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Abstract. We consider a classical (propositional) version, CBI, of O’Hearn
and Pym’s logic of bunched implications (BI) from a model- and proof-
theoretic perspective. We present a class of classical models of BI which
extend the usual BI-models, based on partial commutative monoids, with
an algebraic notion of “resource negation”. This class of models gives rise
to natural definitions of multiplicative falsity, negation and disjunction.
We demonstrate that a sequent calculus proof system for CBI is sound
with respect to our classical models by translating CBI sequent proofs
into proofs in BI+, a sound extension of sequent calculus for BI.

1 Introduction

The logic of bunched implications (BI), due to O’Hearn and Pym [6], is a sub-
structural logic suitable for reasoning about various domains that incorporate
a notion of resource [5]. Its best-known application to computer science is in
separation logic, a logic for reasoning about imperative, pointer-manipulating
programs, which essentially is obtained by considering a particular model of BI
based on heaps [9]. Semantically, BI arises by considering cartesian doubly closed
categories. This viewpoint gives rise to the following (propositional) connectives
for BI:

Additive: ⊤ ⊥ ∧ ∨ →
Multiplicative: ⊤∗ ∗ —∗

From the aforementioned categorical perspective, this presentation of BI is
necessarily intuitionistic. However, there is also an algebraic semantics of BI in
which the multiplicatives are modelled by partial commutative monoids, and
the additive connectives can be interpreted either classically or intuitionistically
according to preference. When the additives are interpreted classically (e.g. using
a boolean algebra) the resulting logic is often called boolean BI. In this paper, we
consider the extension of boolean BI to classical BI, in which both the additives
and the multiplicatives are treated classically. Specifically, classical BI includes
the multiplicative analogues of additive falsity, negation and disjunction, which
are “missing” in BI. We give an algebraic semantics for classical BI, and present
a sequent calculus proof system that is sound with respect to this semantics.
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In BI, the presence of the two implications (→ and —∗), each with a suitably
adjunctive conjunction (∧ and ∗ respectively), gives rise to two context-forming
operations, ‘;’ and ‘,’:

Γ ; F1 ⊢ F2
(→R)

Γ ⊢ F1 → F2

Γ, F1 ⊢ F2
(—∗R)

Γ ⊢ F1 —∗ F2

Accordingly, contexts on the left-hand side of sequents are not sets or lists, as in
standard sequent systems, but rather bunches : trees whose leaves are formulas
and whose internal nodes are either ‘;’ or ‘,’, denoting additive and multiplicative
combination respectively. The crucial difference between the two operations is
that weakening and contraction are possible for ‘;’ but not for ‘,’. Since BI is an
intuitionistic logic, bunches arise only on the left-hand side of sequents, with a
single formula on the right.

From a proof-theoretic perspective, it is natural to consider a full two-sided
sequent calculus for a classical extension of BI, i.e., a proof system employing
sequents of the form Γ ⊢ ∆ where both Γ and ∆ are bunches. We would ex-
pect the context-forming operations in ∆ to logically correspond to additive
and multiplicative disjunction (again in analogy to ordinary sequent calculus).
Formulating a notion of multiplicative disjunction, however, entails formulating
a multiplicative falsity ⊥∗, which would act as the unit of ‘,’ on the right of
sequents, just as ⊤∗ acts as the unit of ‘,’ on the left. Also, additive negation
has natural rules in a two-sided calculus, swapping sides with respect to ‘;’. We
would expect a corresponding notion of multiplicative negation, ∼, that swaps
sides with respect to ‘,’:

Γ ⊢ F, ∆
(∼L)

Γ, ∼F ⊢ ∆

Γ, F ⊢ ∆
(∼R)

Γ ⊢∼F, ∆

Indeed, just such rules are considered (briefly) by Pym in his monograph on
BI although, as mentioned there, there are problems with cut-elimination [7].
An important concern is therefore the following one originally considered in the
context of standard BI:

“It is all very well to postulate proof rules in this way, but what meaning
or significance, if any, does the resulting logic have?” [6]

It is with this question that we primarily concern ourselves in this paper. Af-
ter briefly recalling the BI sequent calculus and its partial commutative monoid
semantics in Section 2, we present in Section 3 a class of so-called “classical BI-
models” in which multiplicative versions of falsity, negation, and disjunction all
have natural interpretations. Our models extend partial commutative monoids
with a natural notion of negation, −. In fact, they are almost Abelian groups,
except that the result of combining an element x with its “inverse” −x using
the monoid operation is not necessarily the monoid identity, but rather some
arbitrary element, denoted by ∞. In Section 4 we present a classical version of
BI, called CBI, and define satisfaction of its formulas with respect to our classi-
cal BI-models. Interestingly, the natural interpretations of multiplicative falsity



and negation are not ∞ and− respectively, as one might expect, but rather ¬∞
and ¬−. (Similar ideas are also employed by relevant logicians [8, 4].) We also
give a two-sided sequent calculus for CBI (similar to the presentation in [7]). In
Section 5 we present the main technical result of this paper, which is a proof of
soundness of this sequent calculus with respect to our classical models. To do
so, we first define an extension BI+ of the BI sequent calculus with a formula
representing ∞ and two axioms representing the fact that − behaves as an in-
volution in our models. BI+ is easily proven sound with respect to our models,
whence the required soundness theorem for CBI follows by showing admissibility
of its proof rules under a validity-preserving translation from CBI-sequents to
BI+-sequents. Finally, in Section 6, we conclude and identify the main directions
for future work.

Due to space limitations, some of the details of our proofs have been sup-
pressed. For full proofs — and reports on substantial developments since the
initial submission of the present paper — we point the interested reader to a
recent paper by the authors, currently available as a technical report [3].

2 Propositional boolean BI

In this section we give a brief overview of (propositional) boolean BI, focussing
on its monoid semantics and sequent calculus presentation (cf. [6, 7]).

Formulas of propositional BI are obtained by combining atomic formulas
— ⊤,⊥ and ⊤∗, plus propositional variables drawn from a set V — using the
binary connectives ∧,∨,→, ∗ and —∗. We write ¬F to abbreviate the formula
F → ⊥. A model M of BI is then partial commutative monoid 〈R, ◦, e〉. An
environment for a BI-model M is a function ρ : V → R interpreting propositional
variables as propositions, relative to elements of the monoid. Intuitively, the set
R corresponds to a set of resources which can (possibly) be combined by ◦; the
unit e of ◦ is then the empty or null resource. Satisfaction of a formula in a
model M = 〈R, ◦, e〉 under an environment ρ for M is then defined relative to
resources r ∈ R, with the key clauses being those for the propositional variables
and multiplicative connectives:

r |= P ⇔ r ∈ ρ(P )
r |= ⊤∗ ⇔ r = e

r |= F1 ∗ F2 ⇔ ∃r1, r2. r = r1 ◦ r2 and r1 |= F1 and r2 |= F2

r |= F1 —∗ F2 ⇔ ∀r′. r ◦ r′ defined and r′ |= F1 implies r ◦ r′ |= F2

The clauses for the additive connectives are defined in the standard way,
i.e. without performing any operation on the resource r. In particular, additive
implication is interpreted classically, so that r |= ¬F iff r 6|= F .

One can then give a sequent calculus for BI, writing sequents of the form
Γ ⊢ F , where F is a formula and Γ is a bunch, given by the following grammar:

Γ ::= F | Γ ; Γ | Γ, Γ



where F ranges over formulas. Thus bunches are trees whose leaves are formulas
and whose internal nodes are either ‘;’ or ‘,’. We write Γ (∆) for a bunch of which
∆ is a distinguished sub-bunch (i.e. subtree), and in such cases write Γ (∆′) for
the bunch obtained by replacing ∆ by the bunch ∆′ in Γ (∆). In analogy to
the use of sets in ordinary sequent calculus, we consider bunches up to coherent
equivalence:

Definition 2.1 (Coherent equivalence). ≡ is the least relation on bunches
satisfying commutative monoid equations for ‘;’ and ⊤, and for ‘,’ and ⊤∗, plus
the rule of congruence: if ∆ ≡ ∆′ then Γ (∆) ≡ Γ (∆′).

The sequent calculus for BI employs sequents of the form Γ ⊢ F , where Γ is
a bunch and F is a formula. We give the sequent calculus rules for BI in Figure 1.

Structural rules:

(Id)
F ⊢ F

Γ (∆) ⊢ F
(Weak)

Γ (∆;∆′) ⊢ F

Γ (∆; ∆) ⊢ F
(Contr)

Γ (∆) ⊢ F

Γ
′ ⊢ F

Γ ≡ Γ ′ (Equiv)
Γ ⊢ F

∆ ⊢ G Γ (G) ⊢ F
(Cut)

Γ (∆) ⊢ F

Propositional rules:

(⊥L)
Γ (⊥) ⊢ F

Γ (F1) ⊢ F Γ (F2) ⊢ F
(∨L)

Γ (F1 ∨ F2) ⊢ F

Γ (F1; F2) ⊢ F
(∧L)

Γ (F1 ∧ F2) ⊢ F

(⊤R)
Γ ⊢ ⊤

Γ ⊢ Fi

i ∈ {1, 2} (∨Ri)
Γ ⊢ F1 ∨ F2

Γ ⊢ F1 Γ ⊢ F2

(∧R)
Γ ⊢ F1 ∧ F2

∆ ⊢ F1 Γ (F2) ⊢ F
(—∗L)

Γ (∆, F1 —∗ F2) ⊢ F

∆ ⊢ F1 Γ (∆;F2) ⊢ F
(→L)

Γ (∆; F1 → F2) ⊢ F

Γ (F1, F2) ⊢ F
(∗L)

Γ (F1 ∗ F2) ⊢ F

Γ, F1 ⊢ F2

(—∗R)
Γ ⊢ F1 —∗ F2

Γ ; F1 ⊢ F2

(→R)
Γ ⊢ F1 → F2

Γ ⊢ F1 ∆ ⊢ F2

(∗R)
Γ, ∆ ⊢ F1 ∗ F2

(DNE)
¬¬F ⊢ F

Fig. 1. Sequent calculus rules for propositional BI.

3 Classical models for BI

Definition 3.1 (Classical BI-model). A classical BI-model is given by 〈R, ◦, e,−,∞〉,
where 〈R, ◦, e〉 is a partial commutative monoid, ∞ ∈ R and − : R → R is a



function such that for each x ∈ R, −x is the unique element of R satisfying
x ◦ −x = ∞. We extend − to subsets of R by −X = {−x | x ∈ X}.

Proposition 3.2. If 〈R, ◦, e,−,∞〉 is a classical BI-model then:

1. −e = ∞;
2. ∀x ∈ R. − (−x) = x;
3. ∀X ⊆ R. − (−X) = X;
4. ∀X ⊆ R. R \ (−X) = −(R \ X);
5. if e = ∞ then ◦ is total and 〈R, ◦, e,−〉 is an Abelian group.

Proof. 1. We have −e = e ◦ −e = ∞ by definition of − and e.
2. We have both −(−x) ◦ −x = ∞ and x ◦ −x = ∞ by definition of −, so by

the uniqueness property of − we must have −(−x) = x.
3. Follows immediately from 2.
4. (⊆) Suppose x ∈ R\ (−X), i.e. x 6∈ −X . Since x satisfies x◦−x = ∞ it must

be the case that −x 6∈ X . Since −(−x) = x we have x ∈ {−y | y 6∈ X} =
−(R \ X) as required.
(⊇) Suppose x ∈ −(R \ X), i.e.x = −y where y 6∈ X . By the uniqueness
property of −, x is not −z for any z ∈ X . Thus x 6∈ {−z | z ∈ X},
i.e. x ∈ R \ (−X) as required.

5. To see that x ◦ y is defined for any x, y ∈ R, observe that −x ◦ (x ◦ y) =
(−x ◦ x) ◦ y = e ◦ y = y. Since y is defined, so is −x ◦ (x ◦ y), which can only
be the case if x ◦ y is defined.
To see that 〈R, ◦, e,−〉 is an Abelian group, observe that it is already a partial
commutative monoid by definition, ◦ is a total operation by the above, and
−x is the unique inverse of x for any x ∈ R.

⊓⊔

Example 3.3. For any n ∈ N, the tuple 〈{0, 1}n, XOR, {0}n, NOT, {1}n〉 is a
classical BI-model. In this model, the resources can be seen as n-bit binary
numbers, which can be combined and “inverted” using the logical operations
XOR and NOT respectively. Accordingly, the resources e and ∞ are respectively
the n-bit representations of 0 and 2n − 1.

Example 3.4. Consider the monoid (Zn, +, 0), where Zn is the set of integers
modulo n, and + is addition modulo n. We can form a classical BI-model by
choosing, for any m ∈ Zn,

∞m =def m −m (k) =def m − k

This example shows that, even when the monoid structure is fixed, the choice of
∞ is not unique in general.

Example 3.5. Given an arbitrary monoid 〈R, ◦, e〉, we give a syntactic construc-
tion to generate a classical BI-model 〈R′, ◦′, e′,−′,∞′〉. Consider the set T of
terms

t ∈ T ::= r ∈ R | ∞ | t · t | −t



and let ≈ be the least congruence such that: r1 · r2 ≈ r when r1 ◦ r2 = r,
t1 · t2 ≈ t2 · t1, t1 · (t2 · t3) ≈ (t1 · t2) · t3, −− t ≈ t, t · (−t) ≈ ∞, t1 ≈ −t2 whenever
t1 ◦ t2 ≈ ∞. Write T/≈ for the quotient of T by the relation ≈, and [t] for the
equivalence class of t. The required classical BI-model is obtained by defining
R′ =def T/≈, ◦′([t1], [t2]) =def [t1 ◦ t2], e′ =def [e], −′(t) =def [−t], ∞′ =def [∞].

Example 3.6. A natural question is whether BI models used in separation logic
are also classical BI-models. Consider the partial commutative monoid 〈H, ◦, e〉,
where H =def Z>0 ⇀ Z is the set of partial functions from positive integers to
integers, ◦ is disjoint union of the graph of functions, and e is the function with
empty domain. Unfortunately, no choice of ∞ gives rise to a classical BI-model.
However, it is possible to embed the heap monoid into a more general structure
〈H ′, ◦′, e′〉, where H ′ =def P(Z>0 × Z) is the set of relations instead of partial
functions, ◦ is disjoint union, and e is the empty relation. A classical BI-model
is then obtained by setting ∞ =def Z>0 × Z, and −r =def (Z>0 × Z) \ r.

Example 3.7. As a final example, we consider a heap monoid with fractional
permissions [2] 〈Hp, ◦p, ep〉, where Hp =def Z>0 ⇀ Z× (0, 1] consists of functions
which in addition return a permission in the real interval (0, 1], and ◦ is defined
on functions with overlapping domains using a partial composition function ⊕ :
(Z× (0, 1])× (Z× (0, 1]) ⇀ (Z× (0, 1]) such that ⊕((v1, p1), (v2, p2)) is defined if
and only if v1 = v2 and p1+p2 ≤ 1, and returns (v1, p1+p2). The unit ep is again
the function with empty domain. In analogy with ordinary heaps, we define a
more general structure 〈H ′

p, ◦
′
p, e

′
p〉, where H ′

p =def Z>0 × Z → [0, 1] is the set
of total functions, and ◦′p is defined point-wise using + : [0, 1] × [0, 1] ⇀ [0, 1],
which is ordinary addition restricted to be defined only when the result is ≤ 1.
The function e′p maps everything to 0. A classical BI-model is then obtained by
setting ∞ as mapping everything to 1, and −r =def {(l, v, 1 − p) | (l, v, p) ∈ r}.
Observe that, in this case, the general model is in a way simpler, and that the
− operation returns the complement of the permissions.

4 Classical propositional BI (CBI)

Definition 4.1 (CBI-formula). Formulas of CBI are obtained by the following
grammar:

F ::= P | ⊤ | ⊥ | ¬F | F ∧ F | F ∨ F | F → F |
⊤∗ | ⊥∗ | ∼F | F ∗ F | F ⊗ F | F —∗ F

where P ranges over the propositional variables V .

Definition 4.2 (Satisfaction). Let M = 〈R, ◦, e,−,∞〉 be a classical BI-
model and let ρ be an environment for M . We extend the definition of sat-
isfaction of a formula F under a resource r ∈ R in BI (cf. Section 2) to all
formulas of CBI as follows:

r |= ⊥∗ ⇔ r 6= ∞
r |=∼F ⇔ −r 6|= F

r |= F1 ⊗ F2 ⇔ ∀r1, r2. −r = r1 ◦ r2 implies −r1 |= F1 or −r2 |= F2



We remark that these interpretations are justified by the resulting semantic
equivalences between formulas. For example, ∼F is equivalent to F —∗ ⊥∗, and
F —∗ G is equivalent to ∼F ⊗G. As expected, ⊗ is interpreted as the de Morgan
dual of ∗ with respect to ∼.

Definition 4.3 (Two-sided coherent equivalence). We define two relations
≡L and ≡R on bunches as follows.

– ≡L is the relation ≡ given in Definition 2.1;
– ≡R is the least relation satisfying commutative monoid equations for ‘;’ and

⊥, and for ‘,’ and ⊥∗, plus congruence.

In Figure 2 we give sequent calculus proof rules for CBI, writing sequents of
the form Γ ⊢ ∆, where Γ and ∆ are both bunches. Our presentation is similar to
Pym’s formulation in [7], except that we use two cut rules in order to overcome
a problem with soundness in the formulation of the cut rule there.

We remark that, as formulated, the sequent calculus proof rules of CBI suffer
from the problem that they do not admit cut-elimination (cf. [7]). For example,
as the rules for negation operate at the top level of bunches only, there is no cut-
free proof of, e.g., the sequent F, (G;¬G) ⊢ H . However, since, e.g., G;¬G ⊢ ⊥
is provable, we have a cut-proof of the sequent using (MCut) and (⊥L).

Validity of CBI-sequents with respect to our classical models is now defined
in the obvious manner.

Definition 4.4 (Bunches as formulas). For any bunch Γ we define two for-
mulas, ΦΓ and ΨΓ by recursion on the structure of bunches as follows:

ΦF = F ΨF = F
ΦΓ1;Γ2

= ΦΓ1
∧ ΦΓ2

ΨΓ1;Γ2
= ΨΓ1

∨ ΨΓ2

ΦΓ1,Γ2
= ΦΓ1

∗ ΦΓ2
ΨΓ1,Γ2

= ΨΓ1
⊗ ΨΓ2

Definition 4.5 (Truth / Validity). Let M = 〈R, ◦, e,−,∞〉 be a classical
BI-model. A sequent Γ ⊢ ∆ is said to be true in M if for any environment ρ for
M and for all r ∈ R, r |= ΦΓ implies r |= Ψ∆, where Φ(−) and Ψ(−) are the
formulas defined in Defn. 4.4 above. A sequent is said to be valid if it is true in
all classical BI-models.

5 Proof of soundness of CBI wrt. classical BI-models

Definition 5.1 (BI+). BI+ is an extension of boolean BI (given in Section 2)
defined as follows:

1. The formulas of BI+ are the formulas of BI plus a new atomic propositional
formula ⊲⊳ . We extend the usual satisfaction relation for BI-formulas in a
classical BI-model M under an environment ρ for M by:

r |= ⊲⊳ ⇔ r = ∞



Structural rules:

(Id)
F ⊢ F

Γ
′ ⊢ ∆

′

Γ ≡L Γ ′

∆ ≡R ∆′ (Equiv)
Γ ⊢ ∆

Γ (Γ ′) ⊢ ∆
(WkL)

Γ (Γ ′; Γ ′′) ⊢ ∆

Γ (Γ ′; Γ ′) ⊢ ∆
(CtrL)

Γ (Γ ′) ⊢ ∆

Γ
′ ⊢ ∆; F Γ ;F ⊢ ∆

′

(ACut)
Γ ;Γ ′ ⊢ ∆; ∆′

Γ ⊢ ∆(∆′)
(WkR)

Γ ⊢ ∆(∆′; ∆′′)

Γ ⊢ ∆(∆′; ∆′)
(CtrR)

Γ ⊢ ∆(∆′)

Γ
′ ⊢ ∆, F Γ, F ⊢ ∆

′

(MCut)
Γ, Γ

′ ⊢ ∆, ∆
′

Additive rules:

(⊥L)
Γ (⊥) ⊢ ∆

(⊤R)
Γ ⊢ ∆(⊤)

Γ ⊢ F ; ∆
(¬L)

Γ ;¬F ⊢ ∆

Γ (F1) ⊢ ∆ Γ (F2) ⊢ ∆
(∨L)

Γ (F1 ∨ F2) ⊢ ∆

Γ (F1; F2) ⊢ ∆
(∧L)

Γ (F1 ∧ F2) ⊢ ∆

Γ ; F ⊢ ∆
(¬R)

Γ ⊢ ¬F ; ∆

Γ ⊢ ∆(F1; F2)
(∨R)

Γ ⊢ ∆(F1 ∨ F2)

Γ ⊢ ∆(F1) Γ ⊢ ∆(F2)
(∧R)

Γ ⊢ ∆(F1 ∧ F2)

Γ
′ ⊢ F1 Γ (Γ ′; F2) ⊢ ∆

(→L)
Γ (Γ ′; F1 → F2) ⊢ ∆

Γ ;F1 ⊢ F2; ∆
(→R)

Γ ⊢ F1 → F2; ∆

Multiplicative rules:

Γ ⊢ F, ∆
(∼L)

Γ, ∼F ⊢ ∆

Γ (F1, F2) ⊢ ∆
(∗L)

Γ (F1 ∗ F2) ⊢ ∆

Γ, F1 ⊢ ∆ Γ
′

, F2 ⊢ ∆
′

(⊗L)
Γ, Γ

′

, F1 ⊗ F2 ⊢ ∆, ∆
′

Γ, F ⊢ ∆
(∼R)

Γ ⊢∼F, ∆

Γ ⊢ ∆, F1 Γ
′ ⊢ ∆

′

, F2

(∗R)
Γ, Γ

′ ⊢ ∆, ∆
′

, F1 ∗ F2

Γ ⊢ ∆(F1, F2)
(⊗R)

Γ ⊢ ∆(F1 ⊗ F2)

Γ
′ ⊢ F1 Γ (F2) ⊢ ∆

(—∗L)
Γ (Γ ′

, F1 —∗ F2) ⊢ ∆

Γ, F1 ⊢ F2, ∆
(—∗R)

Γ ⊢ F1 —∗ F2, ∆

Fig. 2. Sequent calculus rules for propositional CBI.



2. The proof rules of BI+ are the proof rules of BI plus the following axioms:

(DIE)
−−F ⊢ F

(DII)
F ⊢−−F

where−F is an abbreviation for the formula ¬(F —∗ (¬ ⊲⊳ )).

We remark that the definition of BI+ is intended to capture as directly as
possible the special features of our classical BI-models.

Lemma 5.2. Let M = 〈R, ◦, e,−,∞〉 be a classical BI-model and let ρ be an
environment for M . For any r ∈ R and formula F we have r |= −F iff −r |= F .

Proof. We have by the definitions of −F and of satisfaction:

r |= −F ⇔ r |= (F —∗ (⊲⊳ → ⊥)) → ⊥
⇔ r 6|= F —∗ (⊲⊳ → ⊥)
⇔ ∃r′. r ◦ r′ defined and r′ |= F but r ◦ r′ 6|= ⊲⊳ → ⊥
⇔ ∃r′. r ◦ r′ defined and r′ |= F and r ◦ r′ = ∞
⇔ ∃r′. r ◦ r′ defined and r′ |= F and r′ = −r
⇔ −r |= F

Note that the penultimate equivalence above is justified by the fact that −r is
the unique element of R satisfying r ◦ −r = ∞.

Proposition 5.3. BI+ is sound with respect to validity in classical BI-models.

Proof. As usual, soundness follows from the fact that the proof rules of BI+

preserve truth in classical BI-models. First, note that the rules of BI preserve
truth in BI-models and thus in classical BI-models in particular. Thus it only
remains to show that the axioms added to BI in BI+ are true in every classical
BI-model. We fix a classical BI-model 〈R, ◦, e,−,∞〉 and environment ρ, and
observe that Lemma 5.2 and part 2 of Proposition 3.2 give:

r |=−−F ⇔ −r |= −F ⇔ −−r |= F ⇔ r |= F

so that r |=−−F ↔ F as required. ⊓⊔

We write F ⊣⊢ G to mean that both F ⊢ G and G ⊢ F are derivable in BI+,
and call F ⊣⊢ G a derivable equivalence. The following lemma says that we can
rewrite formulas in BI+ sequents according to derivable equivalences without
affecting BI+-derivability.

Lemma 5.4. Write F (G) for a formula F of which G is a distinguished sub-
formula, and when F (G) is understood write F (G′) for the formula obtained by
replacing G by G′ in F . (This is analogous to the notation for bunches.)

Now suppose that A ⊣⊢ B is a derivable equivalence of BI+ (where A, B are
formulas). Then the following two proof rules are derivable in BI+:

Γ (F (A)) ⊢ C
(⊣⊢L)

Γ (F (B)) ⊢ C

Γ ⊢ F (A)
(⊣⊢R)

Γ ⊢ F (B)



Proof. By considering the following two instances of (Cut):

F (B) ⊢ F (A) Γ (F (A)) ⊢ C
(Cut)

Γ (F (B)) ⊢ C

Γ ⊢ F (A) F (A) ⊢ F (B)
(Cut)

Γ ⊢ F (B)

it suffices to prove that F (A) ⊢ F (B) is derivable in BI+, whence it follows
by symmetry that F (B) ⊢ F (A) is also derivable. If F (A) = A then this is
immediate by assumption. Otherwise A is a (distinguished) strict subformula of
F and we proceed by an easy structural induction on F . ⊓⊔

Lemma 5.5. The following are all derivable in BI+:

1. ¬−F ⊣⊢ F —∗ ¬ ⊲⊳
2. ¬−F ⊣⊢−¬F
3. ¬−¬−F ⊣⊢ F
4. ¬−(F ∗ ¬−G) ⊣⊢ F —∗ G
5. F —∗ G ⊣⊢ ¬−G —∗ ¬−F
6. F ⊣⊢ ¬−(¬−¬ ⊲⊳ ∗ ¬−F )

Definition 5.6 (Embedding function). We define an embedding function,
p−q, from CBI-formulas to BI+-formulas by recursion on the structure of CBI-
formulas, as follows:

pFq = F where F ∈ {P | P ∈ V} ∪ {⊤,⊥,⊤∗}
pF1 ?F2q = pF1q ? pF2q where ? ∈ {∧,∨,→, ∗, —∗}

p¬Fq = pFq → ⊥
p⊥∗

q = ⊲⊳ → ⊥
p∼Fq = pFq —∗ p⊥∗

q = −pFq → ⊥
pF1 ⊗ F2q = p∼(∼F1∗ ∼F2)q

We extend the domain of the function p−q to bunches in the natural manner:

pΓ1, Γ2q = pΓ1q, pΓ2q and pΓ1; Γ2q = pΓ1q; pΓ2q

Finally, we extend p−q to a function from CBI-sequents to BI+-sequents by:

pΓ ⊢ ∆q = pΓq ⊢ pΨ∆q

Lemma 5.7. The function p−q preserves validity with respect to (i) formulas
and (ii) sequents. That is, Γ ⊢ ∆ is valid iff pΓ ⊢ ∆q is.

Proof. We fix a classical BI-model M = 〈R, ◦, e,−,∞〉 and an environment ρ
for M . For (i), we let r ∈ R and prove by structural induction on F that r |= F
iff r |= pFq:

Case F ∈ {P | P ∈ V} ∪ {⊤,⊥,⊤∗}. Trivial.



Case F = F1 ?F2, where ? ∈ {∧,∨,→, ∗, —∗}. We are immediately done by the
induction hypothesis.

Case F = ¬G. We need to show r |= ¬G iff r |= pGq → ⊥, i.e., r 6|= G iff
r 6|= pGq, which follows by the induction hypothesis.

Case F = ⊥∗. We need to show r |= ⊥∗ iff r |= ⊲⊳ → ⊥. We have both r |= ⊥∗

iff r 6= ∞ and r |= ⊲⊳ → ⊥ iff r 6= ∞ by definition, so are done.

Case F =∼G. We require to show r |=∼G iff r |= −pGq → ⊥, i.e., −r 6|= G
iff r 6|= −pGq. By Lemma 5.2, r 6|= −pGq iff −r 6|= pGq, so we are done by the
induction hypothesis.

Case F = F1 ⊗ F2. We require to show:

r |= F1 ⊗ F2 ⇔ r |= p∼(∼F1∗ ∼F2)q
⇔ r |= −((−pF1q → ⊥) ∗ (−pF2q → ⊥)) → ⊥
⇔ −r |= (−pF1q → ⊥) ∗ (−pF2q → ⊥)
⇔ ¬∃r1, r2. −r = r1 ◦ r2 and −r1 6|= pF1q and −r2 6|= pF2q

⇔ ∀r1, r2. −r = r1 ◦ r2 implies −r1 |= pF1q or −r2 |= pF2q

⇔ r |= pF1q ⊗ pF2q

Note that we use Lemma 5.2 in some of the equivalences above. The required
equivalence thus follows from the induction hypothesis. This completes the proof
for part (i).

For part (ii), let Γ ⊢ ∆ be a CBI-sequent. The embedded sequent pΓ ⊢ ∆q =
pΓq ⊢ pΨ∆q is true in M if for all r ∈ R we have r |= ΦpΓq implies r |= pΨ∆q,
where ΦpΓq and Ψ∆ are the formulas constructed from pΓq and ∆ in Defn. 4.5.
Now one can prove easily by structural induction on Γ that ΦpΓq = pΦΓ q, so:

pΓ ⊢ ∆q true in M ⇔ pΓq ⊢ pΨ∆q true in M
⇔ ∀r ∈ R. r |= pΦΓ q implies r |= pΨ∆q

⇔ ∀r ∈ R. r |= ΦΓ implies r |= Ψ∆ (by part (i))
⇔ Γ ⊢ ∆ true in M

Thus Γ ⊢ ∆ is valid if and only if pΓ ⊢ ∆q is. ⊓⊔

Lemma 5.8. For any bunch Γ with sub-bunch Γ ′, we have pΓ (Γ ′)q = pΓq(pΓ ′
q).

Proof. If Γ = Γ ′ then this is trivial. Otherwise, proceed by a straightforward
induction on the structure of Γ . ⊓⊔

Lemma 5.9. The proof rules of CBI are admissible in BI+ under the embedding
p−q. That is, for any CBI proof rule, say:

{Γi ⊢ ∆i | i ∈ {1, 2}}
(R)

Γ ⊢ ∆

if pΓi ⊢ ∆iq is derivable in BI+ for each i ∈ {1, 2}, then so is pΓ ⊢ ∆q.



Proof. We distinguish a case for each proof rule of CBI. All derivations shown
are BI+ derivations, except that we use the rule symbol (=) to denote rewriting
a sequent according to Defns. 4.4 and 5.6 and Lemma 5.8. Because of space
limitations, we show only certain representative cases.

Cases (Id), (WkL), (CtrL), (⊥L), (∨L), (∧L), (→L), (∗L), (—∗L). Under the
embedding p−q, these rules become instances of the corresponding BI+ rule. For
example, in the case of (—∗L) we have:

...
pΓ ′ ⊢ F1q

(=)
pΓ ′

q ⊢ pF1q

...
pΓ (F2) ⊢ ∆q

(=)
pΓq(pF2q) ⊢ pΨ∆q

(—∗L)
pΓq(pΓ ′

q, pF1q —∗ pF2q) ⊢ pΨ∆q
(=)

pΓ (Γ ′, F1 —∗ F2) ⊢ ∆q

Cases (∨R), (⊗R). The premise and conclusion of these rules are identified under
p−q, so we are trivially done. For example, in the case of (⊗R), a straightfor-
ward structural induction on ∆ shows that Ψ∆(F1,F2) = Ψ∆(F1⊗F2). Thus using
Defn. 5.6 we have:

pΓ ⊢ ∆(F1 ⊗ F2)q = pΓq ⊢ pΨ∆(F1⊗F2)q = pΓq ⊢ pΨ∆(F1,F2)q = pΓ ⊢ ∆(F1, F2)q

Cases (→R), (¬R), (¬L), (∼L), (∼R), (—∗R), (∗R), (⊗L), (ACut), (MCut).
These rules are derivable under p−q by using (Cut) to introduce the needed
premises and using one or more of the derivable sequents and equivalences given
in Lemma 5.5 to discharge the resulting proof burden. For example, in the case
of (∼R) we have:

...
pΓ, F ⊢ ∆q

(=)
pΓq, pFq ⊢ pΨ∆q

(—∗R)
pΓq ⊢ pFq —∗ pΨ∆q

Lemma 5.5, part 4
·
·
·

pFq —∗ pΨ∆q ⊢ ¬−(pFq ∗ ¬−pΨ∆q)
(Cut)

pΓq ⊢ ¬−(pFq ∗ ¬−pΨ∆q)
(⊣⊢R)

pΓq ⊢ ¬−(¬−¬−pFq ∗ ¬−pΨ∆q)
(=)

pΓ ⊢∼F, ∆q

where the application of the derived rule (⊣⊢R) (cf. Lemma 5.4) rewrites the for-
mula on the right of the sequent according to the derivable equivalence ¬−¬−F ⊣⊢
F given by part 3 of Lemma 5.5.

Cases (⊤R), (WkR), (CtrR), (∧R). These rules operate inside bunches on the
right hand side of sequents. As well as the techniques for the rules in the cases



above, we additionally require structural induction on these bunches. For exam-
ple, in the case of (WkR) we proceed as follows:

...
pΓ ⊢ ∆(∆′)q

(=)
pΓq ⊢ pΨ∆(∆′)q pΨ∆(∆′)q ⊢ pΨ∆(∆′;∆′′)q

(Cut)
pΓq ⊢ pΨ∆(∆′;∆′′)q

(=)
pΓ ⊢ ∆(∆′; ∆′′)q

It thus remains to show that pΨ∆(∆′)q ⊢ pΨ∆(∆′;∆′′)q is derivable, which we
do by structural induction on ∆(−), observing that the latter can be defined
inductively, up to coherent equivalence (≡), as follows:

∆(−) ::= − | ∆(−); ∆ | ∆(−), ∆

where ∆ ranges over (complete) bunches.

Subcase ∆(−) = −. We have ∆(∆′) = ∆′ and ∆(∆′; ∆′′) = ∆′; ∆′′ and proceed
as follows:

(Id)
pΨ∆′q ⊢ pΨ∆′q

(∨R1)
pΨ∆′q ⊢ pΨ∆′q ∨ pΨ∆′′q

(=)
pΨ∆′q ⊢ pΨ∆′;∆′′q

Subcase ∆(−) = ∆1(−); ∆2. We proceed as follows:

(I.H.)
·
·
·

pΨ∆1(∆′)q ⊢ pΨ∆1(∆′;∆′′)q
(∨R1)

pΨ∆1(∆′)q ⊢ pΨ∆1(∆′;∆′′)q ∨ pΨ∆2
q

(Id)
pΨ∆2

q ⊢ pΨ∆2
q

(∨R2)
pΨ∆2

q ⊢ pΨ∆1(∆′;∆′′)q ∨ pΨ∆2
q

(∨L)
pΨ∆1(∆′)q ∨ pΨ∆2

q ⊢ pΨ∆1(∆′;∆′′)q ∨ pΨ∆2
q

(=)
pΨ∆1(∆′);∆2

q ⊢ pΨ∆1(∆′;∆′′);∆2q

Subcase ∆(−) = ∆1(−), ∆2. We proceed as follows:

(Id)
¬−pΨ∆2

q ⊢ ¬−pΨ∆2
q

(I.H.)
·
·
·

pΨ∆1(∆′)q ⊢ pΨ∆1(∆′;∆′′)q
(—∗L)

¬−pΨ∆2
q —∗ pΨ∆1(∆′)q,¬−pΨ∆2

q ⊢ pΨ∆1(∆′;∆′′)q
(—∗R)

¬−pΨ∆2
q —∗ pΨ∆1(∆′)q ⊢ ¬−pΨ∆2

q —∗ pΨ∆1(∆′;∆′′)q
(⊣⊢L)

¬−(¬−pΨ∆1(∆′)q ∗ ¬−pΨ∆2
q) ⊢ ¬−pΨ∆2

q —∗ pΨ∆1(∆′;∆′′)q
(⊣⊢R)

¬−(¬−pΨ∆1(∆′)q ∗ ¬−pΨ∆2
q) ⊢ ¬−(¬−pΨ∆1(∆′;∆′′)q ∗ ¬−pΨ∆2

q)
(=)

pΨ∆1(∆′),∆2
q ⊢ pΨ∆1(∆′;∆′′),∆2q



Note that in the applications of (⊣⊢R) and (⊣⊢L) we use the derivable equiv-
alence ¬−(F ∗ ¬−G) ⊣⊢ F —∗ G given by Lemma 5.5, part 4. This completes
the induction and thus the case.

Case (Equiv). It is easy to show that if Γ ≡L Γ ′ then pΓq ≡L pΓ ′
q. Since ≡L is

the same relation as ≡ we can proceed as follows:

...
pΓ ′ ⊢ ∆′

q
(=)

pΓ ′
q ⊢ pΨ∆′q pΨ∆′q ⊢ pΨ∆q

(Cut)
pΓ ′

q ⊢ pΨ∆q
pΓq ≡ pΓ ′

q (Equiv)
pΓq ⊢ pΨ∆q

(=)
pΓ ⊢ ∆q

It thus suffices to show that if ∆′ ≡R ∆ then pΨ∆′q ⊢ pΨ∆q is derivable.
This follows by induction on the conditions defining ∆′ ≡R ∆. Most of the
cases are straightforward (making appropriate use of Lemmas 5.4 and 5.5).
For congruence, we need to show that if pΨ∆′q ⊢ pΨ∆q is derivable then so
is pΨ∆′′(∆′)q ⊢ pΨ∆′′(∆)q. This follows by a structural induction on ∆′′(−). ⊓⊔

Theorem 5.10. CBI is sound with respect to validity in classical BI-models.

Proof. Since the proof rules of CBI are admissible in BI+ under the embedding
p−q by Lemma 5.9, it follows that if Γ ⊢ ∆ is derivable in CBI then pΓ ⊢ ∆q is
derivable in BI+, and hence pΓ ⊢ ∆q is valid by the soundness of BI+ (Propo-
sition 5.3). Since p−q preserves validity by Lemma 5.7, Γ ⊢ ∆ is also valid. ⊓⊔

6 Conclusions and future work

Our starting point in investigating the issues considered here was to observe that
(boolean) BI has additive connectives with no multiplicative equivalent, and to
ask whether any computationally significant models would be admitted by a
classical version of BI or, for that matter, any non-trivial models (i.e., models
in which the connectives do not collapse). Our main conceptual contribution in
the present paper is to make the connection between classical BI and our class
of classical BI-models, and to show how to interpret the new multiplicative con-
nectives in these models. In particular, similar approaches to our multiplicative
negation have been proposed before, both by Pym [7] and by the relevant logic
community. We just recently learned that our definition of classical BI-model
extends the models of relevant logic [4] based on the Routley star (our − oper-
ator) with the ∞ element, and its relation to −. Further investigations will be
the subject of future work.

Our main technical contribution here is to show that the CBI sequent calculus
is a sound basis for reasoning about our models. This is done via a translation



from CBI proofs into proofs in an extension of boolean BI with one extra formula
and two extra axioms which directly express properties of our models. In fact,
we have recently shown that, if one considers a generalisation of our models to
relational models (i.e. models in which the monoidal operation is a relation rather
than a partial function) then this extension is complete [3]. This completeness
result should straightforwardly transfer to CBI.

A concern must be the failure of cut-elimination for the CBI sequent calculus
proof rules as we have formulated them. The reason for this failure appears to be
the tension between the “deep” rules for the implications and the additive units
on the one hand and the “shallow” rules for the negations and other connectives
on the other, despite provable equivalences linking the connectives such as F —∗
G ⊣⊢∼F ⊗G. While one might expect suitable deep formulations of the shallow
rules to restore cut-elimination, finding such formulations appears a difficult
problem. On the other hand, we have recently formulated a cut-eliminating proof
system for classical BI based on Belnap’s display logic [1], which is also sound
and complete for the relational version of our models [3].

At the present time it remains to be seen whether our models, with their
notion of “resource involution”, will turn out to have widespread application in
computer science, as is the case for BI-models as used e.g. in separation logic.
We hope that the present paper, together with the more recent developments
reported in [3], will serve to stimulate interest in our models, and in potential
applications.
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