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Abstract. It is well-known that in terms of consistency classical logic and intu-
itionistic logic have equal strength: every intuitionistic proof is a classical proof
and every classical proof can be embedded into intuitionistic logic via double
negation translations. It is also well-known that intuitionistic proofs contain wit-
nesses for existential statements, which is not always the case with classical
proofs. However, here we study classical and intuitionistic logic as reduction
systems. From this perspective, we conjecture that classical logic is more pow-
erful than intuitionistic logic. The conjecture links double-negation translations
to the colour-protocol introduced by Danos et al. for cut-elimination in classical
logic. If the conjecture turns out to be true, then we can conclude thatnot all
cut-reductions can be simulated by double-negation translations.

1 Introduction

Since the works on double-negation translations by Gentzen, Gödel and Kolmogorov,
one knows that classical logic and intuitionistic logic have equal strength in terms of
consistency: intuitionistic sequent-proofs can be seen asclassical proofs where the
right-hand side of the sequents is restricted to maximal oneformula and every clas-
sical sequent-proof can be embedded into intuitionistic logic via double-negation trans-
lations. As a result, consistency of one logic implies consistency of the other. In this
paper, however, we focus on the correspondence of intuitionistic and classical logic
with respect to term-rewriting, proof-normalisation and cut-elimination.

According to the Curry-Howard correspondence, the simply-typed lambda-calculus
can be viewed as a term-assignment for intuitionistic proofs formalised in Gentzen’s
natural deduction calculus NJ. Term-rewriting in the simply-typed lambda-calculus is
a form of computation that converts a term to its simplest form, analogous to symbolic
evaluation. On the other hand, normalisation is a method foreliminating certain re-
dundancies in proofs. Applied iteratively, it transforms aproof to one in normalform.
Using the Curry-Howard correspondence we see that the two notions coincide and con-
sequently we can talk of a computational interpretation of intuitionistic proofs.

Two properties hold for term-rewriting in the simply-typedlambda-calculus and by
the Curry-Howard correspondence also for normalisation inNJ: they are strongly nor-
malising and Church-Rosser. With some limitations [8, 15, 18, 23], the Curry-Howard
correspondence applies also to the sequent-calculus LJ andto the process of cut-elimi-
nation. For sake of simplicity, we shall ignore these limitations here and regard cut-
elimination in intuitionistic logic as strongly normalising and as having (morally at



least) the Church-Rosser property. This ignorance can be partially justified if one sees
behind every LJ-proof an NJ-proof where the inessential differences present in sequent
proofs “disappear”, and sees cut-elimination as an approximation of proof-normali-
sation.

Although it has been shown that some cut-elimination procdures for classical logic
are strongly normalising as well, cut-elimination in classical logic is, given a sensible
notion of cut-reductions,not Church-Rosser—not even morally. The lack of Church-
Rosser in classical logic is a main theme running through theworks [2, 3, 19, 22], which
analyse what this means from a computational point of view. For example in [19] it has
been shown that a lambda-calculus with a non-deterministicchoice-operator can be
embedded into a fragment of classical logic. A simple classical proof taken from [6, 9]
shall illustrate the lack of Church-Rosser:A A A AA _ A A;A _LA _ A A ontrR A A A AA;A A^A ^RA A^A ontrLA_A A^A ut

(1)

The cut in this proof can be eliminated by reducing it to one ofthe following two
normalforms A A A AA;A A^A ^RA A^A ontrL A A A AA;A A^A ^RA A^A ontrLA_A A^A;A^A _LA_A A^A ontrR (2)A A A AA _A A;A _LA _ A A ontrR A A A AA _ A A;A _LA _ A A ontrRA_A;A_A A^A ^RA_A A^A ontrL (3)

which are obtained, respectively, by either permuting the cut to the left over theontrR-
rule or to the right over theontrL-rule. Another example showing that in classical logic
one can, in general, reach more than one normalform is Lafont’s proof [10, Page 151].

In light of the absence of the Church-Rosser property for cut-elimination in clas-
sical logic and in light of the work on double-negation translations, there seem to be
obvious questions: What is the correspondence between cut-elimination in classical
logic and the embeddings of classical proofs into intuitionistic logic via double-negation
translations? Since cut-elimination in intuitionistic logic is Church-Rosser,1 which re-
striction is tacitly enforced by a double-negation translation so that eliminating cuts in
the double-negated version of a classical proof leads to only a single normalform? Or

1 As mentioned earlier we ignore what we believe to be superficial variations between differ-
ent normalforms reachable from an intuitionistic sequent-proof. However see [18] for a more
thorough analysis of this aspect.



more concisely asked, do double-negation translations correspond to particular strate-
gies of how to eliminate cuts? Does every double-negation translation lead to the same
normalform (bysamewe mean corresponding to one particular normalform obtained
by cut-elimination in classical logic)? If not, then can onefind for every normalform
of a classical proof a corresponding double-negation translation that will produce the
double-negated version of this normalform—that is, can every reduction sequence in
classical logic be simulated by a (probably carefully chosen) double negation translation
and performing cut-elimination in intuitionistic logic? Are there any double-negation
translations that lead to normalforms that have no equivalent amongst the normalforms
reachable by cut-elimination in classical logic? Can one characterise somehow, which
normalforms can be reached by double-negation translations and which can not? In this
paper we conjecture answers for all these questions.

Although some special cases seem to be answered by existing work, for example
[5, 6, 14], we are unaware of any work that treat these questions in full generality. The
answers we shall give to these questions are a lot inspired bythe comments made in
[6, Sec. 7]. However, there only one half of the correspondence is considered, namely
how their version of classical logic and cut-elimination can be embedded via some
specific double-negation translations into intuitionistic logic. We conjecture also a cor-
respondence in the other direction, namely that every double-negation translation and
corresponding reduction sequences can be simulated by their cut-elimination procedure.
Since we shall use as “point of reference” a more general cut-elimination procedure for
cut-elimination in classical logic than the one described in [6], we are also able to draw
the conclusion that given our conjecture is true, then double-negation translations are
not enough to describe thefull computational meaning of a classical proof.

As can be seen to answer the correspondence questions, we first have to make pre-
cise what we mean by cut-elimination in classical logic. Most cut-elimination proce-
dures, including Gentzen’s original one, only terminate ifa particular strategy for cut-
elimination is employed. Common examples being an innermost reduction strategy, or
the elimination of the cut with the highest rank. Using thosecut-elimination procedures
we cannot characterise what the set ofall normalforms of a classical proof is—they
would produce only one or a limited number of normalforms. Weshall therefore base
our arguments on the cut-elimination procedure developed by Urban and Bierman [20,
21], which is like Gentzen’s procedure except it imposes oneslight restriction on how
commuting cuts need to be analysed. Since this cut-elimination procedure is strongly
normalising, we can calculate all cut-free normalforms of aclassical proof. Because
this procedure is not Church-Rosser, the collection of normalforms for a classical proof
contains in general more than one element—as can be seen for example with the proofs
(2) and (3). As this cut-elimination procedure puts only very slight restrictions on the
process of cut-elimination we believe a good case can be madethat the collection of
normalforms calculated by this procedure includes all “essential” normalforms.2 How-
ever this is a point we shall not be concerned with in this paper.

2 Making such a case is hopeless for other strongly-normalising cut-elimination procedures,
like the one by Dragalin [7], because although they are strongly-normalising, they enforce
quite strong restrictions on how cuts can be eliminated. Forexample Dragalin does not allow
(multi)cuts to permute over other (multi)cuts, see [19].



The cut-elimination procedure of Urban and Bierman will be described in more
detail in Sec. 3, together with a variant—the colour protocol—developed by Danos et
al. [6, 12]. Beforehand, however, we present some preliminaries about double-negation
translations in Sec. 2. We will state the conjecture in Sec. 4, give some evidence on
why this conjecture is plausible and present some ideas on how to prove it. In Sec. 5
we shall draw some conclusions with respect to the computational interpretation of
classical proofs.

2 Preliminaries on Double-Negation Translations

We assume the reader has acquaintance with sequent-calculus formulations of classical
and intuitionistic logic. Because there exist sequents that are provable in classical logic,
but unprovable in intuitionistic logic, the interesting point of double-negation transla-
tions is that one can embed classical logic into intuitionistic logic so that provability is
preserved. For example the following translation defined over formulaeA� def= ::A with A being atomic(:B)� def= :(B�)(B^C)� def= B�^C�(B�C)� def= B��C�(B_C)� def= :(:(B�)^:(C�)) (4)

can be used to show that every classical proof with the end-sequent� �
can be translated to an intuitionistic proof with the end-sequent� �;:�� : (5)

We use the convention that if� is the sequent-contextfB1; : : : ; Bng then� � stands
for the sequent-contextfB�1 ; : : : ; B�ng. Similarly for :��. We shall also use the con-
vention thatA stands for an atomic formula andB; : : : for arbitrary formulae. A similar
embedding can be obtained with the translation:AÆ def= ::A(:B)Æ def= :(BÆ)(B^C)Æ def= ::(BÆ^CÆ)(B�C)Æ def= ::(BÆ�CÆ)(B_C)Æ def= ::(BÆ_CÆ) (6)

The usual proof (see for example [4]) for establishing that every classical proof
can be translated to an intuitionistic proof proceeds inductively by translating stepwise
every inference rule in a proof. For instance an axiom of the formA A



is translated by(�)� to the proof ::A ::A::A;:::A :L
which conforms with the desired property stated in (5). Whentranslating a proof ending
with an_L-rule :B;�1 �1 :C; �2 �2B_C; �1; �2 �1; �2 _L (7)

then by induction hypothesis we have two intuitionistic proofs ending with:B�; � �1 ;:��1 and
:C�; � �2 ;:��2 :

We can then form the intuitionistic proof:B�; � �1 ;:��1� �1 ;:��1 :B� :R :C�; � �2 ;:��2� �2 ;:��2 :C� :R� �1 ; � �2 ;:��1;:��2 :B�^:C� ^R:(:B�^:C�); � �1 ; � �2 ;:��1;:��2 :L
(8)

as the translation of (7). For the sake of more clarity we willomit in what follows
the sequent-contexts whenever they are unimportant. Thus we shall give for the proof-
fragment shown in (8) only the following simplified inference rules::B�:B� :R :C�:C� :R:B�^:C� ^R:(:B�^:C�) :L
When translating a classical proof ending with an^R-rule:B :CB^C ^R (9)

we have by induction hypothesis two intuitionistic proofs ending in::B� and
::C� :

In order to form an intuitionistic proof ending with the sequent:(B�^C�) , we need
to exploit the property of(�)� that one can always prove intuitionistically the sequent::(�)� (�)�. For example in the atomic case one has for::A� A� the intuition-
istic proof: :A :A:A;::A :L:A :::A :R::::A;:A :L::::A ::A :R



Using proofs for::B� B� and::C� C�, we can construct the following trans-
lated proof for (9):::B�::B� :R :::B� B�B� ut ::C�::C� :R :::C� C�C� utB�^C� ^R:(B�^C�) :L
We shall refer to the cuts introduced by the double-negationtranslation asauxiliary
cuts. For a number of reasons (one of them being to minimise the amount of writing)
we shall use a new inference rule, namely::BB ::R
to stand for auxiliary cuts, which have always the form::� ::B :::B B� B ut :
Clearly, this new rule does not affect the provability of sequents. Issues whether the::R-rule (or an auxiliary cut) affects the behaviour under cut-elimination are delayed
until Sec. 4. With this new inference rule we can give the translation of (9) more com-
pactly as: ::B�::B� :RB� ::R ::C�::C� :RC� ::RB�^C� ^R:(B�^C�) :L
The translations for the rulesontrL, ontrR, weakL, weakR, :L, :R, _Ri , ^Li ,�L
and�R are left as exercises to the reader.

We can now give the double-negation translations of the two subproofsA A A AA _A A;A _LA _ A A ontrR A A A AA;A A^A ^RA A^A ontrL
shown in (1). The translations are:::A ::A::A;:::A :L:::A :::A :R ::A ::A::A;:::A :L:::A :::A :R:::A;:::A :::A^:::A ^R:(:::A^:::A);:::A;:::A :L:(:::A^:::A);:::A ontrL

::A ::A::A;:::A :L::A ::::A :R::A ::A ::R ::A ::A::A;:::A :L::A ::::A :R::A ::A ::R::A;::A ::A^::A ^R::A;::A;:(::A^::A) :L::A;:(::A^::A) ontrL



To give a double-negation translation for the whole proof, we need to be able to translate
instances of the cut-rule. While the logical inference rules and the structural rules have
relatively canonical double-negation translations, there is a choice for how to translate
cut-rules. Consider the following cut-instance:�1:B �2:B ut (10)

By induction hypothesis we have two intuitionistic proofs��1 and��2 with end-sequents:��1::B� and

��2:B� :
To form an intuitionistic proof with the end-sequent(remember we omit the sequent-
contexts), we can translate (10) either as:��1::B� ��2:B�:B� :Rut or

��1::B�::B� :RB� ::R ��2:B� ut
We refer to these choices asleft- andright-translationof a cut, respectively.

Coming back to the proof given in (1), let us call the left- andright-translation of this
proof��L and��R, respectively. Eliminating all cuts (including auxiliarycuts) from��L
and��R, we obtain the two cut-free proofs�0�L and�0�R shown in Fig. 1. It turns out (we
however leave out the calculations) that had we double-negation translated the two nor-
malforms of (1) and then eliminated all auxiliary cuts from the double-negated proofs,
we would have also obtained the proofs�0�L and�0�R : The normalform (2) obtained from
(1) by commuting the cut to the left leads to�0�L—the normalform of the left-translation
of (1), while (3) obtained by commuting the cut to the right leads to�0�R—the normal-
form of the right-translation of (1). We take this as a first hint that double-negation
translations seem to be able to simulate the behaviour of cut-elimination in classical
logic.

To sum up this section, let us remark that a similar “story” can be told for the transla-
tion (�)Æ given in (6). In fact, it can be told for any sensible notion ofdouble-negation
translation. For example it would be completely immaterialto our “story” if we had
translated atomic formulaeA as::A, ::::A or ::::::A. The most important
property we distill from the arguments above is that we regard a double-negation trans-
lation, say(�)x, as a translation of a classical proof having an end-sequent:� �
to an intuitionistic proof with the end-sequent:� x;:�x



�0�L =:A :A:A;::A :L:A :::A :R :A :A:A;::A :L:A :::A :R:A;:A :::A^:::A ^R:(:::A^:::A);:A;:A :L:(:::A^:::A);:A ontrL:(:::A^:::A) ::A :R
:A :A:A;::A :L:A :::A :R :A :A:A;::A :L:A :::A :R:A;:A :::A^:::A ^R:(:::A^:::A);:A;:A :L:(:::A^:::A);:A ontrL:(:::A^:::A) ::A :R:(:::A^:::A);:(:::A^:::A) ::A^::A ^R:(:::A^:::A);:(:::A^:::A);:(::A^::A) :L:(:::A^:::A);:(::A^::A) ontrL�0�R =:A :A::A;:A :L::A ::A :R :A :A::A;:A :L::A ::A :R::A;::A ::A^::A ^R:(::A^::A);::A;::A :L:(::A^::A);::A ontrL:(::A^::A) :::A :R
:A :A::A;:A :L::A ::A :R :A :A::A;:A :L::A ::A :R::A;::A ::A^::A ^R:(::A^::A);::A;::A :L:(::A^::A);::A ontrL:(::A^::A) :::A :R:(::A^::A);:(::A^::A) :::A^:::A ^R:(:::A^:::A);:(::A^::A);:(::A^::A) :L:(:::A^:::A);:(::A^::A) ontrL

Fig. 1. One can obtain the first proof by double-negation translation of (1) using the left-
translation for the cut, and then eliminating all cuts including the auxiliary cuts. Equally, one
can first reduce (1) to (2), double-negate translate (2) and then eliminate all cuts. Similarly with
the second proof: it can be obtained by right-translating the cut in (1) and then eliminate all cuts;
or by double-negate translate (3) and then eliminate all cuts.

preserving the “structure” of the classical proof. In orderto achieve this one needs
the property that::(�)x (�)x is intuitionistically derivable. However, this leaves us
with many possible double negation translations—clearly the ones given by Gentzen,
Gödel and Kolmogorov are not the only ones that satisfy these constraints.

3 Cut-Elimination and Its Coloured Variant

Urban and Bierman have shown in [19, 21] that only a small restriction on the standard
cut-elimination procedure for classical and intuitionistic logic is sufficient to obtain
strongly normalising proof-transformations. Thelogical cuts, also sometimes called
key-cuts, are transformed by this cut-elimination procedure in a completely standard
fashion [10]. For example the logical cut�1:B �2:CB^C ^R �3:BB^C ^L1ut (11)



is transformed to �1:B �3:B ut
and so on for the other connectives. As before we conveniently ignore all matters to do
with how the sequent-contexts should be adjusted. A logicalcut can be characterised as
a cut where in both subproofs the cut-formulas arefreshly introducedby logical rules
directly above the cut. For example in the proof�:B r
we say the formulaB is freshly introduced if it is what usually is called the main
formula of the logical inference ruler. Consequently, a logical cut is a cut where the
cut-formula is freshly introduced in the two immediate subproofs of the cut. In all other
cases we have acommuting cut. The cut in (1), for example, is a commuting cut because
the cut-formulaA is in both subproofs introduced by a contraction-rule, which is not
considered to be a logical inference rule.

Gentzen introduced proof-transformations that permute commuting cuts upwards in
a stepwise fashion only by rewriting neighboring inferencerules. In contrast, the cut-
elimination procedure of Urban and Bierman contains proof-transformations that push
commuting cuts upwards in a single “big” step towards all places where the cut-formula
was introduced. Consider the following picture

B^C B^C ut

^LiB^C... B^C B^C
weakLB^C...

1

where the cut-formula on the right-hand side isnot freshly introduced, rather it is intro-
duced somewhere deeper inside the subproof and because of contractions possibly in
several places. We have indicated three cases for a cut-formula being introduced: by a
logical inference rule, by an axiom and by a weakening-rule—in general we can have
any mixture of these cases. To eliminate such commuting cutsthe procedure of Urban
and Bierman pushes up, roughly speaking, the cut-rule untilit reachesall places where
the cut-formula is introduced inonestep. In case it reaches a logical inference-rule,
then the proof on the left-hand side will be cut against this logical inference-rule; in
case of an axiom, the proof on the left-hand side replaces theaxiom and in case of a
weakening-rule, the proof on the left-hand side is deleted.(Again all matters to do with



adjusting the sequent-contexts are omitted in this paper. The work reported in [19, 21]
formulates these proof-transformation as term-rewritingrules where such adjustments
are built into the inference rules, very similar to term-rewriting in the simply-typed
lambda-calculus.)

The important property of the cut-elimination procedure ofUrban and Bierman is
the fact that it is strongly-normalising. This property is not obvious: the reduction-rule
for commuting cuts allows a cut-rule to “jump” over other cut-rules—a highly problem-
atic reduction if one tries to construct a decreasing measure for cut-elimination. Also
this rule might generate several copies of a subproof when a cut-formula is introduced
in several places. Urban and Bierman, therefore, had to resort to a quite complicated
logical relations argument to show strong normalisation.

Recall that the cut-elimination procedure of Urban and Bierman isnot Church-
Rosser: when on both sides of a commuting cut the cut-formulais not freshly intro-
duced, then this cut can be moved either to the left or to the right, leading in general to
two “non-joinable” proofs. For example, the proof shown in (1) can be reduced in one
step to the normalform (2) or in one step to (3). Which choice is taken is left unspeci-
fied by the procedure. Nevertheless with this cut-elimination procedure we have some
effective means to calculate for a classical proof its collection of all normalforms—for
example by naı̈vely trying out all possible reductions.3

The cut-elimination procedure of Urban and Bierman was in part inspired by the
work of Danos et al. [6]. The main difference is that their cut-elimination procedure
is Church-Rosser. They achieve this by pre-determining everychoice that can be made
during cut-elimination. This pre-determination is done viacolours, which are annotated
to every formula and subformula in a proof. To see how colourswork, consider again
the proof shown in (1). The choice about which direction is taken for the commuting cut
is determined by annotating the colour ‘(’ or ‘*’ to the cut-formulaA. The colour-
protocol of Danos et al. pre-scribes that in the former case it is first attempted to permute
the cut to the left and in the second case to the right (hence the use of an arrow to denote
a colour!). For example, if we want to reach from (1) the normalform (2) we need to
orient the colour of the cut-formulaA to the left, as shown below(A (A (A (A(����(A _ (A (A;(A _L(����(A _ (A (A ontrR (A (A (A (A(A;(A ����*(A ^ (A ^R(A ����*(A ^ (A ontrL(����(A _ (A ����*(A ^ (A ut
If the normalform (3) is to be reached, then accordingly we need to orient the colour
of the cut-formula to the right. Note however that choosing colours has nothing to do
with imposing a strategy for cut-elimination: it is not cutsthat are selected by them,
but rather the way how cuts are reduced. Important for our discussion is the fact that

3 A less naı̈ve method, which only tries out all possible reduction for outermost cuts, is described
in [19].



one is, however, not completely free about how to annotate colours to a sequent proof.
In fact once the colour ‘(’ is chosen for the cut-formulaA in (1), all occurrences ofA must have this colour. The only “free” choices in this proof are the colours for the
formulaeA_A andA^A—for them we can make any choice, but it has to be consistent
throughout the proof. Danos et al. state this consistency requirement using the notion
of an identity classin a proof (the following definition is slightly adapted from[16,
Page 107]):

Definition 1. Occurrences of (sub)formulae in a proof areidentifiedwhenever they are
the corresponding occurrences of the same (sub)formula in� the two formulae in an axiom,� the cut-formulae in a cut and� the up and down occurrences of a formula in an inference rule (this includes the

contracted occurrences in contractions rules).

An identity classin a proof is the reflexive, symmetric and transitive closureof the
identification relation. ut
The consistency requirement can then be stated as follows: Whenever colours are an-
notated to a proof, then every formula in an identity class must receive the same colour.

The interesting point of colour-annotations is the fact that they determine uniquely
a normalform. In light of this, it seems reasonable to regardas the collection of nor-
malforms reachable from a classical proof all those for which a colour annotation exists
that makes them reachable. Then the question arises: Can we find for every normal-
form reachable by the (un-coloured) cut-elimination procedure of Urban and Bierman a
colour-annotation that makes them reachable by the cut-elimination procedure of Danos
et al.? The answer is no and for deep reasons! Consider the following classical proof(1):A_A A^A A^A A^A A^A A^AA^A;A^A (A^A)^(A^A) ^RA^A (A^A)^(A^A) ontrLA_A (A^A)^(A^A) ut

(12)

where we cut the proof from (1) against a proof whose cut-formula,A^A, is contracted
in the right-subproof. We can reduce the lower cut so that we obtain two copies of the
proof (1): (1):A_A A^A (1):A_A A^AA_A;A_A (A^A)^(A^A) ^RA_A (A^A)^(A^A) ontrL

(13)

Without colours, we can then reduce each copy completely independently as follows:(2):A_A A^A (3):A_A A^AA_A;A_A (A^A)^(A^A) ^RA_A (A^A)^(A^A) ontrL
(14)



Such a behaviour cannot be achieved by using colours: the colours must be annotated
before cut-elimination commences and is invariant under cut-reductions. Consequently,
whenever a cut is duplicated in a reduction sequence (as in the reduction (12)!(13)),
the colour-annotation prevents both instances from reducing differently. (The deeper
reason mentioned earlier is that one just cannot pre-determine the choices in a com-
pletely non-deterministic reduction system.)

Comparing the cut-elimination procedure of Urban and Bierman with the one of
Danos et al., two points stand out: Both cut-elimination procedures are strongly normal-
ising4 and also determine a collection of normalforms reachable from a sequent-proof
in classical logic. As shown by example, these collections contain in general more than
one element. Also as shown by example, the collection determined by the procedure of
Danos et al. is generally a proper subset of the collection determined by the procedure
of Urban and Bierman. The colour-annotations in the procedure of Danos et al. cannot
fully account for the non-determinism present in classicallogic.

Both cut-elimination procedures can also be used for reducing intuitionistic proofs.
Because of the restrictions imposed upon intuitionistic sequents, non-deterministic re-
duction sequences such as (12)!(13)!(14) cannot be constructed. But still the proce-
dure of Urban and Bierman isnotChurch-Rosser in the intuitionistic case, and also dif-
ferent colour-annotations of an intuitionistic proof might lead to different normalforms.
However, as mentioned earlier, we regard the differences between the normalforms
reachable from an intuitionistic sequent-proof as inessential and regard cut-elimination
as morally Church-Rosser. That in turn means that in the intuitionistic case there is no
difference between coloured and un-coloured cut-elimination—at least morally.

4 Conjecture

We have already seen that by translating the cut in (1) using aleft- and right-translation,
we can simulate the reductions (1)!(2) and (1)!(3) by double-negations. However in
general, a left- or right-translation of a cut is not sufficient to simulate all cut-reduction
sequences in classical logic. Consider the following instance of a logical cut:�1:BB_C _R1 �2:B �3:CB_C _Lut (15)

We can reduce this cut to �1:B �2:B ut
4 Danos et al. showed strong normalisation of their cut-elimination procedure by translating

reduction sequences in classical logic to reduction sequences of proof-nets in linear logic.



and assuming that the cut-formulaB is not freshly introduced in�1, we can further
permute�2 inside�1. This behaviour correspond to the colour-annotation�1:(B(B _C _R1 �2:(B �3:C(B _C _Lut (16)

where we leave the colour annotation forC andB_C unspecified, since it is not impor-
tant for the argument at hand. The behaviour of (16) can be simulated by the double-
negation translation(�)�. The double-negated version of (15) is as follows:��1::B�:B�^:C� ^L1:(:B�^:C�) :R::(:B�^:C�) :L ��2:B�:B� :R ��3:C�:C� :R:B�^:C� ^R:(:B�^:C�) :L::(:B�^:C�) :Rut
which reduces in three steps to the proof��1::B� ��2:B�:B� :Rut
Because the:R-rule introduces freshly the cut-formula:B�, the cut is “blocked” from
reducing to the right. It must first reduce to the left just as the colour annotation in (16)
prescribed. If we wanted to simulated the opposite colouring forB, namely�1:*B*B _C _R1 �2:*B �3:C*B _C _Lut (17)



it turns out we have to double-negate translate (15) using the translation(�)Æ given
in (6). The resulting intuitionistic proof is:�Æ1::BÆ::BÆ :RBÆ ::RBÆ_CÆ _R1:(BÆ_CÆ) :L::(BÆ_CÆ) :R:::(BÆ_CÆ) :L

�Æ2:BÆ �Æ3:CÆBÆ_CÆ _L:(BÆ_CÆ) :R::(BÆ_CÆ) :L:::(BÆ_CÆ) :Rut
which after four steps reduces to the proof�Æ1::BÆ::BÆ :RBÆ ::R �Æ2:BÆ ut (18)

What happens next, however, is not clear at first sight. If we expand the::R-rule to an
auxiliary cut, then the cut can reduce into both directions.If we regard the::R-rule as
an inference rule in its own right, then the cut-formulaBÆ is freshly introduced in the
subproof on the left-hand side and therefore the cut can onlymove to the right—just
as prescribed by the colour-annotation in (17). Although wedo not have a proof of this
fact, experiments with [17] have convinced us that when cut-elimination is concerned,
we can indeed regard the::R-rule as a proper inference rule with the consequence that
in the proof aboveBÆ is freshly introduced. (Roughly speaking, if we had expanded the::R-rule to an auxiliary cut in the proof (18), then moving the cut to the left means
it cannot move very far, namely only to the place whereBÆ is introduced in the proof
of the sequent::BÆ BÆ and then the cut has to move right. In effect we obtain a
behaviour which is almost identical to moving the cut to the right in the first place.)

Since the colour-protocol of Danos et al. allows us to annotate in many circum-
stances either colour ‘(’ or ‘*’ to the formulae in a classical proof, we need how-
ever to depart from the traditional double-negation technique that translates a classical
proof uniformly using a single double-negation translation. To simulate the coloured
cut-elimination procedure in a meaningful way, we need to allow more than one double-
negation translation. Let us explain this fact with a classical proof� ending in a cut with
the cut-formula (����*B _ (C :
We will show that the behaviour of this (coloured) cut can be simulated by a double-

negation translation with the clause(B_C)� def= ::(B�_::C�). To show this we
analyse all cases how the cut in� could have arisen. Consider first the case where�



ends with the following logical cut�1:*B(����*B _ (C _R1 �2:*B �3:(C(����*B _ (C _Lut (19)

which can reduce to �1:*B �2:*B ut (20)

The(�)�-translated version of���1::B�::B� :RB� ::RB�_::C� _R1:(B�_::C�) :L::(B�_::C�) :R:::(B�_::C�) :L
��2:B� ��3:C�:C� :R::C� :LB�_::C� _L:(B�_::C�) :R::(B�_::C�) :L:::(B�_::C�) :Rut

reduces to ��1::B�::B� :RB� ::R ��2:B� ut
where (remember we regard the::R-rule as proper inference rule) the proof��1 has to
move inside��2 just like the behaviour of (20). If� ends with the logical cut�1:(C(����*B _ (C _R2 �2:*B �3:(C(����*B _ (C _Lut (21)

which can reduce to �1:(C �3:(C
(22)



then, the(�)�-translated version of���1::C�::C� :RB�_::C� _R1:(B�_::C�) :L::(B�_::C�) :R:::(B�_::C�) :L
��2:B� ��3:C�:C� :R::C� :LB�_::C� _L:(B�_::C�) :R::(B�_::C�) :L:::(B�_::C�) :Rut

reduces to ��1::C� ��3:C�:C� :Rut
where proof��3 has to move inside��1 just like in the proof (22). The only case we still
need to consider is when� ends in a commuting cut of the form�1:(����*B _ (C �2:(����*B _ (C ut (23)

The behaviour of this cut is determined by the outermost colour ‘(’. This behaviour
can be simulated by the(�)�-translation, provided we use a left-translation for the cut
in (23). The translated proof is then as follows:��1::::(B�_::C�) ��2:::(B�_::C�):::(B�_::C�) :Rut
Now ��1 will freshly introduce the cut-formula:::(B�_::C�) only if �1 freshly
introduces the formulaB_C (recall that double-negation translations need to preserve
the structure of a classical proof). Consequently, the translated proof simulates exactly
the behaviour of (23).

What this example shows is that the(�)�-translation of� can simulate the be-
haviour where the cut-formula is annotated with the colours(����*B _ (C :
Note that there are other double negation translation whichcan be used for a similar
simulation of this particular colour-annotation. From ourdiscussion it seems reason-
able to expect that one can find corresponding double-negation translations for every



possible colour-annotation. Since the formulaeB andC can be compound with further
colour-annotations inside, we need some flexibility of how to double-negate translate

formulae. One has to be able to build into the clause(B_C)� def= ::(B�_::C�)
that the translations ofB andC might follow a completely different double-negation
scheme. How to do this elegantly is not known to us. On the other hand, we cannot
expect complete “freedom” in a double-negation translation as we have to make sure,
roughly speaking, that different double-negation translation still fit together in the trans-
lated proof. This means we have to make sure that double-negation translations respect
the identity-class constraint from the colour-annotations. For example we cannot have
an axiom in a translated proof where the double-negation translations disagree as inB� BÆ
This point about fitting double-negation translations together and the identity-class con-
straint of colours we take as a further evidence that coloursand double negation trans-
lation must have something to do with each other.

From the observations made above we conjecture that every colour-annotation de-
termining a single normalform of a classical proof can be equally determined by a
double negation translation, and every double-negation translation determining a nor-
malform can be equally determined by a colour-annotation. In effect we conjecture that
double-negation translations can be simulated by colours and vice versa.

While establishing the simulation properties is a first stepfor understanding the re-
lation between double-negation translations and colour-annotations, we consider this as
not yet giving the complete “picture”. For this consider thecollection of normalforms
of a classical proof determined by double-negation translations and by colour anno-
tations. We conjecture that both are the “same” collection,whereby one needs a (yet
unknown) very clever notion of “sameness”. Clearly, there are more double-negation
translations of a classical proof than there are colour-annotations (there are only finitely
many colour-annotations, but there are infinitely many double negation translations as
already the translations of atomic formulae as::A, ::::A; : : : indicate). For us it
is, however, clear that one can group double-negation translations into different classes,
where each class corresponds to a colour-annotation.

Let us consider what is necessary to turn these conjectures into theorems. First
we have to make precise what we mean byall double-negation translation. As seen
above, the notion of double-negation translation has to be ageneralised version of the
traditional notion—like the ones given by Gentzen, Gödel and Kolmogorov—because
one needs to take into account the different colour-annotations by varying the double-
negations translation when inductively descending a formula. Further, one would ide-
ally like to have a rather general notion of double-negationtranslation so that one can
meaningful state properties for allpossibledouble-negation translation. However, we
have been unable to formulate such a general notion. Then we have to categorise how
the double-negation translations behave under cut-elimination. Finally, one has to es-
tablish the “simulation-property”—which unfortunately fails if one takes a very naı̈ve
view on sequent-proofs and cut-elimination. One problem isthat double-negation trans-
lations might introduce auxiliary cuts. Such auxiliary cuts only occur in the double-
negated proofs and are thus not taken account of by colour-annotations. Therefore we



have to make sure that such auxiliary cuts cannot “mess up” the normalform reached
by eliminating cuts in the double-negated proof. This can berelatively easily shown
provided the auxiliary cut occurs as the lowermost inference in a proof—then a tech-
nique introduced in [19] shows that one can restrict attention to only outermost cuts
when calculating the collection of normalforms. However inthe general case we have
for this not “messing up” only empirical evidence obtained from many calculations (the
tools with which we do such calculations are given in [17]). These calculations indeed
validate the assumption that the::R-rule::BB ::R
can be regarded as introducing the formulaB. To give a proof of this fact, however,
we guess one needs a “full-blown” context-lemma using Howe’s method. The biggest
problem we see in establishing a one-to-one correspondencebetween the collections of
normalforms determined by double-negations translationsand by colour-annotations is
to find a meaningful equivalence relation on double-negation translations.

Further, the colour-annotations are given for sequent-proofs, for which it is well-
known that they make “inessential” differences that would not materialise if we had
a natural-deduction formulation or proof-net formulation. However, such formulations
have not yet been developed far enough to be useful in gettingrid of the inessential
differences between classical sequent-proofs. This problem also shows up with intu-
itionistic sequent-proofs where cut-elimination, despite our working hypothesis stating
the contrary, isnot Church-Rosser. However, for fragments of intuitionistic logic there
are already good tools—for example natural deduction and contraction-free sequent-
calculi—which provide a canonical notion of what an intuitionistic proof is. Because
of all these difficulties, we have, at the moment, to content ourselves with example
calculations that, however, all seem to validate the conjecture.

5 Conclusion

Although there is plenty of literature on classical logic and double-negation translations,
there is surprising little literature that studies the relation between double-negation
translations and the process of normalising a classical proof. We find notable excep-
tions are [1, 5, 6, 11, 13], which however do not give much insight about this relation or
consider only special cases. For example, they relate one kind of colour-annotation to
one double-negation translation, or consider only specificdouble-negation translations.

If our conjecture turns out to be true, then one has a very simple characterisation of
all double-negation translations in terms of colours. Thisis desirable, because we find
it is rather mysterious how double-negation translation can turn a classical proof into an
intuitionistic proof, whose computational interpretation as explained in the introduction
is by the Curry-Howard correspondence well-understood, while it is not understood
at all for the classical proof we started with (see [2, 19] fortwo interesting examples
extracting computational meaning from a classical proof that because of the the non-
determinism cannot be extracted by double negation translations).



The main point we take away from the conjecture is that double-negation transla-
tions are not enough to characterise the full computationalcontent of classical proofs,
where byfull computational content we mean the collection of normalforms reach-
able by the cut-elimination procedure of Urban and Bierman.This is because there
are some normalforms that can be reached by this cut-elimination procedure which
cannot be reached by any colour-annotation, and by the conjecture also not by any
double-negation translation. These “unreachable” normalforms embody a form of non-
determinism present in classical logic, but not present in intuitionistic logic. Therefore
the conclusion we draw from this is that intuitionistic logic and double-negation trans-
lations can only give some hints for understanding thefull computational meaning of a
classical proof.

Completely untouched by our treatment here is the correspondence between double-
negation translations and linear logic. The colour annotation also connects to linear
logic, where cut-elimination formulated with proof-nets is also Church-Rosser, to the
cut-elimination procedure with colours (see [6, 12]).
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