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Abstract. We present a version of Herbelin’s λµ-calculus in the call-by-
name setting to study the precise correspondence between normalization
and cut-elimination in classical logic. Our translation of λµ-terms into a
set of terms in the calculus does not involve any administrative redexes,
in particular η-expansion on µ-abstraction. The isomorphism preserves
β, µ-reduction, which is simulated by a local-step cut-elimination proce-
dure in the typed case, where the reduction system strictly follows the
“cut=redex” paradigm. We show that the underlying untyped calculus
is confluent and enjoys the PSN (preservation of strong normalization)
property for the isomorphic image of λµ-calculus, which in turn yields a
confluent and strongly normalizing local-step cut-elimination procedure
for classical logic.

1 Introduction

The Curry-Howard correspondence between proofs and programs is traditionally
explained through natural deduction systems. In recent years, it has been recog-
nized that the correspondence is also suitable for sequent calculus style systems
in a significant way. A key system there was developed by Herbelin [9, 10], who
introduced a sequent calculus in which a unique cut-free proof is associated to
each normal term of the simply typed λ-calculus. He provided a term notation
for proofs of the sequent calculus and defined a reduction system for those terms
where reduction steps correspond to cut-elimination steps. The close connection
to the simply typed λ-calculus makes the reduction system, called λ-calculus, a
clue to understand computational contents of cut-elimination. In fact, Herbelin
already observed in [9, 10] that a reduction rule corresponding to permutation
of cuts is necessary to simulate full β-reduction, and that his calculus does not
have such a reduction rule.

Curien and Herbelin’s λµµ̃-calculus [2] is a classical variant of the λ-calculus,
which exhibits symmetries such as term/context and call-by-name/call-by-value.
Although this system shows many good aspects of considering sequent calculus
as a typing system, it lacks some points that the original λ-calculus has. First,
as remarked in Section 2 of [2], the λµµ̃-calculus does not entirely follow the
“cut=redex” paradigm: there exist cuts that are not redexes. Secondly, it is not
a conservative extension of Parigot’s λµ-calculus [15]: it cannot distinguish the
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terms translated from two different λµ-terms µα.[α](MN) and MN (see also
[18] where it is shown that translations between λµ-terms and λµµ̃-terms are
bijective only modulo linear reductions). As a consequence, the λµµ̃-calculus
involves µ-reduction in simulating β-reduction. Since µ-abstraction corresponds
to the (RAA) rule in classical natural deduction, this means that one cannot
separate the intuitionistic part from the whole classical system.

On the other hand, it is known that desired results can be obtained if re-
stricted to the intuitionistic case. Esṕırito Santo [7] and Dyckhoff and Urban [6]
pointed out that there is a precise bijection between λ-terms and a subset of λ-
terms. Then they added (global [7] or local [6]) reduction rules to the λ-calculus
so that the resulting systems can simulate full β-reduction. While Esṕırito Santo
proved the confluence and strong normalization of his calculus relying on those
of proof nets [8] through a technique by Danos et al. [4], Dyckhoff and Urban
obtained more general results using Bloo and Geuvers’ method [1] for explicit
substitution calculi. This was possible because the process of local-step cut-
elimination has a strong similarity to the propagation of explicit substitutions
that correspond to the cut rules.

The purpose of this paper is to extend Dyckhoff and Urban’s work to the case
of classical logic and obtain a local-step cut-elimination procedure that simulates
normalization in classical natural deduction in the strict sense. The sequent
calculus we use is essentially the same as the one introduced by Herbelin [10],
who also defined reduction rules for the proof terms, which were not enough to
simulate β, µ-reduction. We modify some of his reduction rules and add some
reduction rules that are necessary to simulate full β, µ-reduction. Although the
addition of the reduction rules introduces many critical pairs, we can prove the
confluence of our calculus, even in the untyped case. Moreover, the untyped
calculus enjoys the PSN (preservation of strong normalization) property with
respect to β, µ-reduction, which at once allows us to prove strong normalization
for typed terms, and hence, for the local-step cut-elimination procedure.

One of the features of Herbelin-style systems is the use of a distinguished
position, called stoup, in each side of a sequent. Among several systems based
on classical sequent calculus with stoup [3, 10, 2, 20], the system we adopt differs
from the others in the use of sequents where the stoups on both left and right
sides are filled with formulas. This leads to the syntactic category of lists of terms
(without involving parameterization by continuation variables), which allows us
to obtain the precise bijection between λµ-terms and a subset of terms in our
calculus. We define reduction relations on the subset of terms that exactly corre-
spond to β-reduction and µ-reduction. To do this, we need four meta-operations.
Our calculus can be considered in some sense a calculus making those meta-
operations explicit in the same way as usual explicit substitution calculi make
the usual meta-substitution explicit.

As regards related work, Urban [19] studied a local-step cut-elimination pro-
cedure for classical sequent calculus without stoup. He proved strong normaliza-
tion of the cut-elimination procedure and derived from it strong normalization
of the simply typed λ-calculus, but it was not related to reductions in the λµ-
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Table 1. λµx-terms and typing rules

t, u, v ::= xl | λx.t | µα.[γ]t | tl | t〈v/x〉 | t〈[α](−l)/[α]−〉
l, l′ ::= [] | t :: l | ll′ | l〈v/x〉 | l〈[α](−l′)/[α]−〉

Γ ; A ` [] : A; ∆
Ax

Γ, x : A; A ` l : B; ∆

Γ, x : A;− ` xl : B; ∆
Der

Γ ;− ` t : A; ∆ Γ ; B ` l : C; ∆

Γ ; A ⊃ B ` t :: l : C; ∆
L ⊃

Γ, x : A;− ` t : B; ∆

Γ ;− ` λx.t : A ⊃ B; ∆
R ⊃

Γ ;− ` t : A; α : B, ∆

Γ ;− ` µα.[γ]t : B; ∆
Chg

Γ ; Π ` a : A; ∆ Γ ; A ` l : B; ∆

Γ ; Π ` al : B; ∆
Cut1

where α 6≡ γ implies γ : A ∈ ∆

Γ ;− ` v : A; ∆ Γ, x : A; Π ` a : B; ∆

Γ ; Π ` a〈v/x〉 : B; ∆
Cut2

Γ ; Π ` a : B; α : A, ∆ Γ ; A ` l : C; ∆

Γ ; Π ` a〈[α](−l)/[α]−〉 : B; α : C, ∆
Cutµ

calculus. The relation between systems with and without stoup was suggested
in Section 4 of [2], and formally discussed in [13]. In general, a system without
stoup can be considered as a special case of systems with stoup where neither
of left and right stoups is filled with a formula. Strong normalization for the
λµµ̃-calculus with explicit substitutions was investigated in [11, 17].

The present paper is organized as follows. In Section 2 we introduce the
calculus and typing system. In Section 3 we consider the subset of terms that
correspond to usual λµ-terms. In Section 4 we study a subcalculus that plays
an important role in our proofs. In Section 5 we explain how to simulate β, µ-
reduction in the calculus, and prove confluence. In Section 6 we prove PSN
and strong normalization for typed terms. In Section 7 we briefly discuss some
variations of our calculus.

To save space we omit some of the proofs, but a full version with all proofs
is available at http://www.nue.riec.tohoku.ac.jp/user/kentaro/clc.pdf.

2 The λµx-Calculus

Table 1 presents the syntax and typing rules of the λµx-calculus. The syntax has
two kinds of expressions: terms and lists of terms, ranged over by t, u, v and by
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l, l′, respectively. The set of terms is denoted by Tλµx and the set of lists of terms
by Lλµx. Elements of Tλµx ∪ Lλµx are called λµx-terms and ranged over by a, b.
The notions of free and bound variables are defined as usual, with an additional
clause that the variable x in a〈v/x〉 binds the free occurrences of x in a (similarly
for α in a〈[α](−l)/[α]−〉). The set of free variables of a λµx-term a is denoted by
FV (a). The symbol ≡ denotes syntactic equality modulo α-conversion.

The typing system is a sequent calculus based on two kinds of judgements:
Γ ;− ` t : B;∆ and Γ ;A ` l : B;∆. We use Γ ;Π ` a : B;∆ to denote both
kinds of judgements, with Π being zero or one formula. Since a list of terms l
can be considered as a context with a hole in the position of head variable, we
can consistently use, in the typing rule Cut1, the notation al, which is read as
the λµx-term obtained by filling the hole of l with a term or another context a.

The notion of λµx-reduction is defined by the contextual closures of all reduc-
tion rules in Table 2. We use →λµx for one-step reduction, +→λµx for its transitive

closure, and ∗→λµx for its reflexive transitive closure. The set of λµx-terms that
are strongly normalizing with respect to λµx-reduction is denoted by SN λµx.
These kinds of notations are also used for the notions of other reductions intro-
duced in this paper.

The subcalculus of λµx without (Beta), (Mu1) and (Mu2) is denoted by x.
This subcalculus plays an important role in this paper and is studied in detail
in Section 4.

Herbelin’s original λµ-calculus [10] has the same typing rules as λµx, but has
different reduction rules, which are not enough to simulate β, µ-reduction of the
λµ-calculus. In particular, the rules (App6), (Subst7) and (Musubst7), which are
necessary for proving Lemma 1, are absent from Herbelin’s original calculus.

The reduction rules of λµx-calculus also define a cut-elimination procedure
for typing derivations of λµx-terms, which ensures that this typing system has
the subject reduction property. In Appendix A, we display the cut-elimination
steps corresponding to λµx-reduction for typed terms. Notice that the cut-
elimination steps corresponding to (Mu1) and (Mu2) are not very natural, since
to simulate one-step µ-reduction one needs to decompose the argument list (a
similar observation is found in Section 2 of [2]). A natural cut-elimination step for
Mu1-redex is shown in Section 7, but it does not simulate one-step µ-reduction.

3 Pure Terms

Table 3 presents the syntax of pure terms, which are the subset of λµx-terms
that correspond to terms (and lists of terms) of usual λµ-calculus. (The syntax
and typing rules of the simply typed λµ-calculus are found in Appendix B.) The
grammar of pure terms, which has the explicit construction of lists of terms, is
close to the following inductive characterization of the set of λµ-terms:

M,N ::= xM1 . . .Mn | λx.M | (λx.M)NM1 . . .Mn

| µα.[γ]M | (µα.[γ]M)NM1 . . .Mn (n > 0).
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Table 2. Reduction rules of λµx-calculus

(Beta) (λx.t)(u :: l) → t〈u/x〉l
(Mu1) (µα.[γ]t)(u :: l) → (µα.[γ]t〈[α](−(u::[]))/[α]−〉)l (α 6≡ γ)

(Mu2) (µα.[α]t)(u :: l) → (µα.[α]t〈[α](−(u::[]))/[α]−〉(u :: []))l

(App1) []l → l

(App2) (u :: l)l′ → u :: (ll′)

(App3) (xl)l′ → x(ll′)

(App4) (λx.t)[] → λx.t

(App5) (µα.[γ]t)[] → µα.[γ]t

(App6) (al)l′ → a(ll′)

(Subst1) []〈v/x〉 → []

(Subst2) (u :: l)〈v/x〉 → u〈v/x〉 :: l〈v/x〉
(Subst3) (yl)〈v/x〉 → yl〈v/x〉 (y 6≡ x)

(Subst4) (xl)〈v/x〉 → vl〈v/x〉
(Subst5) (λy.t)〈v/x〉 → λy.t〈v/x〉
(Subst6) (µα.[γ]t)〈v/x〉 → µα.[γ]t〈v/x〉
(Subst7) (al)〈v/x〉 → a〈v/x〉l〈v/x〉

(Musubst1) []〈[α](−l′)/[α]−〉 → []

(Musubst2) (u :: l)〈[α](−l′)/[α]−〉 → u〈[α](−l′)/[α]−〉 :: l〈[α](−l′)/[α]−〉
(Musubst3) (xl)〈[α](−l′)/[α]−〉 → xl〈[α](−l′)/[α]−〉
(Musubst4) (λx.t)〈[α](−l′)/[α]−〉 → λx.t〈[α](−l′)/[α]−〉
(Musubst5) (µδ.[γ]t)〈[α](−l′)/[α]−〉 → µδ.[γ]t〈[α](−l′)/[α]−〉 (γ 6≡ α)

(Musubst6) (µδ.[α]t)〈[α](−l′)/[α]−〉 → µδ.[α](t〈[α](−l′)/[α]−〉l′)
(Musubst7) (al)〈[α](−l′)/[α]−〉 → a〈[α](−l′)/[α]−〉l〈[α](−l′)/[α]−〉
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Table 3. Pure terms

t, u, v ::= xl | λx.t | (λx.t)(u :: l) | µα.[γ]t | (µα.[γ]t)(u :: l)
l, l′ ::= [] | t :: l

(β) (λx.t)(u :: l) → {t[u/x]}l
(µ) (µα.[γ]t)(u :: l) → {µα.([γ]t)[[α]{−}(u::[])/[α]−]}l

where the meta-operations [ / ] and { } are defined as follows:

(yl)[v/x] =def yl[v/x] (y 6≡ x)

(xl)[v/x] =def {v}l[v/x]

(λy.t)[v/x] =def λy.t[v/x]

((λy.t)(u :: l))[v/x] =def (λy.t[v/x])(u[v/x] :: l[v/x])

(µα.[γ]t)[v/x] =def µα.[γ]t[v/x]

((µα.[γ]t)(u :: l))[v/x] =def (µα.[γ]t[v/x])(u[v/x] :: l[v/x])

[][v/x] =def []

(u :: l)[v/x] =def u[v/x] :: l[v/x]

{xl}l′ =def x(l@l′)

{λy.t}[] =def λy.t

{λy.t}(u :: l) =def (λy.t)(u :: l)

{(λy.t)(u :: l)}l′ =def (λy.t)(u :: (l@l′))

{µα.[γ]t}[] =def µα.[γ]t

{µα.[γ]t}(u :: l) =def (µα.[γ]t)(u :: l)

{(µα.[γ]t)(u :: l)}l′ =def (µα.[γ]t)(u :: (l@l′))

[]@l =def l

(u :: l)@l′ =def u :: (l@l′)
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Table 4. Translations Ψ and Θ

Ψ(x) =def x[]
Ψ(MN) =def {Ψ(M)}(Ψ(N) :: [])

Ψ(λx.M) =def λx.Ψ(M)
Ψ(µα.[γ]M) =def µα.[γ]Ψ(M)

Θ(xl) =def Θ′(x, l)
Θ(λx.t) =def λx.Θ(t)

Θ((λx.t)(u :: l)) =def Θ′(λx.Θ(t), u :: l)
Θ(µα.[γ]t) =def µα.[γ]Θ(t)

Θ((µα.[γ]t)(u :: l)) =def Θ′(µα.[γ]Θ(t), u :: l)

Θ′(M, []) =def M
Θ′(M, u :: l) =def Θ′(MΘ(u), l)

For the definition of β-reduction on pure terms, we need two meta-operations
[ / ] and { } . The operation [ / ] is basically meta-substitution, but the result
of substitution is not in general a pure term (e.g., the λµx-term (x[])[], which
is obtained by substituting x[] for y in y[], is not a pure term). So we use the
operation { } (and also @ ) to append the first list to the residual list in such
cases. The operation [[α]{−}(u::[])/[α]−] in the µ-rule replaces inductively each
occurrence in [γ]t of the form [α]v by [α]{v}(u :: []). (A formal definition of the
operation [[α]{−}l/[α]−] is omitted.)

The operation { } was introduced in [6] for the intuitionistic case, called gen-
eralized application (a similar operation is found in [7]). In the λµµ̃-calculus [2],
the process of the operation is implemented with the help of (linear) µ-reductions.
We distinguish the process from usual µ-reduction by directly mapping the two
operands of generalized application to the corresponding pure term.

Now translations between pure terms and λµ-terms are given in Table 4.

Proposition 1. Θ ◦ Ψ = id and Ψ ◦Θ = id.

Theorem 1. For any λµ-terms M,M ′,

1. M →β M ′ if and only if Ψ(M) →β Ψ(M ′),
2. M →µ M ′ if and only if Ψ(M) →µ Ψ(M ′).

Later we show that the translations preserve the types of terms and that
β, µ-reduction on pure terms can be simulated by λµx-reduction, which reveals
how to simulate normalization in classical natural deduction by cut-elimination
in Herbelin’s sequent calculus.

4 Properties of the Subcalculus x

In this section we study properties of the subcalculus x which is obtained from
λµx-calculus by deleting the (Beta), (Mu1) and (Mu2) rules. In the typed case,
it corresponds to the cut-elimination steps except the key-cases, i.e., the cases
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where the cut-formula is introduced into the stoups of the conclusions of both
left and right subderivations over the cut rule.

First we show that the normal forms of the subcalculus x coincide with pure
terms.

Proposition 2. Let a ∈ Tλµx ∪ Lλµx. a is a pure term if and only if a is in
x-normal form.

Proof. The only if part is by induction on the structure of pure terms. We prove
the if part by induction on the structure of a. Suppose that a is in x-normal
form. Then by the induction hypothesis, all subterms of a are pure. Now, if a
is not pure, then a is one of the forms bl(6≡ (λx.t)(u :: l′) or (µα.[γ]t)(u :: l′)),
b〈v/x〉 and b〈[α](−l)/[α]−〉 where b, l, v are pure. In any case we see that a is an
x-redex, which is a contradiction. ut

Next we show that the subcalculus x is strongly normalizing.

Proposition 3. The subcalculus x is strongly normalizing.

Proof. The proof is by interpretation, extending the one in Appendix A of [5].
We define a function h : Tλµx ∪ Lλµx −→ N as follows:

h([]) =def 1
h(u :: l) =def h(u) + h(l) + 1
h(xl) =def h(l) + 1
h(λx.t) =def h(t) + 1
h(µα.[γ]t) =def h(t) + 1
h(al) =def 2× h(a) + h(l) + 1
h(a〈v/x〉) =def (3× h(v) + 1)× h(a)
h(a〈[α](−l)/[α]−〉) =def (3× h(l) + 1)h(a)

and observe that if a →x b then h(a) > h(b). Another proof uses the lexicographic
path ordering induced by a first-order encoding found in Section 6, without
annotation of natural numbers. ut

Since the subcalculus x has many critical pairs, we prove its confluence using
a projection of λµx-terms into pure terms rather than Newman’s Lemma. For
this we prove the following important lemma, which shows that the subcalculus
x correctly simulates the meta-operations on pure terms.

Lemma 1. Let t, v, l, l′, a be pure terms with t, v ∈ Tλµx, l, l′ ∈ Lλµx and a ∈
Tλµx ∪ Lλµx. Then

1. ll′
∗→x l@l′,

2. tl
∗→x {t}l,

3. a〈v/y〉 ∗→x a[v/y],
4. a〈[α](−l)/[α]−〉

∗→x a[[α]{−}l/[α]−].
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Proof. The first part is by induction on the structure of l. The second part is by
a case analysis according to the form of tl. The remaining two parts are proved
by induction on the structure of a. ut

The above lemma may be regarded as a weak normalization result for the
subcalculus x, since we may use it to reduce any innermost x-redex repeatedly
until all such redexes are eliminated. We define x(a) as the x-normal form of a
obtained in this way.

Definition 1. For each a ∈ Tλµx ∪Lλµx, the (pure) term x(a) is defined induc-
tively as follows:

1. x([]) =def [],
2. x(t :: l) =def x(t) :: x(l),
3. x(ll′) =def x(l)@x(l′),
4. x(yl) =def yx(l),
5. x(λy.t) =def λy.x(t),
6. x(µα.[γ]t) =def µα.[γ]x(t),
7. x(tl) =def {x(t)}x(l),
8. x(a〈v/y〉) =def x(a)[x(v)/y],
9. x(a〈[α](−l)/[α]−〉) =def x(a)[[α]{−}x(l)/[α]−].

Remark 1. For any pure term a ∈ Tλµx ∪ Lλµx, x(a) ≡ a.

Lemma 2. Let a ∈ Tλµx ∪ Lλµx. Then a
∗→x x(a).

Proof. By induction on the structure of a, using Lemma 1. ut
Lemma 3. Let a, b ∈ Tλµx ∪ Lλµx. If a →x b, then x(a) ≡ x(b).

Proof. By induction on the structure of a. If the x-reduction is not at the root
then the lemma easily follows from the induction hypothesis. If the x-reduction
is at the root, e.g., if a ≡ (µδ.[α]t)〈[α](−l)/[α]−〉 →x µδ.[α](t〈[α](−l)/[α]−〉l) ≡ b
then

x((µδ.[α]t)〈[α](−l)/[α]−〉) ≡ x(µδ.[α]t)[[α]{−}x(l)/[α]−]

≡ (µδ.[α]x(t))[[α]{−}x(l)/[α]−]

≡ µδ.[α]{x(t)[[α]{−}x(l)/[α]−]}x(l)
≡ µδ.[α]{x(t〈[α](−l)/[α]−〉)}x(l)
≡ µδ.[α]x(t〈[α](−l)/[α]−〉l)
≡ x(µδ.[α](t〈[α](−l)/[α]−〉l)).

Some of the other cases need properties of meta-operations on pure terms. ut
An immediate consequence of these lemmas is the confluence of the subcal-

culus x.

Proposition 4. The subcalculus x is confluent.

Proof. Suppose that a
∗→x a1 and a

∗→x a2. Then by Lemma 3, x(a) ≡ x(ai)
(i = 1, 2). Since ai

∗→x x(ai) by Lemma 2, x(a) is a common reduct of a1 and
a2. ut
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5 Simulation of β, µ-Reduction

In this section we study the relation between →β,µ and →λµx, which in the typed
case correspond to normalization and (local-step) cut-elimination, respectively.
It is important that on the one hand, λµx-reduction simulates β, µ-reduction,
and on the other hand, λµx-reduction is sound in regard to β, µ-reduction (i.e.,
a pure term a is λµx-reducible to another pure term b only if a is β, µ-reducible
to b).

First we show that λµx-reduction simulates β, µ-reduction.

Theorem 2. For any pure terms a, b ∈ Tλµx ∪Lλµx, if a →β,µ b then a
+→λµx b.

Proof. By induction on the structure of a. We treat the case a ≡ (µα.[γ]t)(u :: l)
(α 6≡ γ) and b ≡ {µα.([γ]t)[[α]{−}(u::[])/[α]−]}l(≡ {µα.[γ]t[[α]{−}(u::[])/[α]−]}l).
Then use →Mu1 to create (µα.[γ]t〈[α](−(u::[]))/[α]−〉)l, and use Lemma 1 (4) and
(2) to reach {µα.[γ]t[[α]{−}(u::[])/[α]−]}l. ut

The strictness in Theorem 2 has a nice consequence.

Corollary 1. Let a ∈ Tλµx ∪ Lλµx. If a ∈ SN λµx then x(a) ∈ SN β,µ.

Proof. Suppose that x(a) /∈ SN β,µ. Using Theorem 2 we get an infinite λµx-
reduction sequence starting with x(a). Since a

∗→λµx x(a) by Lemma 2, we have
a /∈ SN λµx. ut

Next we consider the typed case to show the relation between normalization
in classical natural deduction and cut-elimination in Herbelin’s sequent calculus.
For this we first show that the translations in Section 3 preserve the types of
terms, defining translations on typing derivations.

Proposition 5. For any λµ-term M , Γ ` M : A;∆ if and only if Γ ;− `
Ψ(M) : A;∆.

Proof. The only if part is by induction on the derivation of Γ ` M : A;∆. For
the if part, it suffices to prove the following by simultaneous induction on the
derivations for pure terms:

1. if Γ ;− ` t : A;∆ then Γ ` Θ(t) : A;∆,
2. if Γ ;A ` l : B;∆ then Γ ` Θ′(M, l) : B;∆ for any M with Γ ` M : A;∆. ut

Now we see that the proof of Theorem 2 indicates how to simulate normal-
ization in classical natural deduction by cut-elimination in Herbelin’s sequent
calculus. Specifically, a redex in natural deduction is translated into one of the
key-cases corresponding to, say, a Mu1-redex (µα.[γ]t)(u :: l). Then transfor-
mation is performed as in Appendix A to create the proof corresponding to
(µα.[γ]t〈[α](−(u::[]))/[α]−〉)l, followed by cut-elimination steps to reach the proof
corresponding to {µα.[γ]t[[α]{−}(u::[])/[α]−]}l. The latter cut-elimination steps are
in fact strongly normalizing and confluent, since they correspond to reduction
steps of the subcalculus x.
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Next we show that the Beta-reduction and Mu1,Mu2-reduction project onto
β-reduction and µ-reduction, respectively.

Lemma 4 (Projection). Let a, b ∈ Tλµx ∪ Lλµx.

1. If a →Beta b then x(a) ∗→β x(b).
2. If a →Mu1,Mu2 b then x(a) ∗→µ x(b).

As a result, we have that →λµx is a sound refinement of →β,µ.

Corollary 2. For any pure terms a, b ∈ Tλµx∪Lλµx, if a
∗→λµx b then a

∗→β,µ b.

Proof. By Lemmas 3 and 4, and Remark 1. ut

It is now easy to show that λµx-reduction is confluent, using the confluence
of β, µ-reduction in the λµ-calculus [15]. The result also holds in the typed case,
so the confluence of the local-step cut-elimination procedure follows.

Theorem 3. The reduction relation →λµx is confluent.

Proof. Since pure terms in Tλµx are isomorphic to λµ-terms (Proposition 1 and
Theorem 1), →β,µ is confluent on pure terms in Tλµx by the confluence of →β,µ

on λµ-terms. Also, the confluence of →β,µ on pure terms l in Lλµx follows by

induction on the structure of l. Now suppose that a
∗→λµx a1 and a

∗→λµx a2.

Then by Lemmas 3 and 4, x(a) ∗→β,µ x(ai) (i = 1, 2), so by the confluence of
→β,µ on pure terms, there is a pure term a′ such that x(ai)

∗→β,µ a′ (i = 1, 2).
We also have ai

∗→λµx x(ai) by Lemma 2, and x(ai)
∗→λµx a′ by Theorem 2. So

we conclude that ai
∗→λµx a′ (i = 1, 2). ut

6 Strong Normalization

In this section we prove PSN for the λµx-calculus with respect to β, µ-reduction
on pure terms and, at the same time, strong normalization for typed λµx-terms,
which implies strong normalization for the local-step cut-elimination procedure.
Following [6, 14], we adapt Bloo and Geuvers’ technique [1] to Herbelin-style
calculus.

Definition 2 (Bounded terms). Let a ∈ Tλµx∪Lλµx. a is said to be bounded
if for every subterm b of a, x(b) ∈ SN β,µ.

Lemma 5. For any typed λµx-term a, a is bounded.

Proof. Let a be a typed λµx-term and b be a subterm of a. Then b is also typed,
and by subject reduction, so is x(b). From (the proof of) Proposition 5 and strong
normalization of →β,µ on typed λµ-terms [16], it follows that x(b) ∈ SN β,µ. ut
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Table 5. First-order encoding

T ([]) =def ?

T (u :: l) =def ii(T (u), T (l))

T (xl) =def i(T (l))

T (λx.t) =def i(T (t))

T (µα.[γ]t) =def i(T (t))

T (al) =def cut|x(al)|(T (a), T (l))

T (a〈v/x〉) =def sub|x(a〈v/x〉)|(T (a), T (v))

T (a〈[α](−l)/[α]−〉) =def sub|x(a〈
[α](−l)/[α]−〉)|(T (a), T (l))

Definition 3. Let a be a pure term with a ∈ SN β,µ. |a| is defined as the maxi-
mal length of all β, µ-reduction sequences starting from a.

Now we encode any bounded term a into a first-order syntax given by the
following ordered infinite signature:

? ≺ i( ) ≺ ii( , ) ≺ cutn( , ) ≺ subn( , )

for all n ∈ N, and, moreover, subn( , ) ≺ cutm( , ) for n < m. The precedence
is well-founded, so the lexicographic path ordering (lpo) induced on the first-
order terms is also well-founded (definitions and results can be found in [12]).
The encoding aforementioned is given in Table 5.

Lemma 6. If a is bounded and a →λµx b, then b is also bounded and T (a) >lpo

T (b).

Proof. By induction on the structure of a. Here we consider a few cases where
the reduction is at the root.

(a) a ≡ (µα.[γ]t)(u :: l) →Mu1 (µα.[γ]t〈[α](−(u::[]))/[α]−〉)l ≡ b (α 6≡ γ). Then

T (a) = T ((µα.[γ]t)(u :: l))

= cut|x(a)|(T (µα.[γ]t), T (u :: l))

= cut|x(a)|(i(T (t)), ii(T (u), T (l)))

T (b) = T ((µα.[γ]t〈[α](−(u::[]))/[α]−〉)l)
= cut|x(b)|(T (µα.[γ]t〈[α](−(u::[]))/[α]−〉), T (l))

= cut|x(b)|(i(T (t〈[α](−(u::[]))/[α]−〉)), T (l))

= cut|x(b)|(i(sub|x(t〈
[α](−(u::[]))/[α]−〉)|(T (t), T (u :: []))), T (l))

= cut|x(b)|(i(sub|x(t〈
[α](−(u::[]))/[α]−〉)|(T (t), ii(T (u), ?))), T (l))

12



where

|x(a)| = |x((µα.[γ]t)(u :: l))|
> |x((µα.[γ]t〈[α](−(u::[]))/[α]−〉)l)|
= |x(b)|

and

|x(b)| = |x((µα.[γ]t〈[α](−(u::[]))/[α]−〉)l)|
= |{µα.[γ]x(t)[[α]{−}(x(u)::[])/[α]−]}x(l)|
> |µα.[γ]x(t)[[α]{−}(x(u)::[])/[α]−]|
= |x(t)[[α]{−}(x(u)::[])/[α]−]|
= |x(t〈[α](−(u::[]))/[α]−〉)|.

So we can check that b is bounded and T (a) >lpo T (b).
(b) a ≡ (µδ.[α]t)〈[α](−l)/[α]−〉 →x µδ.[α](t〈[α](−l)/[α]−〉l) ≡ b. Then

T (a) = T ((µδ.[α]t)〈[α](−l)/[α]−〉)

= sub|x(a)|(T (µδ.[α]t), T (l))

= sub|x(a)|(i(T (t)), T (l))

T (b) = T (µδ.[α](t〈[α](−l)/[α]−〉l))
= i(T (t〈[α](−l)/[α]−〉l))

= i(cut|x(t〈
[α](−l)/[α]−〉l)|(T (t〈[α](−l)/[α]−〉), T (l)))

= i(cut|x(t〈
[α](−l)/[α]−〉l)|(sub|x(t〈

[α](−l)/[α]−〉)|(T (t), T (l)), T (l)))

where

|x(a)| = |x((µδ.[α]t)〈[α](−l)/[α]−〉)|
= |µδ.[α]x(t〈[α](−l)/[α]−〉l)|
= |x(t〈[α](−l)/[α]−〉l)|
= |{x(t〈[α](−l)/[α]−〉)}x(l)|
> |x(t〈[α](−l)/[α]−〉)|.

So we can check that b is bounded and T (a) >lpo T (b). ut

Theorem 4. For any bounded term a, a ∈ SN λµx.

Proof. By the well-foundedness of >lpo and Lemma 6. ut

Corollary 3. For any typed λµx-term a, a ∈ SN λµx.

13



Fig. 1. Key-case corresponding to (Mu+
1 )

Γ ;− ` t : D; α : A ⊃ B, ∆

Γ ;− ` µα.[γ]t : A ⊃ B; ∆
Chg

Γ ;− ` u : A; ∆ Γ ; B ` l : C; ∆

Γ ; A ⊃ B ` u :: l : C; ∆
L ⊃

Γ ;− ` (µα.[γ]t)(u :: l) : C; ∆
Cut1

→

Γ ;− ` t : D; α : A ⊃ B, ∆

Γ ;− ` u : A; ∆ Γ ; B ` l : C; ∆

Γ ; A ⊃ B ` u :: l : C; ∆
L ⊃

Γ ;− ` t〈[α](−(u::l))/[α]−〉 : D; α : C, ∆
Cutµ

Γ ;− ` µα.[γ]t〈[α](−(u::l))/[α]−〉 : C; ∆
Chg

Proof. By Lemma 5 and Theorem 4. ut

Corollary 4 (PSN). For any pure term a, a ∈ SN λµx if and only if a ∈
SN β,µ.

Proof. The only if part is by Corollary 1. Since any pure term a ∈ SN β,µ is
bounded, we have the if part by Theorem 4. ut

7 Variations

In this section we consider some possible variations of λµx-calculus. As we men-
tioned in Section 2, the cut-elimination steps corresponding to the (Mu1) and
(Mu2) rules are not very natural. The reduction rules that correspond to natural
cut-elimination steps for Mu1,Mu2-redexes are as follows:

(Mu+
1 ) (µα.[γ]t)(u :: l) → µα.[γ]t〈[α](−(u::l))/[α]−〉 (α 6≡ γ)

(Mu+
2 ) (µα.[α]t)(u :: l) → µα.[α](t〈[α](−(u::l))/[α]−〉(u :: l)).

In Fig. 1 we show the cut-elimination step corresponding to the (Mu+
1 ) rule. For

the calculus with these reduction rules instead of the (Mu1) and (Mu2) rules, we
can also prove results on confluence and strong normalization as we have seen
for the λµx-calculus.

Another, more common approach to a term calculus for classical sequent cal-
culus brings continuation variables α, γ, . . . to the place where we put the empty
list []. This leads to two more syntactic categories of contexts and commands
which correspond to, in the typing system, sequents without a formula in the
stoup on the right side. An advantage of this formulation is the possibility of
making substitution for continuation variables the usual substitution. However,
to retain the “cut=redex” paradigm, we have to be careful in the combination
of left and right rules over the cut rule.
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8 Conclusion

Using a term calculus derived from a local-step cut-elimination procedure in Her-
belin’s sequent calculus, we have given a complete solution to the correspondence
problem between normalization and cut-elimination in classical logic. Moreover,
we have proved confluence and PSN for the untyped calculus as well as confluence
and strong normalization for the local-step cut-elimination procedure.

Since our calculus can be viewed as a conservative extension of λµ-calculus in
both term structure and reduction relation, it is useful for conveying substantial
work on traditional λ-calculus and λµ-calculus to the world of sequent calculus.
We also believe that our analysis can help to design a system in the call-by-value
setting, making use of the symmetry inherent in sequent calculus.
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anonymous referees for valuable comments. This work has been supported by
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A Cut-Elimination Steps for Typing Derivations

In this appendix, we display some of the cut-elimination steps corresponding to
λµx-reduction for typed terms. First we need the following lemma.

Lemma 7.

1. If Γ ;Π ` a : A;∆, where x does not appear in Γ , then Γ, x : B;Π ` t : A;∆.
2. If Γ ;Π ` a : A;∆, where α does not appear in ∆, then Γ ;Π ` t : A;α : B,∆.

Proof. By induction on the structure of derivations. ut

Cut-Elimination Steps for Typing Derivations

(Beta) (λx.t)(u :: l) → t〈u/x〉l

Γ, x : A;− ` t : B; ∆

Γ ;− ` λx.t : A ⊃ B; ∆
R ⊃

Γ ;− ` u : A; ∆ Γ ; B ` l : C; ∆

Γ ; A ⊃ B ` u :: l : C; ∆
L ⊃

Γ ;− ` (λx.t)(u :: l) : C; ∆
Cut1

→

Γ ;− ` u : A; ∆ Γ, x : A;− ` t : B; ∆

Γ ;− ` t〈u/x〉 : B; ∆
Cut2

Γ ; B ` l : C; ∆

Γ ;− ` t〈u/x〉l : C; ∆
Cut1
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(Mu1) (µα.[γ]t)(u :: l) → (µα.[γ]t〈[α](−(u::[]))/[α]−〉)l (α 6≡ γ)

Γ ;− ` t : D; α : A ⊃ B, ∆

Γ ;− ` µα.[γ]t : A ⊃ B; ∆
Chg

Γ ;− ` u : A; ∆ Γ ; B ` l : C; ∆

Γ ; A ⊃ B ` u :: l : C; ∆
L ⊃

Γ ;− ` (µα.[γ]t)(u :: l) : C; ∆
Cut1

→

Γ ;− ` t : D; α : A ⊃ B, ∆ Γ ; A ⊃ B ` u :: [] : B; ∆

Γ ;− ` t〈[α](−(u::[]))/[α]−〉 : D; α : B, ∆
Cutµ

Γ ;− ` µα.[γ]t〈[α](−(u::[]))/[α]−〉 : B; ∆
Chg

Γ ; B ` l : C; ∆

Γ ;− ` (µα.[γ]t〈[α](−(u::[]))/[α]−〉)l : C; ∆
Cut1

where Γ ; A ⊃ B ` u :: [] : B; ∆ is derived from Γ ;− ` u : A; ∆ and the

axiom Γ ; B ` [] : B; ∆ by L ⊃.

(Mu2) (µα.[α]t)(u :: l) → (µα.[α]t〈[α](−(u::[]))/[α]−〉(u :: []))l

Γ ;− ` t : A ⊃ B; α : A ⊃ B, ∆

Γ ;− ` µα.[α]t : A ⊃ B; ∆
Chg

Γ ;− ` u : A; ∆ Γ ; B ` l : C; ∆

Γ ; A ⊃ B ` u :: l : C; ∆
L ⊃

Γ ;− ` (µα.[α]t)(u :: l) : C; ∆
Cut1

→

Γ ;− ` t : A ⊃ B; α : A ⊃ B, ∆ Γ ; A ⊃ B ` u :: [] : B; ∆

Γ ;− ` t〈[α](−(u::[]))/[α]−〉 : A ⊃ B; α : B, ∆
Cutµ

Γ ; A ⊃ B ` u :: [] : B; α : B, ∆
Lemma 7

Γ ;− ` t〈[α](−(u::[]))/[α]−〉(u :: []) : B; α : B, ∆
Cut1

Γ ;− ` µα.[α]t〈[α](−(u::[]))/[α]−〉(u :: []) : B; ∆
Chg

Γ ; B ` l : C; ∆

Γ ;− ` (µα.[α]t〈[α](−(u::[]))/[α]−〉(u :: []))l : C; ∆
Cut1

(Musubst7) (al)〈[α](−l′)/[α]−〉 → a〈[α](−l′)/[α]−〉l〈[α](−l′)/[α]−〉

Γ ; Π ` a : B; α : A, ∆ Γ ; B ` l : C; α : A, ∆

Γ ; Π ` al : C; α : A, ∆
Cut1

Γ ; A ` l′ : D; ∆

Γ ; Π ` (al)〈[α](−l′)/[α]−〉 : C; α : D, ∆
Cutµ

→

Γ ; Π ` a : B; α : A, ∆ Γ ; A ` l′ : D; ∆

Γ ; Π ` a〈[α](−l′)/[α]−〉 : B; α : D, ∆
Cutµ

Γ ; B ` l : C; α : A, ∆ Γ ; A ` l′ : D; ∆

Γ ; B ` l〈[α](−l′)/[α]−〉 : C; α : D, ∆
Cutµ

Γ ; Π ` a〈[α](−l′)/[α]−〉l〈[α](−l′)/[α]−〉 : C; α : D, ∆
Cut1

B The λµ-Calculus

The λµ-calculus, introduced in [15], is a λ-calculus extended with control oper-
ators. Under the Curry-Howard correspondence, terms of λµ-calculus represent
proofs in classical natural deduction. Table 6 presents the syntax and typing
rules for simply typed λµ-terms.

The reduction rules of λµ-calculus are the following:

(β) (λx.M)N → M [N/x]
(µ) (µα.[γ]M)N → µα.([γ]M)[[α](−N)/[α]−].
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Table 6. λµ-terms and typing rules

M, N ::= x | MN | λx.M | µα.[γ]M

Γ, x : A ` x : A; ∆
Ax

Γ ` M : A; α : B, ∆

Γ ` µα.[γ]M : B; ∆
Chg

where α 6≡ γ implies γ : A ∈ ∆

Γ ` M : A ⊃ B; ∆ Γ ` N : A; ∆

Γ ` MN : B; ∆
⊃ E

Γ, x : A ` M : B; ∆

Γ ` λx.M : A ⊃ B; ∆
⊃ I

where [ / ] is the usual meta-substitution, and the operation [[α](−N)/[α]−] in
the µ-rule replaces inductively each occurrence in [γ]M of the form [α]P by
[α](PN). In this paper, we consider the β and µ-rules only, and do not include
the simplification rules.
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