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Abstract. It is well-known that in terms of consistency classical tognd intu-
itionistic logic have equal strength: every intuitionésgiroof is a classical proof
and every classical proof can be embedded into intuitimnisgic via double
negation translations. It is also well-known that intuiiigtic proofs contain wit-
nesses for existential statements, which is not always #ise avith classical
proofs. However, here we study classical and intuitiooitgic as reduction
systems. From this perspective, we conjecture that cldsigic is more pow-
erful than intuitionistic logic. The conjecture links ddeknegation translations
to the colour-protocol introduced by Danos et al. for cuts@lation in classical
logic. If the conjecture turns out to be true, then we can kalethatnot all
cut-reductions can be simulated by double-negation ta#insis.

1 Introduction

Since the works on double-negation translations by Gentzédel and Kolmogorov,
one knows that classical logic and intuitionistic logic Baqual strength in terms of
consistency: intuitionistic sequent-proofs can be seenlassical proofs where the
right-hand side of the sequents is restricted to maximalfomaula and every clas-
sical sequent-proof can be embedded into intuitionisticd@ia double-negation trans-
lations. As a result, consistency of one logic implies cstesicy of the other. In this
paper, however, we focus on the correspondence of intistiorand classical logic
with respect to term-rewriting, proof-normalisation and-elimination.

According to the Curry-Howard correspondence, the sintypbed lambda-calculus
can be viewed as a term-assignment for intuitionistic ppdofmalised in Gentzen’s
natural deduction calculus NJ. Term-rewriting in the siyapiped lambda-calculus is
a form of computation that converts a term to its simplestfaanalogous to symbolic
evaluation. On the other hand, normalisation is a methoclianinating certain re-
dundancies in proofs. Applied iteratively, it transformpraof to one in normalform.
Using the Curry-Howard correspondence we see that the ttionsocoincide and con-
sequently we can talk of a computational interpretatiomtfitionistic proofs.

Two properties hold for term-rewriting in the simply-typleainbda-calculus and by
the Curry-Howard correspondence also for normalisatidddnthey are strongly nor-
malising and Church-Rosser. With some limitations [8, B52B], the Curry-Howard
correspondence applies also to the sequent-calculus Ltbdhe process of cut-elimi-
nation. For sake of simplicity, we shall ignore these limiitas here and regard cut-
elimination in intuitionistic logic as strongly normaligj and as having (morally at



least) the Church-Rosser property. This ignorance can tiibajustified if one sees
behind every LJ-proof an NJ-proof where the inessentiéihces present in sequent
proofs “disappear”, and sees cut-elimination as an appration of proof-normali-
sation.

Although it has been shown that some cut-elimination proesltor classical logic
are strongly normalising as well, cut-elimination in claa$logic is, given a sensible
notion of cut-reductionsiot Church-Rosser—not even morally. The lack of Church-
Rosser in classical logic is a main theme running throughvbr&s [2, 3, 19, 22], which
analyse what this means from a computational point of viewexample in [19] it has
been shown that a lambda-calculus with a non-determinitigce-operator can be
embedded into a fragment of classical logic. A simple ctadgroof taken from [6, 9]
shall illustrate the lack of Church-Rosser:
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The cut in this proof can be eliminated by reducing it to ongh#f following two
normalforms
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which are obtained, respectively, by either permuting thiéathe left over theontrg-
rule or to the right over theontr,-rule. Another example showing that in classical logic
one can, in general, reach more than one normalform is L'afpraof [10, Page 151].

In light of the absence of the Church-Rosser property foratimination in clas-
sical logic and in light of the work on double-negation tiatisns, there seem to be
obvious questions: What is the correspondence betweealiouitiation in classical
logic and the embeddings of classical proofs into intuistinlogic via double-negation
translations? Since cut-elimination in intuitionistiglo is Church-Rossérwhich re-
striction is tacitly enforced by a double-negation tratistaso that eliminating cuts in
the double-negated version of a classical proof leads tp @single normalform? Or

! As mentioned earlier we ignore what we believe to be supatficiriations between differ-
ent normalforms reachable from an intuitionistic sequaabf. However see [18] for a more
thorough analysis of this aspect.



more concisely asked, do double-negation translationgspond to particular strate-
gies of how to eliminate cuts? Does every double-negatamstation lead to the same
normalform (bysamewe mean corresponding to one particular normalform obthine
by cut-elimination in classical logic)? If not, then can dired for every normalform
of a classical proof a corresponding double-negation ta#ing that will produce the
double-negated version of this normalform—that is, camyeveduction sequence in
classical logic be simulated by a (probably carefully cm)s®uble negation translation
and performing cut-elimination in intuitionistic logic?ré there any double-negation
translations that lead to normalforms that have no equiv@mongst the normalforms
reachable by cut-elimination in classical logic? Can orgratterise somehow, which
normalforms can be reached by double-negation transkaéind which can not? In this
paper we conjecture answers for all these questions.

Although some special cases seem to be answered by exisbirky for example
[5, 6,14], we are unaware of any work that treat these questiofull generality. The
answers we shall give to these questions are a lot inspiraidbogomments made in
[6, Sec. 7]. However, there only one half of the correspondés considered, namely
how their version of classical logic and cut-eliminatiomdae embedded via some
specific double-negation translations into intuitiorstigic. We conjecture also a cor-
respondence in the other direction, namely that every denbgation translation and
corresponding reduction sequences can be simulated bgthelimination procedure.
Since we shall use as “point of reference” a more generatlionination procedure for
cut-elimination in classical logic than the one describefb], we are also able to draw
the conclusion that given our conjecture is true, then deulglgation translations are
not enough to describe tliell computational meaning of a classical proof.

As can be seen to answer the correspondence questions, \Wwefiesto make pre-
cise what we mean by cut-elimination in classical logic. Ma#-elimination proce-
dures, including Gentzen’s original one, only terminate garticular strategy for cut-
elimination is employed. Common examples being an innerneatiction strategy, or
the elimination of the cut with the highest rank. Using thogeelimination procedures
we cannot characterise what the setatifnormalforms of a classical proof is—they
would produce only one or a limited number of normalforms. 8iall therefore base
our arguments on the cut-elimination procedure developddrban and Bierman [20,
21], which is like Gentzen’s procedure except it imposessight restriction on how
commuting cuts need to be analysed. Since this cut-eliloimgrocedure is strongly
normalising, we can calculate all cut-free normalforms afiassical proof. Because
this procedure is not Church-Rosser, the collection of radfionms for a classical proof
contains in general more than one element—as can be seerafopk with the proofs
(2) and (3). As this cut-elimination procedure puts onlywslight restrictions on the
process of cut-elimination we believe a good case can be tiati¢he collection of
normalforms calculated by this procedure includes alléegial” normalforms> How-
ever this is a point we shall not be concerned with in this pape

2 Making such a case is hopeless for other strongly-normalisut-elimination procedures,
like the one by Dragalin [7], because although they are gtyenormalising, they enforce
quite strong restrictions on how cuts can be eliminated.example Dragalin does not allow
(multi)cuts to permute over other (multi)cuts, see [19].



The cut-elimination procedure of Urban and Bierman will lesctibed in more
detail in Sec. 3, together with a variant—the colour proteedeveloped by Danos et
al. [6, 12]. Beforehand, however, we present some preliréaabout double-negation
translations in Sec. 2. We will state the conjecture in Segive some evidence on
why this conjecture is plausible and present some ideas antd@rove it. In Sec. 5
we shall draw some conclusions with respect to the commn@ltiinterpretation of
classical proofs.

2 Preliminaries on Double-Negation Translations

We assume the reader has acquaintance with sequent-cdiotrhwlations of classical
and intuitionistic logic. Because there exist sequentisat@provable in classical logic,
but unprovable in intuitionistic logic, the interestingipbof double-negation transla-
tions is that one can embed classical logic into intuitiboiegic so that provability is
preserved. For example the following translation definest éermulae

A* €' A with A being atomic
(-B)* = ~(B")

(BAC)* = B*AC* (4)
(Bo>C)* €' Br50*

(BVC)* £ =(=(B*)A~(CY))

def
def

can be used to show that every classical proof with the eqdesd
I'eA

can be translated to an intuitionistic proof with the endesant

I —A*F . (5)
We use the convention that If is the sequent-conteXtBy, .. ., B,} thenI™ stands
for the sequent-conteXtB;, . .., B }. Similarly for =A*. We shall also use the con-

vention thatd stands for an atomic formula ail . . . for arbitrary formulae. A similar
embedding can be obtained with the translation:

def

Ao %4
def °

(hB; = (jB)%O") (6)

(BoC)° &'~ (B°> (o)

(BVC)® &'~ (BovCe)

The usual proof (see for example [4]) for establishing thedre classical proof
can be translated to an intuitionistic proof proceeds itidely by translating stepwise
every inference rule in a proof. For instance an axiom of tf

Ar A



is translated by—)* to the proof

—_— _‘L
—|—\A.‘ =AW+

which conforms with the desired property stated in (5). Winanslating a proof ending
with anv,-rule

B, A, C, Ty« A,
BV07F]7FZ|_A]7A2
then by induction hypothesis we have two intuitionisticgfoending with

L

(7)

B* I}, ~Atv+ and C* Iy -Aj« .

We can then form the intuitionistic proof

B*:Fl*a'_'AIF C*vFQ*a'_'ASF
I -Aje-B" " T3 -A5F =07
F]*,F;,—!AT,—\A;F_'B*/\_'C* f

~(~B*A=C*), I}, I3, A}, ~ A5 © (8)

R

as the translation of (7). For the sake of more clarity we witiit in what follows
the sequent-contexts whenever they are unimportant. Teushadl give for the proof-
fragment shown in (8) only the following simplified inferenules:

B*'I— C*'I—

=-B* R =-C*
H-=B*A=C*

—\(—|B*/\—\C*) | ol

R
AR

—

When translating a classical proof ending with/gg-rule

B vC AR
+BAC 9

we have by induction hypothesis two intuitionistic proofislang in

-B*+ and -C*+ .

In order to form an intuitionistic proof ending with the semqi—(B*AC*) -, we need
to exploit the property of—)* that one can always prove intuitionistically the sequent
——(=)*F (=)*. For example in the atomic case one hasferd* + A* the intuition-
istic proof:
[y pp—
SAF A
JE— g _
JES—— | —

L

R
L
R



Using proofs for-—B* + B* and—-—-C* + C*, we can construct the following trans-
lated proof for (9):

-B*r —C*

=—-—-B* B —\—|B*|—B* =—-=C* B —\—|C*|—C*
B cut e A cut
FB*ACT _ R
=(B*ANC*)+

We shall refer to the cuts introduced by the double-negdtimmslation asauxiliary
cuts For a number of reasons (one of them being to minimise thauatred writing)
we shall use a new inference rule, namely

--B 4
B

R
to stand for auxiliary cuts, which have always the form:

I'-B

cut .

Clearly, this new rule does not affect the provability of gents. Issues whether the
——pg-rule (or an auxiliary cut) affects the behaviour under elitaination are delayed
until Sec. 4. With this new inference rule we can give thegfaton of (9) more com-
pactly as:
-B* - —C*
B " T _*
5" Fer 7
AR
= B*AC*
—(B*ANC*)

-

The translations for the rulesntry, contrg, weakr, weakr, -, 7R, VR, A\L;, DL
andDpg are left as exercises to the reader.
We can now give the double-negation translations of the wipsofs

ArA ArA A-A AvA
AVAFA A Lt A, A ANA ’“"t
AV ArF4 OMTR A ANA COMTE

shown in (1). The translations are:

—AF-—-A ——AF--A
e D e D
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R R
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L L
—\(—|—\—|A/\—|—\—|A)7—\—|—\A’ ————Ar —\—|A7—\—|A7—\(—|—\A/\—\—|A)|—
contrr, contrry,




To give a double-negation translation for the whole proa need to be able to translate
instances of the cut-rule. While the logical inference swdad the structural rules have
relatively canonical double-negation translations, éhisra choice for how to translate
cut-rules. Consider the following cut-instance:
T )
B BFr
— =  cut (10)

By induction hypothesis we have two intuitionistic proefsandr} with end-sequents:
Ty 5
ﬁB:* - and B*:l— .
To form an intuitionistic proof with the end-sequént(remember we omit the sequent-
contexts), we can translate (10) either as:

™
. .
- :
7 3 —BrE T
:] B*+ R - —-—B* - :2
-B* F-B* or - B* B*+
——— cut = cut

We refer to these choices kest- andright-translationof a cut, respectively.

Coming back to the proof given in (1), let us call the left- aigiht-translation of this
proofn; andr},, respectively. Eliminating all cuts (including auxiliacyts) fromz;,
andry;, we obtain the two cut-free proofg* andr=’; shown in Fig. 1. It turns out (we
however leave out the calculations) that had we doubletimy@manslated the two nor-
malforms of (1) and then eliminated all auxiliary cuts frone tdouble-negated proofs,
we would have also obtained the proef$ andz;: The normalform (2) obtained from
(1) by commuting the cut to the left leads#{f —the normalform of the left-translation
of (1), while (3) obtained by commuting the cut to the rigtdads tori—the normal-
form of the right-translation of (1). We take this as a firstthihat double-negation
translations seem to be able to simulate the behaviour eélouination in classical
logic.

To sum up this section, let us remark that a similar “storyi ba told for the transla-
tion (—)° given in (6). In fact, it can be told for any sensible notiordofuble-negation
translation. For example it would be completely immatet@abur “story” if we had
translated atomic formulad as——A4, -————A or -———-—-—-A. The most important
property we distill from the arguments above is that we régadouble-negation trans-
lation, say(—)*, as a translation of a classical proof having an end-sequent

v A
to an intuitionistic proof with the end-sequent

Fx,—!'AIF
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Fig. 1. One can obtain the first proof by double-negation trangtaté (1) using the left-
translation for the cut, and then eliminating all cuts imthg the auxiliary cuts. Equally, one
can first reduce (1) to (2), double-negate translate (2) laed ¢liminate all cuts. Similarly with
the second proof: it can be obtained by right-translatirgctit in (1) and then eliminate all cuts;
or by double-negate translate (3) and then eliminate adl. cut

preserving the “structure” of the classical proof. In ortlerachieve this one needs
the property that—(—)* + (—)* is intuitionistically derivable. However, this leaves us
with many possible double negation translations—cledréydnes given by Gentzen,
Godel and Kolmogorov are not the only ones that satisfyeltesistraints.

3 Cut-Elimination and Its Coloured Variant

Urban and Bierman have shown in [19, 21] that only a smaltic&tn on the standard
cut-elimination procedure for classical and intuitioidbgic is sufficient to obtain
strongly normalising proof-transformations. Thogjical cuts also sometimes called
key-cuts are transformed by this cut-elimination procedure in a gletely standard
fashion [10]. For example the logical cut

T Uy 3
B (O Br
B _"U Ap B Ap
FBAC P BaCE T

= cut (11)



is transformed to
™ T3
B BFr

= cut

and so on for the other connectives. As before we convegigmtbre all matters to do
with how the sequent-contexts should be adjusted. A logigatan be characterised as
a cut where in both subproofs the cut-formulasfaeshly introducedy logical rules
directly above the cut. For example in the proof

™
— 7
B

we say the formulaB is freshly introduced if it is what usually is called the main
formula of the logical inference rule Consequently, a logical cut is a cut where the
cut-formula s freshly introduced in the two immediate stdas of the cut. In all other
cases we have@mmuting cutThe cut in (1), for example, is a commuting cut because
the cut-formulaA is in both subproofs introduced by a contraction-rule, Whg not
considered to be a logical inference rule.

Gentzen introduced proof-transformations that permutersating cuts upwards in
a stepwise fashion only by rewriting neighboring inferenges. In contrast, the cut-
elimination procedure of Urban and Bierman contains ptoafisformations that push
commuting cuts upwards in a single “big” step towards altpkwhere the cut-formula
was introduced. Consider the following picture

mo

AL
BAC +

~ weaky,
BAC +

= BAC

BAC +

s
~ cut
where the cut-formula on the right-hand sided freshly introduced, rather it is intro-
duced somewhere deeper inside the subproof and becausatrdations possibly in
several places. We have indicated three cases for a cutsfatmeing introduced: by a
logical inference rule, by an axiom and by a weakening-rutegeneral we can have
any mixture of these cases. To eliminate such commutingthatprocedure of Urban
and Bierman pushes up, roughly speaking, the cut-rule inéhchesll places where
the cut-formula is introduced ionestep. In case it reaches a logical inference-rule,
then the proof on the left-hand side will be cut against tbigdal inference-rule; in
case of an axiom, the proof on the left-hand side replacestltan and in case of a
weakening-rule, the proof on the left-hand side is delgi&gdain all matters to do with



adjusting the sequent-contexts are omitted in this pager.wWork reported in [19, 21]
formulates these proof-transformation as term-rewritings where such adjustments
are built into the inference rules, very similar to term-rigwg in the simply-typed
lambda-calculus.)

The important property of the cut-elimination proceduréJoban and Bierman is
the fact that it is strongly-normalising. This property i wbvious: the reduction-rule
for commuting cuts allows a cut-rule to “jump” over other-cutes—a highly problem-
atic reduction if one tries to construct a decreasing meafaurcut-elimination. Also
this rule might generate several copies of a subproof wher-foemula is introduced
in several places. Urban and Bierman, therefore, had totresa quite complicated
logical relations argument to show strong normalisation.

Recall that the cut-elimination procedure of Urban and B&m isnot Church-
Rosser: when on both sides of a commuting cut the cut-fornsufet freshly intro-
duced, then this cut can be moved either to the left or to tite rleading in general to
two “non-joinable” proofs. For example, the proof shown 1) ¢an be reduced in one
step to the normalform (2) or in one step to (3). Which chosctaken is left unspeci-
fied by the procedure. Nevertheless with this cut-elimoraprocedure we have some
effective means to calculate for a classical proof its otibe of all normalforms—for
example by naively trying out all possible reductidns.

The cut-elimination procedure of Urban and Bierman was irt p&pired by the
work of Danos et al. [6]. The main difference is that their-elinination procedure
is Church-Rosser. They achieve this by pre-determining esfeojce that can be made
during cut-elimination. This pre-determination is don@aolours which are annotated
to every formula and subformula in a proof. To see how coleokk, consider again
the proof shown in (1). The choice about which direction ketafor the commuting cut
is determined by annotating the colou+* or * —’ to the cut-formulaA. The colour-
protocol of Danos et al. pre-scribes that in the former dasdirst attempted to permute
the cut to the left and in the second case to the right (herecesd of an arrow to denote
a colour!). For example, if we want to reach from (1) the ndforan (2) we need to
orient the colour of the cut-formula to the left, as shown below

44 474y, 4nd 484,
AVAFE A A A/AFE AN
—— contrp — contry,
AVAFE A A AN A
cut

AVArAANA
If the normalform (3) is to be reached, then accordingly wedh® orient the colour
of the cut-formula to the right. Note however that choosiotpars has nothing to do

with imposing a strategy for cut-elimination: it is not cukst are selected by them,
but rather the way how cuts are reduced. Important for owrudsion is the fact that

3 Aless naive method, which only tries out all possible réididor outermost cuts, is described
in [19].



one is, however, not completely free about how to annotdt®ic®to a sequent proof.

In fact once the colour~’ is chosen for the cut-formuld in (1), all occurrences of

A must have this colour. The only “free” choices in this prod# ¢he colours for the
formulaeAv A and AN A—for them we can make any choice, but it has to be consistent
throughout the proof. Danos et al. state this consistengyirement using the notion

of anidentity classin a proof (the following definition is slightly adapted frofh6,
Page 107]):

Definition 1. Occurrences of (sub)formulae in a proof agentifiedwhenever they are
the corresponding occurrences of the same (sub)formula in

e the two formulae in an axiom,

¢ the cut-formulae in a cut and

e the up and down occurrences of a formula in an inference rillis ncludes the
contracted occurrences in contractions rules).

An identity classin a proof is the reflexive, symmetric and transitive closoféhe
identification relation. O

The consistency requirement can then be stated as follolsn@ver colours are an-
notated to a proof, then every formula in an identity classtmeceive the same colour.

The interesting point of colour-annotations is the fact thay determine uniquely
a normalform. In light of this, it seems reasonable to regerdhe collection of nor-
malforms reachable from a classical proof all those for Wiaicolour annotation exists
that makes them reachable. Then the question arises: Camavéofi every normal-
form reachable by the (un-coloured) cut-elimination pchae of Urban and Bierman a
colour-annotation that makes them reachable by the cuiedition procedure of Danos
et al.? The answer is no and for deep reasons! Consider tberiiodj classical proof

ANAFEANA  ANAE ANA

(1) ANA, ANAF (ANAA(ANA) T ,
AVAV-ANA — ANAV (ANA)A(ANA) :""‘ L
AVA - (ANA)A(ANA) cur (12)

where we cut the proof from (1) against a proof whose cut-fdagiA A, is contracted
in the right-subproof. We can reduce the lower cut so that btaio two copies of the

proof (1):
(1) (1)

AVAV-AANA  AVAF- AANA
AVA, AVAF (ANA)A(ANA)
contry,

AVAF (ANA)N(ANA) (13)
Without colours, we can then reduce each copy completepaddently as follows:
(2) (3)

AVAF ANA  AVAF ANA
AVA, AVAF (ANA)A(AAA)
contry,

AVAF (ANA)N(ANA) (14)

R




Such a behaviour cannot be achieved by using colours: tlelmust be annotated
before cut-elimination commences and is invariant undereductions. Consequently,
whenever a cut is duplicated in a reduction sequence (a®irettuction (12)(13)),
the colour-annotation prevents both instances from redudifferently. (The deeper
reason mentioned earlier is that one just cannot pre-deterthe choices in a com-
pletely non-deterministic reduction system.)

Comparing the cut-elimination procedure of Urban and Bamrwith the one of
Danos et al., two points stand out: Both cut-eliminatiorgedures are strongly normal-
ising* and also determine a collection of normalforms reachalble fa sequent-proof
in classical logic. As shown by example, these collectiargain in general more than
one element. Also as shown by example, the collection déteahby the procedure of
Danos et al. is generally a proper subset of the collectiverdened by the procedure
of Urban and Bierman. The colour-annotations in the proceedfiDanos et al. cannot
fully account for the non-determinism present in clasdiogic.

Both cut-elimination procedures can also be used for redpiaituitionistic proofs.
Because of the restrictions imposed upon intuitionistgusaits, non-deterministic re-
duction sequences such as (&2 3)—(14) cannot be constructed. But still the proce-
dure of Urban and Bierman i®t Church-Rosser in the intuitionistic case, and also dif-
ferent colour-annotations of an intuitionistic proof midgrad to different normalforms.
However, as mentioned earlier, we regard the differencésdmsn the normalforms
reachable from an intuitionistic sequent-proof as inetigksnd regard cut-elimination
as morally Church-Rosser. That in turn means that in thétiotustic case there is no
difference between coloured and un-coloured cut-elinonat-at least morally.

4 Conjecture

We have already seen that by translating the cut in (1) usiefj-aand right-translation,
we can simulate the reductions {2]2) and (1)}~(3) by double-negations. However in
general, a left- or right-translation of a cut is not suffitieo simulate all cut-reduction
sequences in classical logic. Consider the following msteof a logical cut:

T ) T3
|—'B B'l— C.I—
V V
-BvC ' T BvOr "
= cut (15)

We can reduce this cut to
T )
B Br

= cut

“ Danos et al. showed strong normalisation of their cut-glation procedure by translating
reduction sequences in classical logic to reduction sempgeof proof-nets in linear logic.



and assuming that the cut-formutais not freshly introduced inr;, we can further
permuter, insidemn . This behaviour correspond to the colour-annotation

™ U

. 7‘-3
iB VR, B:_ cr Vr,
- BVvC BVCH
= cut (16)

where we leave the colour annotation §dand BvC unspecified, since it is notimpor-
tant for the argument at hand. The behaviour of (16) can balated by the double-
negation translatiof—)*. The double-negated version of (15) is as follows:

™ 3
71-:] B*.|_ _ C*l_ _
-B*H+ +-B* R |——|C* /\R
“BA-CTE B A-C
L R
_|_‘(_|B*/\_‘C*)|_ |_—\—|(—\B*/\—|C*)
cut

which reduces in three steps to the proof

*

T
« .
T :
'1 B*
.* " R
~B*-  voBT

(-

Because the g-rule introduces freshly the cut-formutaB*, the cut is “blocked” from
reducing to the right. It must first reduce to the left justtes¢olour annotation in (16)
prescribed. If we wanted to simulated the opposite colauiian B, namely

m 2

: 3
FAB Vi, BJ_ Cw+ vy
- BVvC BVCH

= cut (17)



it turns out we have to double-negate translate (15) usiagrémslation(—)° given
in (6). The resulting intuitionistic proof is:

i
—|B.O = ° °
=—-=B° R 71-,2 ’n-?
_— _|_‘R . .

- B° B°+ (C°F
—V —— V
- B°v(C®° Ij“r BevCe - _;

~(B°VCo)F " F=(B°VCP)

F-—(B°VC?) T So(BVCT)E

Y750 T w— V7 T

= cut
which after four steps reduces to the proof
m
—\B.o | o 4 °
—-—B° _‘f ﬂ'z
v " por
= cut (18)

What happens next, however, is not clear at first sight. If ypaad the-—g-rule to an
auxiliary cut, then the cut can reduce into both directidihse regard the-—g-rule as

an inference rule in its own right, then the cut-formita is freshly introduced in the
subproof on the left-hand side and therefore the cut can molye to the right—just
as prescribed by the colour-annotation in (17). Althoughde@ot have a proof of this
fact, experiments with [17] have convinced us that whenetintination is concerned,
we can indeed regard the-g-rule as a proper inference rule with the consequence that
in the proof above3® is freshly introduced. (Roughly speaking, if we had expalttie
——g-rule to an auxiliary cut in the proof (18), then moving the tuthe left means

it cannot move very far, namely only to the place wh&feis introduced in the proof

of the sequent—B° = B° and then the cut has to move right. In effect we obtain a
behaviour which is almost identical to moving the cut to tigltin the first place.)

Since the colour-protocol of Danos et al. allows us to aneota many circum-
stances either colour’ or ‘—’ to the formulae in a classical proof, we need how-
ever to depart from the traditional double-negation teghaithat translates a classical
proof uniformly using a single double-negation translatido simulate the coloured
cut-elimination procedure in a meaningful way, we needltmamore than one double-
negation translation. Let us explain this fact with a cleaigproofr ending in a cut with
the cut-formula

PR

We will show that the behaviour of this (coloured) cut can imeudated by a double-

negation translation with the claus®&vC)® el —=(B*V—--C*). To show this we
analyse all cases how the cutsncould have arisen. Consider first the case where



ends with the following logical cut

- BVC BVCv
= cu (19)
which can reduce to
st Up)
B B+
— = cut (20)

The (—)*-translated version aof

w7 T3
-B*'F  _ . C'r
-8 _‘i 7T'2 =-C* _‘R
- B* VB B+ —\—|C. | \/L
FBov--C* Bv-—C'+_ "

| ol —\(B.V—\ﬁc.)
—\—|(B.\/—\—|O.) | ol
| —\—|—\(B.\/—|—\C.)

—|(B.\/—|—\C.) | ol
|——|—\(B.\/—|—\C.)
—|—\—|(B.\/—\—|O.) | ol

L

R

—

cut

(-

reduces to
L]
T

-B*+ °
-~ ™5
=-—B*

FiB. —TR

.' '_
B cut

(-

where (remember we regard the z-rule as proper inference rule) the prodfhas to
move insider$ just like the behaviour of (20). It ends with the logical cut

T V) T3
O v, B CE oy,
- BVC BVC+
= cut (21)
which can reduce to
T 3
O O+
(22)



then, the(—)*-translated version of

3
TrZ] g C..|_ =
—|C. | o 4 71-:2 [ o _‘C. _‘R
—|—\C. R B. —\—|C. | o L
———~—— Vg, =~ VI
_FBvooCt TN _BVooCtvk
—(B*V—-=C*)+ = —=(B*V--C*)
F—=(B*V--C"*) n —=(B*V-—C*)+ :
—=(BV-=C*)F " Fom(BV——C") "
= cut
reduces to .
T3
’n-:l —C.'|_ _|B
-C*'~ =C° ‘
- = cut

where proofr$ has to move inside; just like in the proof (22). The only case we still
need to consider is whenends in a commuting cut of the form

m T2

BVC BVCFr
— cut (23)

The behaviour of this cut is determined by the outermostwole-'. This behaviour
can be simulated by thie-)*-translation, provided we use a left-translation for the cu
in (23). The translated proof is then as follows:

T
st —(B*VA-C®) -
—|—\—|(B.\/—\_|C.)|_ |__|_‘_|(B.V_‘_|C.) B
cut

(-

Now 7$ will freshly introduce the cut-formula——(B*Vv-=C*) only if m; freshly
introduces the formul&vC (recall that double-negation translations need to preserv
the structure of a classical proof). Consequently, thesteded proof simulates exactly
the behaviour of (23).

What this example shows is that tlie )*-translation ofr can simulate the be-
haviour where the cut-formula is annotated with the colours

i

Note that there are other double negation translation wbéhbe used for a similar
simulation of this particular colour-annotation. From aliscussion it seems reason-
able to expect that one can find corresponding double-regainslations for every



possible colour-annotation. Since the formulandC can be compound with further
colour-annotations inside, we need some flexibility of howdbuble-negate translate

formulae. One has to be able to build into the cla(Bs/C)*® def —=(B*V--C")
that the translations aB andC' might follow a completely different double-negation
scheme. How to do this elegantly is not known to us. On therdthed, we cannot
expect complete “freedom” in a double-negation transtatie we have to make sure,
roughly speaking, that different double-negation traisfestill fit together in the trans-
lated proof. This means we have to make sure that doubletinageaanslations respect
the identity-class constraint from the colour-annotagidfor example we cannot have
an axiom in a translated proof where the double-negatiostations disagree as in

B*+B°

This point about fitting double-negation translations tbgeand the identity-class con-
straint of colours we take as a further evidence that colandsdouble negation trans-
lation must have something to do with each other.

From the observations made above we conjecture that evlgyreannotation de-
termining a single normalform of a classical proof can beadigudetermined by a
double negation translation, and every double-negatamstation determining a nor-
malform can be equally determined by a colour-annotatioeffiect we conjecture that
double-negation translations can be simulated by colmavie versa.

While establishing the simulation properties is a first $tepunderstanding the re-
lation between double-negation translations and colouetations, we consider this as
not yet giving the complete “picture”. For this consider ttwlection of normalforms
of a classical proof determined by double-negation traiaslia and by colour anno-
tations. We conjecture that both are the “same” collectigmereby one needs a (yet
unknown) very clever notion of “sameness”. Clearly, ther more double-negation
translations of a classical proof than there are coloustations (there are only finitely
many colour-annotations, but there are infinitely many dewegation translations as
already the translations of atomic formulae-asA, -————A4, ... indicate). For us it
is, however, clear that one can group double-negationltmss into different classes,
where each class corresponds to a colour-annotation.

Let us consider what is necessary to turn these conjectnteghieorems. First
we have to make precise what we meandlydouble-negation translation. As seen
above, the notion of double-negation translation has to gpengralised version of the
traditional notion—like the ones given by Gentzen, Godal Kolmogorov—because
one needs to take into account the different colour-aniooisiby varying the double-
negations translation when inductively descending a féaurfeurther, one would ide-
ally like to have a rather general notion of double-negatiianslation so that one can
meaningful state properties for gdbssibledouble-negation translation. However, we
have been unable to formulate such a general notion. Therawetb categorise how
the double-negation translations behave under cut-editioin. Finally, one has to es-
tablish the “simulation-property”’—which unfortunatelgilf if one takes a very naive
view on sequent-proofs and cut-elimination. One problethasdouble-negation trans-
lations might introduce auxiliary cuts. Such auxiliary £anly occur in the double-
negated proofs and are thus not taken account of by colowtations. Therefore we



have to make sure that such auxiliary cuts cannot “mess wghtimmalform reached
by eliminating cuts in the double-negated proof. This canddatively easily shown
provided the auxiliary cut occurs as the lowermost infeeeimca proof—then a tech-
nigue introduced in [19] shows that one can restrict attentd only outermost cuts
when calculating the collection of normalforms. Howevetlia general case we have
for this not “messing up” only empirical evidence obtainezhi many calculations (the
tools with which we do such calculations are given in [L7))e$e calculations indeed
validate the assumption that the-g-rule

=--B 4
-B

R

can be regarded as introducing the formBlaTo give a proof of this fact, however,
we guess one needs a “full-blown” context-lemma using Heweethod. The biggest
problem we see in establishing a one-to-one correspondeteeen the collections of
normalforms determined by double-negations translatmkby colour-annotations is
to find a meaningful equivalence relation on double-negdtianslations.

Further, the colour-annotations are given for sequentfgrdor which it is well-
known that they make “inessential” differences that woutd materialise if we had
a natural-deduction formulation or proof-net formulatibtowever, such formulations
have not yet been developed far enough to be useful in geitingf the inessential
differences between classical sequent-proofs. This protalso shows up with intu-
itionistic sequent-proofs where cut-elimination, despitir working hypothesis stating
the contrary, is1iot Church-Rosser. However, for fragments of intuitionistigit there
are already good tools—for example natural deduction amdraction-free sequent-
calculi—which provide a canonical notion of what an intoitistic proof is. Because
of all these difficulties, we have, at the moment, to contamselves with example
calculations that, however, all seem to validate the cdnjec

5 Conclusion

Although there is plenty of literature on classical logida@ouble-negation translations,
there is surprising little literature that studies the tiela between double-negation
translations and the process of normalising a classicalfpWe find notable excep-
tions are [1,5, 6, 11, 13], which however do not give muchghsabout this relation or
consider only special cases. For example, they relate arkd{icolour-annotation to
one double-negation translation, or consider only speddithle-negation translations.

If our conjecture turns out to be true, then one has a verylsigtparacterisation of
all double-negation translations in terms of colours. Thidesirable, because we find
it is rather mysterious how double-negation translationtoan a classical proof into an
intuitionistic proof, whose computational interpretatis explained in the introduction
is by the Curry-Howard correspondence well-understoodlewhis not understood
at all for the classical proof we started with (see [2, 19]ti@o interesting examples
extracting computational meaning from a classical proaf ttecause of the the non-
determinism cannot be extracted by double negation traoists.



The main point we take away from the conjecture is that deuklgation transla-
tions are not enough to characterise the full computatiooatent of classical proofs,
where byfull computational content we mean the collection of normal®reach-
able by the cut-elimination procedure of Urban and Biern¥nis is because there
are some normalforms that can be reached by this cut-eliminarocedure which
cannot be reached by any colour-annotation, and by the cioimgealso not by any
double-negation translation. These “unreachable” ndiormak embody a form of non-
determinism present in classical logic, but not presemtuitionistic logic. Therefore
the conclusion we draw from this is that intuitionistic logind double-negation trans-
lations can only give some hints for understandingftilecomputational meaning of a
classical proof.

Completely untouched by our treatment here is the corredgrore between double-
negation translations and linear logic. The colour anmma&lso connects to linear
logic, where cut-elimination formulated with proof-nessalso Church-Rosser, to the
cut-elimination procedure with colours (see [6, 12]).
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