∀v ∈ V, t{x\v} ⊥ u{x\v}} ⊆ U

and {µx.{t | u} | ∀v ∈ U , t{x\v} ⊥ u{x\v}} ⊆ V.

8



Definition 6 — Whenever U is simple, we define the following function
ΦU (V) = U ∪ Var ∪ {µx.{t | u} | ∀v ∈ V, t{x\v} ⊥ u{x\v}}.

Remark 11 — For all simple U , ΦU is anti-monotone. Hence, for any simple U
and V, ΦU ◦ ΦV is monotone, so it admits a fixed point U ′ ⊇ U .

Theorem 12 — Assume that U and V are simple with U ⊥ V.
There exist U ′ and V ′ such that U ⊆ U ′ and V ⊆ V ′, U ′ ⊥ V ′ and (U ′,V ′) is
saturated.

Proof: Let U ′ be a fixed point of ΦU ◦ ΦV , and let V ′ = ΦV(U ′). We have

U ′ = ΦU (V ′) = U ∪ Var ∪ {µx.{t | u} | ∀v ∈ V ′, t{x\v} ⊥ u{x\v}}
V ′ = ΦV(U ′) = V ∪ Var ∪ {µx.{t | u} | ∀v ∈ U ′, t{x\v} ⊥ u{x\v}}

It is clearly saturated. We now prove that U ′ ⊥ V ′.
Since U ⊥ V and U and V are non-empty, we have U ⊆ SN and V ⊆ SN. We

also have Var ⊆ SN. Finally, by Remark 10, we conclude U ′ ⊆ SN and V ′ ⊆ SN.
Now assume u ∈ U ′ and v ∈ V ′. We show u ⊥ v by lexicographical induction on

the length of the longest derivation starting from u ∈ SN and that of the longest
derivation starting from v ∈ SN.

If u ∈ U and v ∈ V then u ⊥ v because U ⊥ V. If not, we prove u ⊥ v by showing
that whenever {u | v} −→ p, then p ∈ SN.

• If {u | v} −→ {u′ | v} or {u | v} −→ {u | v′}, the induction hypothesis
applies.

• The only other case is u = µx.p (resp. v = µx.p) and {u | v} −→ p{x\v}
(resp. {u | v} −→ p{x\u}). But since u ∈ U ′ and v ∈ V ′, we know that
p{x\v} ∈ SN (resp. p{x\u} ∈ SN).

2

Definition 7 — Now we interpret kinds:

[[?]] = {(U ,V) | U ⊥ V and (U ,V) is saturated}
[[K → K ′]] = [[K]] → [[K ′]]

Given, a pair p ∈ [[?]], we write p+ (resp. p−) its first (resp. second) component. We
also define the function swapK : [[K]] → [[K]] by induction on K:

swap?(U ,V) = (V,U)
swapK→K′f = swapK′ ◦ f

Let swap : (
⋃

K [[K]]) → (
⋃

K [[K]]) be the disjoint union of all the swapK .

Definition 8 — Let U and V be sets of Curry-style terms. We set the following
definitions:

〈U ,V〉 = {〈u, v〉 | u ∈ U , v ∈ V}
λUV .¦ = {λxy.p | ∀u ∈ U ∀v ∈ V p{x, y\u, v} ∈ SN}
λ_.U = {λ_.u | u ∈ U}
〈_,U〉 = {〈_, u〉 | u ∈ U}

Note that those sets are always simple.

Definition 9 — We say that a mapping ρ : VarT → ⋃
K [[K]] is compatible with Σ

if ∀(α : K) ∈ Σ, ρ(α) ∈ [[K]].

9



Definition 10 — For each A such that Σ ` A : K for some K, and for each ρ
compatible with Σ, we define [[A]]ρ ∈ [[K]] as follows:

[[α]]ρ = ρ(α)
[[α⊥]]ρ = swap(ρ(α))
[[A ∧B]]ρ = any saturated (U ,V) such that

〈[[A]]+ρ , [[B]]+ρ 〉 ⊆ U
λ[[A]]+ρ [[B]]+ρ .¦ ⊆ V
U ⊥ V

[[A ∨B]]ρ = any saturated (U ,V) such that
λ[[A]]−ρ [[B]]−ρ .¦ ⊆ U
〈[[A]]−ρ , [[B]]−ρ 〉 ⊆ V
U ⊥ V

[[∀α : K ′ . A]]ρ = any saturated (U ,V) such that
λ_.

⋂
h∈[[K′]][[A]]+ρ,α 7→h ⊆ U

〈_,
⋃

h∈[[K′]][[A]]−ρ,α7→h〉 ⊆ V
U ⊥ V

[[∃α : K ′ . A]]ρ = any saturated (U ,V) such that
〈_,

⋃
h∈[[K′]][[A]]+ρ,α7→h〉 ⊆ U

λ_.
⋂

h∈[[K′]][[A]]−ρ,α 7→h ⊆ V
U ⊥ V

[[λα :K ′ . A]]ρ = h ∈ [[K ′]] 7→ [[A]]ρ,α7→h

[[A B]]ρ = ([[A]]ρ)([[B]]ρ)

The soundness of the definition inductively relies on the fact that [[A]]ρ ∈ [[K]] and
ρ keeps being compatible with Σ. The existence of the saturated extensions in the
case of A ∧B, A ∨B, ∀α : K ′ . A and ∃α : K ′ . A is given by Theorem 12.

Remark 13 • Notice that [[A⊥]]ρ = swap[[A]]ρ.

• [[A]]ρ,α7→[[B]]ρ = [[A{α\B}]]ρ
• If A −→β B then [[A]]ρ = [[B]]ρ.

• If Σ ` A : ?, then [[A]]ρ is saturated, with [[A]]+ρ ⊆ SN and [[A]]−ρ ⊆ SN.

Theorem 14 — If x1 : A1, . . . , xn : An `Σ t : A then for all ρ compatible with Σ,
and for all t1 ∈ [[A1]]ρ, . . . , tn ∈ [[An]]ρ we have:

‖t‖{x1, . . . , xn\t1, . . . , tn} ∈ [[A]]+ρ

Proof: By induction on the typing tree. 2

Corollary 15 — If x1 : A1, . . . , xn : An `Σ t : A then t ∈ SN.

Proof: We first prove that we can find a ρ compatible with Σ (for α : ?, take ρ(α)
to be any saturated extension of (Var,Var)). Then we can apply Theorem 14 and
conclude by Lemma 9. 2

10



5 Logical Properties

5.1 Consistency
The consistency of F Cω follows from corollary 15 using a very simple combinatorial
argument. Let us first notice that all untyped programs that are in normal form
are of one of the following thirteen forms:

Variable-Variable
Variable-Pair
Variable-Lambda
Variable-∀Lambda
Variable-∃Witness
Pair-Pair
Lambda-Lambda
∀Lambda-∀Lambda
∃Witness-∃Witness
Lambda-∀Lambda
Pair-∀Lambda
Lambda-∃Witness
Pair-∃Witness

{x | y}
{x | λxAyB .p}
{x | 〈t, u〉}
{x | λα :K . t}
{x | 〈A, t〉}

{〈t1, u1〉 | 〈t2, u2〉}
{λx1

A1y1
B1 .p1 | λx2

A2y2
B2 .p2}

{λα1 : K . t1 | λα2 :K . t2}
{〈A1, t1〉 | 〈A2, t2〉}

{λx1
A1y1

B1 .p1 | λα :K . t2}
{〈t1, u1〉 | λα :K . t2}

{λx1
A1y1

B1 .p1 | 〈A2, t2〉}
{〈t1, u1〉 | 〈A2, t2〉}

However, if we restrict to well-typed programs, the last eight forms are ruled out
for obvious typing reasons1, hence:

Fact 16 — There is no closed well-typed program in normal form.

Combining this with corollary 15, we get

Proposition 17 — There is no closed well-typed program.

From which we deduce that the formalism is logically consistent.

5.2 Translating Fω + DNE into F C
ω

The definition of implication A ⇒ B as (A⊥) ∨ B naturally suggests a translation
from system Fω to system F Cω . We annotate sequents in Fω using `Fω .

The translation proceeds as follows: each kind of Fω is translated as itself, and
each type constructor A of Fω is translated as a type constructor A∗ of F Cω by the
equations

α∗ = α
(∀α : K .A)∗ = ∀α :K . A∗

(A ⇒ B)∗ = A∗⊥ ∨B∗

(λα : K . B)∗ = λα : K .B∗

(B A)∗ = B∗ A∗

We then easily check that

Proposition 18 — If Σ `Fω A : K, then Σ ` A∗ : K.

Proposition 19 — If A −→Fω B, then A∗ −→FCω B∗.

1In each of these eight forms, both members introduce a main connective or quantifier which is
not the dual of the one introduced on the other side, which contradicts the typing rule of programs.

11



We now translate proof-terms, adapting Prawitz’s translation of natural deduc-
tion into sequent calculus:

x∗ = x
(λx : A.t)∗ = λxAyB .t∗y

(λα : K . t)∗ = λα :K . µyB.t∗y
v∗t = {v∗ | t}

(t1 t2)
∗
t = t1

∗
〈µyB.t2∗y,t〉

(t1 A)∗t = t1
∗
〈A∗,t〉

where B is the type of t in the case of abstractions, and the type of t2 in applications.
The translation preserves typing (using Proposition 19):

Proposition 20 — If Γ `Fω

Σ v : A, then Γ∗ `Σ v∗ : A.
If Γ `Fω

Σ u : A and Γ∗, y : B⊥ `Σ t : A∗⊥, then Γ∗, y : B⊥ `Σ u∗t ¦.
We can then simulate β-reduction of Fω:

Proposition 21 — If v −→Fω
v′, then v∗ −→+

FCω
v′∗.

If u −→Fω u′, then u∗t −→+
FCω

u′∗t .

Since F Cω is classical, we have a proof of the axiom of double negation elimina-
tion DNE = ∀α : ? . ((α ⇒ ⊥) ⇒ ⊥) ⇒ α (where ⊥ = ∀α : ? . α and > = ∃α : ? . α).
Indeed, DNE∗ = ∀α : ? . ((α⊥ ∨ ⊥) ∧ >) ∨ α and

` λα : ? . λxByα⊥ .{x | 〈λx′αy′>.{x′ | y}, 〈α⊥, y〉〉} : DNE∗

where B = (α ∧ >) ∨ ⊥. We call this term c. Hence, provable propositions of
system Fω + DNE become provable propositions of system F Cω :

Proposition 22 — For all derivable judgments of the form

z : ∀α (¬¬α ⇒ α), Γ `Fω

Σ t : A

we have
Γ∗ `Σ µyA∗.t∗y{z\c} : A∗

Through the translation A 7→ A∗, system F Cω appears as an extension of system
Fω + DNE. We conjecture that this extension is conservative.

6 Conclusion
It is important to understand why, in section 4 we did not simply use sets of terms
equal to their bi-orthogonal closure as reducibility candidates for proof-terms, as
we did in section 3 for type constructors.

The reason is that in general, the pair (U⊥⊥,U⊥) formed by a set of terms U⊥⊥
closed under bi-orthogonal (a ‘type’) and its orthogonal U⊥ does not seem to be
saturated in the sense of Def. 5. Technically, there is no equivalent for proof terms
of Prop. 4 (item 4), due to the presence of a µ-µ critical pair which makes the proof
difficult or impossible to adapt in the nondeterministic case. This lack of saturation
is the motivation of the fixpoint construction above to interpret types.

However, the question whether pairs of the form (U⊥⊥,U⊥) are saturated or not
is still open, as far as we known. If the answer is positive, then the fixpoint con-
struction is unnecessary. Otherwise, it would be interesting to investigate whether
the choice of a more sophisticated relation of orthogonality could solve the problem
and replace the fixpoint construction.

12



References
[Bar84] H. P. Barendregt. The Lambda-Calculus, its syntax and semantics. Stud-

ies in Logic and the Foundation of Mathematics. Elsevier Science Pub-
lishers B. V. (North-Holland), Amsterdam, 1984. Second edition.

[Bar91] H. P. Barendregt. Introduction to generalized type systems. Journal of
Functional Programming, 1(2):125–154, 1991.

[BB96] F. Barbanera and S. Berardi. A symmetric lambda-calculus for classi-
cal program extraction. Information and Computation, 125(2):103–117,
1996.

[BG01] H. Barendregt and H. Geuvers. Proof-assistants using dependent type
systems. In J. A. Robinson and A. Voronkov, editors, Handbook of Au-
tomated Reasoning, pages 1149–1238. Elsevier and MIT Press, 2001.

[CH00] P.-L. Curien and H. Herbelin. The duality of computation. In Proc. of the
5th ACM SIGPLAN Int. Conf. on Functional Programming (ICFP’00),
pages 233–243. ACM Press, 2000.

[DGLL05] D. J. Dougherty, S. Ghilezan, P. Lescanne, and S. Likavec. Strong nor-
malization of the dual classical sequent calculus. In G. Sutcliffe and
A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning, 12th Int. Conf. (LPAR’05), volume 3835 of LNCS, pages
169–183. Springer, dec 2005.

[Gir72] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. These D’État, Université Paris VII,
1972.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101,
1987.

[Par92] M. Parigot. λµ-calculus: An algorithmique interpretation of classical
natural deduction. In Proc. of the Int. Conf. on Logic Programming and
Automated Reasoning (LPAR). LNCS1, 1992.

[Pol04] E. Polonovski. Strong normalization of lambda-mu-mu/tilde-calculus
with explicit substitutions. In I. Walukiewicz, editor, Proc. of the 7th Int.
Conf. on Foundations of Software Science and Computation Structures
(FOSSACS’04), volume 2987 of LNCS, pages 423–437. Springer, March
2004.

[Sel99] P. Selinger. Control categories and duality: on the categorical semantics
of the λµ-calculus. Mathematical Structures in Computer Science, 1999.

[Urb00] C. Urban. Classical Logic and Computation. PhD thesis, University of
Cambridge, 2000.

13


