
Light Dialectica Revisited

Mircea-Dan Hernest1 and Trifon Trifonov2,?

1 Informatics Institute, University of Innsbruck, Austria
dan.hernest@uibk.ac.at

2 Mathematics Institute, University of Munich, Germany
trifonov@math.lmu.de

Abstract. We upgrade the light Dialectica interpretation [6] by adding two more
light universal quantifiers, which are both semi-computational and semi-uniform
and complement each other. An illustrative example is presented for the new light
quantifiers and a new application is given for the older uniform quantifier. The
realizability of new light negative formulations for the Axiom of Choice and for
the Independence of Premises is explored in the new setting.

1 Introduction

We extend the light Dialectica (LD) interpretation [7] formulated for arithmetic without
strong existential quantifiers. The reason for disregarding the intuitionistic existentials
is that we are only interested in program extraction from classical proofs such that the
translated proofs are classical as well. Thus in both the input and the verifying systems
the existential quantifiers are defined in terms of the corresponding universal quantifiers.
From here on quantifier will mean “universal quantifier” and existential quantifier will
refer to the corresponding weak/classical existential quantifier.

Besides the non-computational quantifier ∀∅ (which is fully uniform, in the sense of
Berger [2], and was denoted ∀ in [7]) we consider two more mutually complementary
light quantifiers defined as follows:

[+] the positively computational but negatively uniform quantifier ∀+ ;

[−] the negatively computational but positively uniform quantifier ∀− .

Thus ∀∅ is the “lightest” quantifier, since it has no computational content at all,
be it positive or negative. For expository reasons we will name “light” also the semi-
uniform / semi-computational quantifiers ∀+ and ∀− . The usual universal quantifier will
be denoted ∀± in the input system NAl and simply ∀ in the verifying system NA. The
reason for this distinction is twofold: on one hand we want to make a clear separation
between the input and the verifying system and on the other hand we want to stress
that the regular universal quantifier is fully computational (both positively and nega-
tively) when interpreted by the light Dialectica. We denote the existential counterparts
of all five quantifiers as follows3: ∃̃�x :≡ ¬∀�x¬ for � ∈ {t , ∅ , + , − , ±} .
? The second author gratefully acknowledges financial support by MATHLOGAPS (MEST-CT-

2004-504029), a Marie Curie Early Stage Training Site.
3 Throughout the whole paper we will use “t” as a placeholder for the empty space.

2 Hernest & Trifonov

In [7], ∃̃∅ was denoted ∃cl and ∃̃, ∃̃± were both denoted ∃cl . As we will see later, ∃̃∅
does have a certain computational contribution when placed in front of a computation-
ally meaningful formula, manifested by the increase in type level of its light Dialectica
translation. The effect is identical to the one of a double negation. Although generally
not void of computational content, ∃̃∅ is nevertheless fully uniform, in the sense that its
quantified variable has no contribution to its computational content. Similarly, for ∃̃+
and ∃̃− the quantified variable has only a partial impact on their computational content,
reason why we can call them semi-uniform and thus “light”.

2 Arithmetical systems for light Dialectica extraction

The verifying arithmetical system NA, into which input proofs will be translated by
the light Dialectica algorithm, is the standard Natural Deduction (abbreviated “ND”)
formulation of the negative fragment of Heyting Arithmetic in all finite types HAω from
[18]. The input arithmetical system NAl is basically an annotated refinement of NA with
the light quantifiers, where ∀± replaces ∀. System NAl will also include a number of
peculiar “light” principles, some of them just annotated variants of certain NA theorems
(which may not be NAl theorems), which are straightforwardly LD-realizable in NA.

2.1 The system NA

Below we define finite types T , terms T , formulas F and light formulas Fl :

T ρ, σ ::= ι | o | (ρσ)

T s, t ::= xρ | To | Fo | 0ι | Sιι | Ifoρρρ | Rιρ(ιρρ)ρ | (λxρ. tσ)ρσ | (tρσsρ)σ

F A,B ::= at(to) | A→ B | A ∧B | ∀xρA
Fl A,B ::= at(to) | A→ B | A ∧B | ∀� xρA for � ∈ {∅,+,−,±}

For simplicity we employ just two basic types: integers ι and booleans o, and use ρστ
for (ρ(στ)). Apart from the usual constructors for booleans (T, F) and integers (0, S),
our terms include case distinction If and Gödel recursion R.

The operator FV(·) returning the set of free variables of its argument t ∈ T or
A ∈ F/Fl is defined as usual. Atomic formulas are identified with boolean terms and
thus are decidable by definition. In particular, we will use decidable falsity ⊥ :≡at(F)
and truth > :≡at(T). As usual, we abbreviate A→ ⊥ by ¬A. The language of NA
(with ∀) is denoted L and the language of NAl (with ∀∅, ∀+, ∀−, ∀±) is denoted Ll .

We use a special ND presentation of our systems, where proofs are represented as
sequents Γ ` B, meaning that formula B is the root of the ND tree whose leaves Γ are
typed assumption variables (abbreviated “avars”) a :A. Here the formula A is the type
of the avar a. Since there may be more leaves labelled with the same a :A, Γ is a mul-
tiset. The logical rules of system NA are presented in Table 1, with the usual restriction
on ∀i that z 6∈ FV(Γ)≡

⋃
a:A∈Γ FV(A). At→i , [a :A] denotes the multisubset of all

occurrences of a :A in the multiset of assumptions of the premise sequent of→i . Thus
a :A 6∈ Γ , hence a :A is no longer an assumption in the conclusion sequent of→i . In

Light Dialectica Revisited 3

the ND tree, this means that all the leaves labelled a :A are inactivated (or “discharged”
as one usually says in Natural Deduction terminology).

a :A ` A (id)
Γ, [a :A] ` B

→i
Γ ` A→ B

Γ ` A ∆ ` A→ B
→e

Γ,∆ ` B
Γ ` A

∀i
Γ ` ∀zA

Γ ` A ∧B
∧el

Γ ` A

∆ ` A ∧B
∧er

∆ ` B

Γ ` A ∆ ` B
∧i

Γ,∆ ` A ∧B

Γ ` ∀zA
∀e

Γ ` A[t/z]

Table 1. Logical rules

We find it convenient to introduce induction for booleans and naturals as the rules
presented in Table 2. Here we assume that the induction variables bo and respectively
nι do not occur freely in Γ , nor ∆, and that they do occur in the formula A.

Γ ` A(T) ∆ ` A(F)
Indo

Γ,∆ ` A(b)

Γ ` A(0) ∆ ` A(n)→ A(Sn)
Indι

Γ,∆ ` A(n)

Table 2. Induction rules

Computation in NA is expressed via the usual β-reduction rule (λx.t)s ↪→ t[x 7→ s],
plus rewrite rules defining the computational meaning of If and R :

If T s t ↪→ s R 0 s t ↪→ s

If F s t ↪→ t R (Sn) s t ↪→ t n (Rn s t)

Since this typed term system is confluent and strongly normalizing (cf. [15]), we are
free not to fix a particular evaluation strategy. For simplicity, we assume that all terms
occurring in proofs are automatically in normal form4. When building proofs, some
computation is thus carried out implicitly, behind the scene.

TAx : ` at(T) CmpAx : ` x =ρ y → A(x)→ A(y)

Table 3. Basic axioms

Using recursion at higher types we can define any provably total function of ground
arithmetic, including such decidable predicates. For instance, decidable equality Eqo

4 Normalization is necessary only when matching terms in formulas. We only avoid introducing
equality axioms AxEQL as in [7] and skip the corresponding easy applications of Compatibility.

4 Hernest & Trifonov

for booleans and Eqι for natural numbers is defined as follows:

Eqoooo :≡ λx.Ifx (λy.y) (λy.If y F T)
Eqιιoι :≡ λx.Rx

(
λy.R y T (λn, qo.F)

) (
λm, pιo, y.R y F (λn, qo.p n)

)
The at(·) construction allows us to view boolean programs as decidable predicates.

Given Indo , its logical meaning is settled by the truth axiom TAx, see Table 3. In
this way we can define predicate equality at base types as s =σ t :≡ at(Eq s t) for
σ ∈ {o, ι} and further at higher types extensionally as usual s =ρτ t :≡∀xρ(sx =τ tx).
It is straightforward to prove by induction on ρ that =ρ is reflexive, symmetric and
transitive at any type ρ.

To complete our system, we must include in NA also the compatibility axiom CmpAx,
see Table 3. Note that ex falso quodlibet (EFQ) ⊥ → A and stability (Stab) ¬¬A → A
are fully provable in NA (cf. [15], by induction on A, using TAx and Indo).

2.2 The system NAl

System NAl refines the clone of NA (just ∀ renamed to ∀±) with introduction and elim-
ination rules for the light quantifiers (see Table 4). These are copies of the clone rules
∀e± and ∀i± , but with the usual restriction (±) on ∀i± that z 6∈ FV(Γ) refined with the
following conditions referring to the LD-interpretation (later defined in Sect. 3):

(+) at ∀i+ , z may be used computationally only positively, i.e.,
z must not be free in the challengers of the LD-translation of Γ .

(−) at ∀i− , z may be used computationally only negatively, i.e.,
z must not be free in the witnesses of the LD-translation of A.

(∅) at ∀i∅ , z may not be used computationally at all, i.e., both (+) and (−).

Γ l̀A ∀i±
Γ l̀ ∀±zA

Γ l̀A ∀i+
Γ l̀ ∀+zA

Γ l̀A ∀i−
Γ l̀ ∀−zA

Γ l̀A ∀i∅
Γ l̀ ∀∅zA

Γ l̀ ∀±zA ∀e±
Γ l̀A[t/z]

Γ l̀ ∀+zA ∀e+
Γ l̀A[t/z]

Γ l̀ ∀−zA ∀e−
Γ l̀A[t/z]

Γ l̀ ∀∅zA ∀e∅
Γ l̀A[t/z]

Table 4. Additional rules for NAl

Notice that the restrictions (+), (−) and (∅) assume knowledge of the LD-interpretation
of whole proofs, in their full depth, thus forcing the definition of NAl proofs to go
inductively in parallel with the LD-extraction of part of their computational content
(namely free variables of the extracted terms).

Definition 1 (computational relevance of formulas). We simultaneously define the
classes of realization irrelevant A⊕ and refutation irrelevant A	 formulas as follows:

A⊕, B⊕ ::= at(t) | A⊕ ∧B⊕ | A	 → B⊕ | ∀�xA⊕ for � ∈ {∅,+,−,±}
A	, B	 ::= at(t) | A	 ∧B	 | A⊕ → B	 | ∀�xA	 for � ∈ {∅,+}

Light Dialectica Revisited 5

A formula is realization (refutation) relevant if it is not realization (refutation) irrele-
vant. An assumption formula in a sequent is computationally relevant if it is refutation
relevant and the conclusion formula in a sequent is computationally relevant if it is re-
alization relevant. An explanation for this terminology is given by Remark 1 in Sec. 3.

One necessary change when adopting principles from NA is to replace CmpAx with
a weak compatibility rule. This is because Dialectica is unable to interpret full exten-
sionality (cf. [18]). We here employ an upgraded variant of the CMP rule5 from [7]:

Γ	 l̀x =ρ y
CMPρ

Γ	 l̀B(x)→ B(y)

where all formulas in Γ	 are refutation irrelevant.
Whereas in NA alone we could have safely let all contractions be handled implicitly

at→i , for expository purposes it is convenient to explicitate the computationally rele-
vant contractions of NAl .We achieve this by including in NAl the contraction anti-rule6

Cl (see Table 5) for all formulas A that are refutation relevant and F: do not contain
any ∀+ , nor ∀∅ . This triggers the addition to NA of an explicit (unrestricted) contraction
anti-rule C. The restriction F ensures that all contraction formulas that require at least

∆, a :A, a :A ` B
C

∆, a :A ` B

∆, a :A, a :A l̀B Cl
∆, a :A l̀B

Table 5. Contraction anti-rules C for NA and (restricted) Cl for NAl

one challenger term for their LD-interpretation will have quantifier-free (hence decid-
able) LD-translations, which is necessary for attaining soundness. Note that, being a
purely syntactical criterion, F does not admit formulas whose LD-translations contain
quantifiers, but could nevertheless be decidable in certain models. Moreover, in order
to avoid having any computationally relevant contractions implicit in→i , we constrain
the deduction rules of NAl to disallow multiple occurrences of refutation relevant as-
sumptions in any of the premise sequents. Thus, whenever a double occurrence of a
refutation relevant assumption is created in a conclusion sequent by one of the binary
rules of NAl , such sequent cannot be directly a premise for the application of an(other)
NAl rule: the anti-rule Cl must be applied first, in order to eliminate the critical double.
If F is not satisfied and yet a :A is a refutation relevant assumption occurring at least
twice in some conclusion sequent, this is a dead end: such sequent can only be the root
of the NAl proof-tree.

Since the Indι rule corresponds to a virtually unbounded number of contractions of
each assumption in∆ (cf. [7]), its clone in the system NAl is subject to a restriction like
the one of Cl . Namely, we need to require that all refutation relevant avars in ∆ satisfy

5 The weak extensionality (compatibility) rule is originally due to Spector [16], cf. [9].
6 We refer to contraction as “anti-rule”, rather than “rule” because, despite the sequent-like

representation of our calculi, in fact our formalisms are Natural Deduction (ND) and in the ND
directed tree the representation of contraction is by convergent arrows that go in the direction
which is reverse to the “normal” direction of all the other rules.

6 Hernest & Trifonov

F. Moreover, since the contractions for Indι will be handled differently than for simple
binary rules like→e or ∧i , it is more convenient to require that Indι in NAl implicitly
contracts all its refutation relevant assumptions. We will use the notation Γ] ∆ for a
special multiset union in which refutation relevant assumptions appear only once, even
if they appear in both Γ and ∆. Thus Indι for NAl is obtained by replacing “Γ,∆”
with “Γ]∆ in Table 2.”

Notation for tuples. We use bold face variables f , g, . . . ,u,v,w,x,y, . . . for tu-
ples of variables, and bold face terms r, s, t, . . . ,γ, δ, ζ . . . for tuples of terms. Given
the sequences of terms t and s, by ts we mean the sequence of terms t0s, . . . , tns.
Similarly for the multiple simultaneous substitution t[s/x].

Canonical zero terms. For each higher-order type ρwe define a corresponding zero
term 0ρ :≡λx. 0σ where σ ∈ {o, ι} is the corresponding ground type and 0o :≡F.

3 The light Dialectica interpretation

With each formulaA of NAl we associate its LD-translation: a not necessarily quantifier-
free formula |A|xy of NA where x,y are tuples of fresh variables, not appearing in A.
The variables x in the superscript are called the witness variables, while the subscript
variables y are called the challenge variables. Terms t substituting witness variables
(like |A|ty) are called realizing terms or “witnesses” and terms s substituting challenge
variables (like |A|xs) are called refuting terms or “challengers”. The new and more com-
pact notation |A|xy is originally due to Oliva [11].

Intuitively, the LD-interpretation ofA can be viewed as a game in which first Eloise
(∃) and then Abelard (∀) make one move each by playing type-corresponding objects
t and s for the tuples x and respectively y . Formula |A|xy specifies (cf. [10]) the “ad-
judication relation”, here not necessarily decidable: Eloise wins iff NA ` |A|ts . In our
light context as well, Eloise has a winning move whenever A is provable in NAl : the
LD-interpretation will explicitly provide it from the input NAl proof of A as a tuple of
witnesses t (s.t. FV(t) ⊆ FV(A)) together with the verifying proof in NA of ∀y |A|ty
(Eloise wins by t regardless of the instances s for Abelard’s y).

Definition 2 (LD-translation of formulas). The interpretation does not change atomic
formulas, i.e., |at(to)|:≡at(to). Assuming |A|xy and |B|uv are already defined,

|A ∧B|x,uy,v :≡ |A|xy ∧ |B|uv
|A→ B|f ,gx,v :≡ |A|xfxv → |B|gxv .

The interpretation of the four universal quantifiers is (upon renaming, we assume that
quantified variables occur uniquely in a formula):

|∀±zA(z)|fz,y :≡ |A(z)|fzy |∀+zA(z)|fy :≡ ∀z |A(z)|fzy
|∀−zA(z)|xz,y :≡ |A(z)|xy |∀∅zA(z)|xy :≡ ∀z |A(z)|xy

Since |⊥|≡⊥, we get

|¬A|fx ≡ ¬|A|xfx |¬¬A|fg ≡ ¬¬|A|fgg(fg)

Light Dialectica Revisited 7

It is straightforward to compute that

|∃̃±zA(z)|Z,fg :≡ ¬¬|A(Zg)|fgg(Zg)(fg) |∃̃+zA(z)|fg :≡ ∃̃z |A(z)|fggz(fg)
|∃̃−zA(z)|Z,fg :≡ ¬¬|A(Zg)|fgg(fg) |∃̃∅zA(z)|fg :≡ ∃̃z |A(z)|fgg(fg)

The length and types of the witnessing and challenging tuples are uniquely determined.

Remark 1 It is easy to see that a formula is realization relevant exactly when its tuple
of witness variables is not empty and, similarly, a formula is refutation relevant exactly
when its tuple of challenge variables is not empty.

We prove the soundness of our interpretation, i.e., we show how Eloise’s winning
move in the game |A|xy can be algorithmically extracted from a proof of A in NAl .

Theorem 1 (Soundness of light Dialectica interpretation).
Let A0, A1, . . . , An be a sequence of formulas in Fl with w all their free variables.
If the sequent a1 :A1 , . . . , an :An l̀A0 is provable in NAl , then terms t0, . . . , tn
can be automatically synthesised from its formal proof, such that the translated se-
quent a1 : |A1|x1

t1
, . . . , an : |An|xn

tn
` |A0|t0x0

is provable in NA, where the following
free variable condition (c) holds: FV(ti) ⊆ {w,x0, . . . ,xn} and x0 6∈ FV(t0). Here
x0, . . . ,xn are tuples of fresh variables, s.t. equal avars share a common such tuple.
Proof: The extraction meta-algorithm proceeds recursively on the structure of the input
proof. It thus suffices to present witnesses for each realization relevant axiom and for
each rule to produce terms for the conclusion sequent out of terms assumed for the
premise sequent(s). Due to its importance, we first present the treatment of contraction.

∆, a :A, a :A l̀B Cl
∆, a :A l̀B

We are given |∆|uδ , a : |A|x
t′
, a : |A|x

t′′
` |B|sv , where the

LD-variables x may occur freely in all terms δ, t′, t′′, s.
We need to equalize the possibly distinct t′ and t′′ . For this

we use the decidability of |A| which is ensured by F. We can thus define for each pair
of corresponding t′ ∈ t′ and t′′ ∈ t′′ the term t :≡ If(|A|x

t′
)t′′ t′ . We then have in NA

that |A|x
t′
→ t = t′′ and ¬|A|x

t′
→ t = t′ . Thus by CmpAx, |A|x

t′
→ (|A|xt → |A|xt′′)

and ¬|A|x
t′
→ (|A|xt → |A|xt′), hence by prop. logic |A|x

t′
→ (|A|xt → |A|xt′ ∧ |A|

x
t′′

)
and ¬|A|x

t′
→ (|A|xt → |A|xt′ ∧ |A|

x
t′′

), where for the latter we used EFQ. By case dis-
tinction we get ` |A|xt → |A|xt′ ∧ |A|

x
t′′
, hence both |A|xt ` |A|xt′ and |A|xt ` |A|xt′′ .

From these we get7 |∆|uδ , a : |A|xt , a : |A|xt ` |B|sv , to which a C is finally applied.

Γ l̀A ∆ l̀A→ B
→e

Γ,∆ l̀B

We are given |∆|zδ[x] ` |A|
x
txv → |B|sxv and

|Γ |uγ[y] ` |A|
r
y in which we simultaneously substi-

tute x 7→ r and y 7→ trv and by a →e we get
|Γ |uγ[trv] , |∆|

z
δ[r] ` |B|

sr
v . We used that x 6∈ FV(t, s) and y 6∈ FV(r), which fol-

low from (c). Since FV(r) ⊆ FV(Γ) ∪ FV(A) ∪ {u} (also a consequence of (c)), we
have that v 6∈ FV(r), hence (c) is preserved.

7 Applying twice →i followed by →e .

8 Hernest & Trifonov

Γ, [a :A] l̀B →i
Γ l̀A→ B

If [a : A] is a multiset then A is refutation irrelevant and thus
|A→ B|t,sx,v ≡ |A|xt → |B|sxv . All we need is to λ-abstract the
realizers for |B| over the LD-variables x from |A| and apply an

→i . Thus x 6∈ FV(s), hence (c) is preserved. If [a :A] is just a set, then we are given
that |Γ |uγ , a : |A|x

t′
` |B|s′

v . Let t:≡λx,v. t′ and s:≡λx. s′ . Then by an→i we get ex-
actly |Γ |uγ ` |A→ B|t,sx,v , with (c) preserved since we knew that v 6∈ FV(s′).

Γ l̀A(T) ∆ l̀A(F)
Indo

Γ,∆ l̀A(b)

We are given |Γ |uγ[x] ` |A(T)|rx and |∆|zδ[y] ` |A(F)|sy .
For each pair of corresponding r ∈ r and s ∈ s we de-
fine t:≡If b r s and we also substitute y 7→ x. Then

by Indo we get |Γ |uγ[x], |∆|
z
δ[x] ` |A(b)|tx. Adding the variable b to t does not violate

(c), because, as we formally requested, b certainly occurs in A(b).

Γ l̀A(0) ∆ l̀A(n)→ A(Sn)
Indι

Γ]∆ l̀A(n)

We are given (◦◦): |Γ |uγ[y] ` |A(0)|ry and
(◦): |∆|zδ[x;v] ` |A(n)|xtxv → |A(Sn)|sxv .We

show (∗): ∀v
(
|Γ]∆|u]zζ[n]v → |A(n)|t

′[n]
v

)
,

where8 t′[n] :≡Rn r (λn.s) for every corresponding 〈r ∈ r/s ∈ s〉 and ζ[n] will be
constructed as functional terms depending on v . Let b :B be a refutation relevant avar
in Γ]∆. Let γ′ ∈ γ and/or δ′ ∈ δ be the challengers for b in Γ and/or ∆. If b ap-
pears only in Γ , we define ζ′[n]:≡Rn (λv.γ′[v])

(
λn, p,v.p(t t′v)

)
. If b appears in

∆, then the decidability of |B| is needed at each recursive step to equalize the terms
p(t t′v) obtained by the recursive call with the corresponding terms δ′ . Thus we pro-
vide the right stop point of the backwards recursion. In fact an implicit contraction over
b happens at each inductive step and F guarantees that |B| is decidable. We define (◦1):
ζ′′[n]:≡Rn (λv.γ′[v])

(
λn, p,v.If(|B|z′

δ′[t′;v]
)
(
p(t t′v)

)
δ′[t′;v]

)
for b ∈ Γ ∩∆. If

b appears only in ∆, then we define its ζ′′[n] by replacing in (◦1) the γ′ with canonical
zeros. Let ζ denote the tuple of all such ζ′ and ζ′′ . Notice that (◦2): t′[Sn] = st′[n] and
(◦3): ζ′[Sn]v = ζ′[n](t t′v).We attempt to extend the latter to the whole ζ , by proving
(◦4): |B|z′

ζ′′[Sn]v
` ζ′′[Sn]v = ζ′′[n](t t′v). With (◦1), we obtain this as an immediate

consequence of (◦5): |B|z′

ζ′′[Sn]v
` |B|z′

δ′[t′;v]
. Assuming ¬|B|z′

δ′[t′;v]
, by (◦1) we get

ζ′′[Sn]v = δ′[t′;v], hence ¬|B|z′

ζ′′[Sn]v
, and (◦5) follows via Stab.

We now prove (∗) by (assumptionless) induction on n. The base |Γ |u
ζ′[0]v

` |A(0)|t
′[0]
v

follows from (◦◦). Given (∗), we want to prove (∗∗): |Γ]∆|u]zζ[Sn]v ` |A(Sn)|t
′[Sn]
v .

To (∗) we apply ∀e
[v 7→t t′v] and get (◦6): |Γ]∆|u]z

ζ[n](t t′v)
` |A(n)|t

′[n]

t t′v
. From (◦3)

and (◦4) we can write |Γ]∆|u]zζ[Sn]v ` ζ[Sn]v = ζ[n](t t′v), which combined with

(◦6) yields (◦7): |Γ]∆|u]zζ[Sn]v ` |A(n)|t
′[n]

t t′v
. In (◦) we substitute x 7→ t′[n] and get

8 We here intentionally use the same variable n that occurs freely in s and t. We often omit to
explicitate the appearance of n in t′ , like t′[n]. In fact, just “t′” will implicitly denote t′[n].

Light Dialectica Revisited 9

|∆|z
δ[t′;v]

` |A(n)|t
′[n]

tt′v
→ |A(Sn)|st

′[n]
v , which gives (∗∗) by means of (◦2), (◦5), (◦7).

Γ	 l̀x =ρ y
CMPρ

Γ	 l̀B(x)→ B(y)

We are given |Γ	| ` |x =ρ y|z . Since z do not
occur freely in |Γ	| we can use ∀i to obtain
|Γ	| ` ∀z|x =ρ y|z . But by definition we have

∀z|x =ρ y|z≡x =ρ y. Then by CmpAx |Γ	| ` |B(x)|uv → |B(y)|uv and clearly a re-
alizing tuple for B(x)→ B(y) is (λu.u, λu,v.v), with (c) obviously satisfied.

Γ l̀A ∧B ∧el
Γ l̀A

Keep terms for A in which substitute variables from
FV(B) \ FV(Γ ` A) with type-corresponding zeros.

∆ l̀A ∧B ∧er
∆ l̀B

Keep terms for B in which substitute variables from
FV(A) \ FV(∆ ` B) with type-corresponding zeros.

Γ l̀A ∆ l̀B ∧i
Γ,∆ l̀A ∧B

Given |Γ | ` |A|tx and |∆| ` |B|sy ,
by a ∧i one gets |Γ |, |∆| ` |A ∧B|t,sx,y .

a1 :A1 l̀A0 (id) With t1 :≡x0 and t0 :≡x1 one gets a1 : |A1|x1
x0
` |A0|x1

x0
,

since A0≡A1 .

Γ l̀ ∀±zA ∀e±
Γ l̀A[r/z]

We are given |Γ |uγ[z] ` |A|
tz
y , where z,y 6∈ FV(t) but z

may occur in γ . We substitute z 7→ r in the proof and get
|Γ |uγ[r] ` |A[r/z]|try .

Γ l̀ ∀+zA ∀e+
Γ l̀A[r/z]

We are given |Γ |uγ ` ∀z |A|tzy , where z,y 6∈ FV(t,γ).
By a ∀e[r] we get |Γ |uγ ` |A[r/z]|try .

Γ l̀ ∀−zA ∀e−
Γ l̀A[r/z]

We are given |Γ |uγ[z] ` |A|
t
y , where z,y 6∈ FV(t) but z may

occur in γ . We substitute z 7→ r in the proof and get
|Γ |uγ[r] ` |A[r/z]|ty .

Γ l̀ ∀∅zA ∀e∅
Γ l̀A[r/z]

We are given |Γ |uγ ` ∀z |A|ty , where z,y 6∈ FV(t,γ).
By a ∀e[r] we get |Γ |uγ ` |A[r/z]|ty .

We now give a comparative treatment of the introduction rules for all quantifiers. They
all share the same induction hypothesis, namely that the sequent |Γ |uγ[z] ` |A(z)|t[z]v

is provable in NA (by a proof denotedH), where γ[z], t[z] are terms extracted from the
NAl proof Γ l̀A(z). If z occurs free in A (at least once) then z can occur free in γ, t.
(±) H is directly a proof of |Γ |uγ[z] ` |∀±zA(z)|λz. t[z]z,v , with (c) obviously satisfied.

(−) H is directly a proof of |Γ |uγ[z] ` |∀−zA(z)|tz,v ,with (c) satisfied due to z 6∈ FV(t).

(+) To H one applies a ∀i[z] , which is possible since z 6∈ FV(Γ) and also z 6∈ FV(γ).

One gets a proof of |Γ |uγ ` ∀z |A(z)|(λz. t[z])zv , i.e., |Γ |uγ ` |∀+zA(z)|λz. t[z]v .

(∅) The same as above, but since moreover z 6∈ FV(t) the lambda-abstraction over t is
no longer needed. Applying ∀i[z] toH gives directly a proof of |Γ |uγ ` |∀∅zA(z)|tv .

10 Hernest & Trifonov

At (+) and (∅), since z is no longer a free variable in the conclusion sequent (not free
in γ by (±) and quantified in the conclusion formula) and also no longer appears in the
list of refutation variables for |∀+zA(z)|, |∀∅zA(z)|, it is essential that z is forced not
to appear in any of the realizing terms for the conclusion sequent.

3.1 Extension of NAl with principles that are straightforwardly NA-realizable

By “NA-realizable principle” we understand a generic scheme A in Ll for which wit-
nesses t exist (possibly as an empty tuple) s.t. NA ` |A|ty . We are here interested in
such notableA for which t can be directly presented, or at least l̀A is straightforward9.

Even though EFQ : ⊥ → A is fully provable in NAl ,we can directly give its simple
realizers: any type-corresponding terms, in particular canonical 0 terms. The verifica-
tion goes via EFQ, which is provable in NA, as we had mentioned in Sec. 2.1. In con-
trast, Stab : ¬¬A → A is not fully provable in NAl : as noted in [7], its usual proof
in NA (constructed by induction on A) makes an unavoidable use of contractions over
¬¬(B ∧ C) for subformulas (B ∧ C) ofA, and these are subject to the F restriction for
refutation relevantB ∧ C. Even when suchB ∧ C obey F, they may lead to the failure
of restrictions (+), (−) or (∅). It is thus safe to use NAl lemmas Stabl : ¬¬A → A for
which A ∈ F or A is conjunction-free. Then Theorem 1 guarantees that realizers exist
for Stabl and produces them for concrete instances of A.

It is well known that Gödel’s Dialectica interpretation [1,5] can provide straight-
forward realizers for certain non-constructive principles, such as (IP) Independence of
(universal) Premises, (AC) Axiom of Choice and Markov’s principle. However, all of
these axioms are usually formulated with strong existence, which is not present in our
negative setting. Thus it does not even make sense to consider a Markov’s principle for
NAl .Nonetheless, the first author had introduced in [7] certain negative formulations of
IP and AC. Then the second author devised a strengthening of the negative formulation
of AC, by means of an automated realizer search, see [17]. We here upgrade and extend
these older formulations to account for the new light quantifiers ∀+ and ∀− .

Let us consider the following variants for a negative formulation of IP10:

IP� : (A→ ∃̃�y B)→ ∃̃�y(A→ B) y /∈ FV(A), � ∈ {t , ∅ , + , − , ±}
ÎP� : (A⊕ → ∃̃�y B)→ ∃̃�y(A⊕ → B) y /∈ FV(A⊕), � ∈ {∅ , + , − , ±}

As noted in [7], IPt is fully provable in NA (see the treatment of AxIPcl on Page 46),
but modulo an unavoidable contraction. This proof can be cloned to an NAl proof of
IP� with contraction over the formula C :≡∀�y (¬(A→ B)). If � ∈ {− , ±} then C
is refutation relevant and the restriction F is necessary. If � ∈ {∅ , +} , then ∀�y is
negatively uniform and we need to impose F only if ¬(A→ B) is refutation relevant.
Lemma 1. If A and B satisfy F, then l̀ IP− and l̀ IP± . If whenever A is refutation
relevant or B is realization relevant, both A and B satisfy F, then l̀ IP∅ and l̀ IP+ .

9 For all NAl-provable principles we can automatically get realizers of their concrete instances
via the algorithm of Theorem 1. However, light Dialectica is able to directly interpret certain
principles formulated over Ll , which are generally not provable in NAl , like cIP� below.

10 Recall that t, which appears at IPt below, is nothing but a placeholder for the empty space.

Light Dialectica Revisited 11

Axiom ÎP± was already considered in [7] (as “IPclnc”), where the first author proved
that it can be realized in NA by simple projection functionals. It is straightforward to
check that the same holds also for the other ÎP� . The proof for ÎP− is identical and the
(single) proof for both ÎP+ and ÎP± uses a corresponding version of IPt , which is a
NA lemma, as we mentioned.

Next, we consider adding to NAl the following negative variants of AC :

AC	/,. : ∀/x ∃̃.y A	(x, y)→ ∃̃.h∀/xA	(x, hx) /, . ∈ {∅ , + , − , ±}

Let us first consider AC	±,± , an upgrade of “ACclnc” from [7], due to the second author:

|∀±x ∃̃±y A	(x, y)|u,vx ≡ B(ux,vx, x)
[
where B(a, b, c) :≡¬¬|A	(c, a)|bt

]
|∃̃±h∀±xA	(x, hx)|z,fg ≡ B

(
zg(g(zg)(fg)),fg(g(zg)(fg)), (g(zg)(fg))

)
It is straightforward that |AC	±,±| is an implication between two formulas equivalent to
B(u(guv), v(guv), guv) if just Zuvg ≡ u,Fuvg ≡ v andXuvg ≡ guv .By tedious
calculations one can prove that, except for AC	±,+ and AC	−,+ , all the other AC	/,. are
realizable by simple terms (without constants, mostly projections) in NA. Nevertheless,
for (/, .) ∈ {∅,+} × {∅,+} , the negative AC must be added to the verifying system.

It should be clear that the variant AC∅,∅ with A unrestricted is also realizable in
NA + AC by simple projection functionals. Problems for the general AC/,. appear only
when one progressively adds computational content to / and .. The failure of realization
(without constants) can already be proved for the variant AC⊕±,± , with A realization
irrelevant. Nonetheless, all the variants AC⊕/,− are easily NA-realizable (by projections,
if for / ∈ {∅,−,±} one replaces the conclusion with ∃̃−h∀/xA⊕(x, h)). Even more
combinations are possible, with different decorations for the corresponding quantifiers
in premise and conclusion: the user can explore the various possibilities by need.

Easy to notice, we can add to NAl any realization irrelevant axiom A⊕, provided
that we add its LD-translation as an axiom to NA (whenever we are unable to prove it).

4 An example for the new light quantifiers

Consider the following simple theorem of Arithmetic11:

∀x ∃̃y (x < y ∧ P (y)) → ∀z ∃̃u, v (u+ z < v ∧ P (u) ∧ P (v)) (1)

where x, y, z, u and v are natural numbers N, and P (·) is a predicate over N. The proof
of this goes as follows: assume Hyp :≡∀x ∃̃y (x < y ∧ P (y)) and fix z. By Hyp [taking
x := 0] we (weakly) get an u such that P (u). Then, by Hyp again [taking x := u+ z]
we (weakly) get also an v, bigger than u+ z, such that P (v). Q.e.d.

Now, suppose that we want to witness u and v (as functions of z) but not the x in
the premise Hyp. Using the hybrid interpretation [8], one can see (1) as

!k ∀x∃y (x < y ∧ P (y)) (∀z ∃u, v (u+ z < v ∧ P (u) ∧ P (v)) .
11 This example was suggested by Oliva, in the context of hybrid functional interpretations [8].

Note that “(” denotes the linear logic [4] implication, see also [12].

12 Hernest & Trifonov

The hybrid interpretation [8] of this is (in fact one just carries out a realizability):

∃f, g ∀h, z [!k ∀x(x < h(x) ∧ P (h(x))) (

f(h, z) + z < g(h, z) ∧ P (f(h, z)) ∧ P (g(h, z))] (2)

which can be witnessed by taking f(h, z) := h(0) and g(h, z) := h(h(0) + z) .
How would one proceed by means of the light Dialectica [7]? One cannot mark

the universal quantification over x as non-computational, since x is used to produce y
as h(x). Is there a way to specify that one still wants to internally use a variable as
computational, but externally we are not interested in the realizer for such a variable?
And not by first producing such a witness and subsequently discarding it, but really not
producing a realizer at all for that variable?

This example cannot be interpreted with pure Dialectica [1,5]; even if P (·) were
decidable, the solution would be too complex. It can also not be directly interpreted
with the light annotations proposed in [7] (see further comments on this issue at the
end of this section). However, we have a direct positive answer in our upgraded light
setting: we can use ∀+ for that universal quantification over x. The input specification
(1) can thus be annotated in Ll as:

∀+x ∃̃−y (x < y ∧ P (y)) → ∀+z ∃̃−u, v (u+ z < v ∧ P (u) ∧ P (v)) (3)

which LD-translates to the following verified specification of NA :

∀x (x < hx ∧ P (hx)) → ∀z (fhz + z < ghz ∧ P (fhz) ∧ P (ghz)) (4)

with hιι the unique challenge variable and f, g of type (ιι)ιι the witness variables. The
LD-algorithm will produce (closed) terms s≡λh, z. h(0) and t≡λh, z. h(h(0)+z) s.t.:

∀h
(
∀x (x < hx ∧ P (hx)) → ∀z (shz + z < thz ∧ P (shz) ∧ P (thz))

)
(5)

which is immediately seen to be the same result as the one yielded by hybrid functional
interpretation, cf. (2). Note that among the annotations in (3) only ∀+x represents an
optimization, as from an input specification

∀+x ∃̃±y (x < y ∧ P (y)) → ∀±z ∃̃±u, v (u+ z < v ∧ P (u) ∧ P (v))

one would get by LD-interpretation the following result, equivalent to (5):

∀h, z
(
∀x (x < hx ∧ P (hx)) → (shz + z < thz ∧ P (shz) ∧ P (thz))

)
(6)

The reason is that ∃̃± and ∃̃− are equivalent in front of a quantifier-free formula and the
fact that ∀±z makes z a challenge variable would have only altered realizers external to
its quantification range, none in our case. Again, the internal action of ∀+ is necessary
for z, in the conclusion sentence of (3), just as it was (as we explained above) for
x in the premise of (3). Both quantifications over x and z have an essential positive
computational content. The difference is that, whereas for z the negative content of the
quantification is inessential, for x it is an important optimization to remove the negative

Light Dialectica Revisited 13

content of its quantification. Otherwise the contraction over ∀±x ∃̃−y (x < y ∧ P (y))
would be computationally relevant and a useless realizer for x would be produced.

Note that the older LD-interpretation of [7] is not really unusable for this example:
identical results are obtained by replacing (3) with

∃̃±h∀∅x (x < hx ∧ P (hx)) → ∀±z ∃̃±u, v (u+ z < v ∧ P (u) ∧ P (v)) .

The user would have to take into account the parameter hιι in the realizing terms
anyway, as this is forced by the verified specification (4). Nonetheless we find it more
convenient to be able to start with less explicit specifications and use the automated
mechanism to unwind the functionals which are implicit in the input specification.

As an illustration for an effective use of the “−” quantifier, the conclusion of (3) can
be changed to ∃̃−u, v ∀−z (u+ z < v ∧ P (u) ∧ P (v)). Even though this looks strange
(if not faulty), the LD-translation will explicitate the dependency of u and v over the pa-
rameter z. The conclusion of (4) becomes just fhz + z < ghz ∧ P (fhz) ∧ P (ghz) ,
but the inner quantification over z in (5) was inessential anyway: as a free LD-variable,
z is still a parameter, just like in (6). The final result remains unchanged!

5 List reversal - a new application for the uniform quantifier

We here treat an example for LD-extraction from a proof in classical logic that any list
can be reversed. The case study was originally suggested by Berger [2] in the context of
refined A-translation [3]. He showed that by using his uniform universal quantifier one
can remove an unnecessary parameter from the extracted program and thus decrease
its time complexity from quadratic to linear. We demonstrate that the same good pro-
gram can also be obtained via LD-extraction, modulo an enhanced light annotation of
Berger’s proof for the weak existence of the reversed list. Moreover, in our case the uni-
form quantifier will not be used just to improve complexity, but even to make Dialectica
extraction possible at all when list reversal is not a priori assumed to be decidable.

Let us extend our language with a type L for finite lists of natural numbers. We will
use “l” for list variables and denote the constructors forL by nil and n :: l, abbreviating
x :: nil as “x:”. We also need to have a recursion constant R for lists, as well as an
induction principle IndL and rewrite rules forR. These are all presented in Table 6. As
with Indι , we assume that n, l do not occur freely in Γ,∆, but l does occur in A(l).

Γ ` A(nil) ∆ ` A(l)→ A(n :: l)
IndL

Γ,∆ ` A(l)

R nil s t ↪→ s

R (n :: l) s t ↪→ t n l (R l s t)

Table 6. List induction and recursion

We will not treat the soundness of IndL here, since it is very similar to the soundness
of Indι . The notable difference is that we use the appropriate recursion constant R for
defining witnesses of A(l) and challengers of Γ]∆. We define the append function
(:+:)LLL by l1:+:l2 :≡R l1 l2 (λn, l1, pL. n :: p) and the decidable equality EqLLoL by:

EqL :≡ λl1.R l1
(
λl2.R l2 T (λn, l2, qo.F)

)(
λm, l1, p

Lo, l2.R l2 F (λn, l2, qo.If (Eqιmn) (p l2) F)
)

14 Hernest & Trifonov

As for the other ground types, we define predicate equality l1 =L l2 :≡ at(EqL l1 l2).
We introduce a new binary predicate symbol “Rev” of arity (L,L) for expressing the
fact that one list is the reversal of another. Formally, we will prove classically that there
exists a function with a graph Rev, satisfying the assumptions

Rev(nil, nil) (7)
∀∅x, l1, l2

(
Rev(l1, l2) → Rev(l1:+:x:, x :: l2)

)
(8)

Note that Rev can be considered as an inductively defined predicate with introduction
axioms (7) and (8) (cf. [13]). They do not ensure uniqueness of Rev; to achieve this we
would need to add an elimination axiom. Then we could use (7) and (8) as clauses for
a decision procedure for Rev, recursively defined on its second argument. Such proce-
dure would have quadratic complexity on the length of the list, because of appending an
element to l1 at each recursion step. Moreover, using the clauses (7) and (8) we could di-
rectly define a list reversal program and prove the theorem constructively [2,13]. Again,
such program would execute in quadratic time.

Since any referral to the decidability of Rev would imply an at least quadratic time
complexity, we choose to consider Rev as undecidable. Thus we no longer need the
restriction for uniqueness of Rev and hence we will prove the theorem for any predicate
satisfying (7) and (8). Formally, we will show (following the proof in [2]) that

∀+l′ ∃̃−l′′ Rev(l′, l′′) (9)

We first show that if a list l0 is not reversible, then none of its initial segments l1 is:

∀∅l0
(
∀−l(Rev(l0, l)→ ⊥)→ ∀−l2∀∅l1

(
l1:+:l2 = l0 → ∀−l(Rev(l1, l)→ ⊥)

))
(10)

Fix l0 and assume a :∀−l(Rev(l0, l)→ ⊥) . We proceed by induction on l2 to show

∀∅l1
(
l1:+:l2 = l0 → ∀−l(Rev(l1, l)→ ⊥)

)
(11)

For the base case we have l1 = l0 so we can use the assumption a. For the step case
l2≡n :: l′2 we fix l1, l and assume Rev(l1, l). By (8) we have Rev(l1:+:n:, n :: l). We
can then use the induction hypothesis (11) for l′2 with l1 7→ l1:+:n: and l 7→ n :: l to end
the proof. Now (9) follows from (10) by setting l0, l2 7→ l′ and l1 7→ nil and using (7).

We proceed with the LD-extraction stepwise. The global assumptions (7) and (8)
are computationally irrelevant. The induction formula (11) has empty positive content
and a list variable l as negative content. The unique computationally relevant open avar
is a and it appears only in the base case, so the extracted term for (10) is

tL :≡λl2.R l2 (λl.l) (λn, l2, pLL, l.p(n :: l))

The final term extracted from the proof of (9) is t:≡λl′.tL l′ nil. We thus obtain the
usual linear reverse list algorithm with the use of an auxiliary function tL . Here l plays
the role of an accumulator, initialized with nil in t.

Let us review the role of the light quantifiers. All ∀− quantifiers in (10) can be
changed to ∀± without impact on the extracted term, because the corresponding quanti-
fied formulas are realization irrelevant. Substituting ∀∅l1 with ∀+l1 is safe for the same
reason. Changing ∀∅l0 to ∀±l0 would result in a redundant parameter in tL, since l0
has no computational use in the lemma. Hence it is better that this quantifier remains
fully uniform. A more interesting effect appears if ∀∅l1 is replaced with ∀−l1 or ∀±l1 .

Light Dialectica Revisited 15

Then the negative content of (11) is already a pair of lists l1, l, so the extracted term tL
changes to

t′L :≡λl2.R l2 (λl1, l.l) (λn, l2, p, l1, l.p(l1:+:n:)(n :: l)),

being invoked as t′L l
′ nil nil. Note that in this case there is an unnecessary quadratic

computation on the parameter l1, which is being dropped in the base case. Therefore,
quantifying l1 negatively uniformly here has the same favourable effect on complexity
as was noted by Berger for the case of refined A-translation [2].

Now consider the light quantifiers in the global assumption (8). Obviously, all the
quantifiers can be safely replaced with ∀+, since the kernel formula is quantifier-free.
However, if we added negative computational meaning to any of the three quantifiers,
we would introduce additional extracted terms for the corresponding variables(s). One
consequence of this change is that we would be forced to add negative content to the
quantifiers for l′ in (9) as well as l0 and l1 in (10) in order to avoid violating the restric-
tion (+). However, there is an even more serious problem: since (8) is used in the step
case of the induction, a boolean test over its LD-translation would be necessary. But
since Rev is undecidable, such a case distinction is not possible at all! If we try to re-
pair the situation by using the decision procedure for Rev, suggested above, the overall
complexity will raise to cubic. Therefore, the use of negatively uniform quantifiers in
(8) is really essential. Note that whether these quantifiers are uniform or not makes no
difference when extracting by refined A-translation.

The discussion above shows that the linear list reversal algorithm can be extracted
from a proof using only ∀± and ∀∅. Hence, even though we used a finer light annotation
here, this example is still in the scope of Light Dialectica as defined in [7].

6 Future work - a light decorating algorithm

Having four variants of each quantifier, it becomes important to design a decorating
algorithm that, starting with an NAl proof in which all quantifiers are coloured ∅, will
explore the possibilities for consistent colourings so that the input specification LD-
translates to the exact verified specification desired by the user. At full power, such
algorithm implies that we are able to accurately determine the set of free variables of
the normalized extracted terms, since the normal form of a term may contain fewer
free variables. Also, input proofs should rather be presented in normal form, since cut
formulas may require different colourings, which would force the elimination of such
cut. Overall, this gets rather complex and we may need to trade accuracy for effectivity.

Since the light decorating algorithm needs to calculate the final LD-extracted terms
anyway, we can regard it as an enhancement (optimizing extension) of the already pre-
sented light Dialectica interpretation.

Acknowledgement: The idea for the new light quantifiers was born during a discussion
with Oliva, mainly concerning the (counter)example from Section 4. Thanks to him,
also for the indirect suggestion on upgrading CMP. The original direct treatment under
Dialectica (with pair types) of the full Induction Rule is due to Schwichtenberg [14].
We would like to thank both of them for their comments on early drafts of this paper.

16 Hernest & Trifonov

References

1. J. Avigad and S. Feferman. Gödel’s functional (“Dialectica”) interpretation. In S. R. Buss,
editor, Handbook of proof theory, volume 137 of Studies in Logic and the Foundations of
Mathematics, pages 337–405. North Holland, Amsterdam, 1998.

2. U. Berger. Uniform Heyting Arithmetic. Annals Pure Applied Logic, 133:125–148, 2005.
3. U. Berger, H. Schwichtenberg, and W. Buchholz. Refined program extraction from classical

proofs. Annals of Pure and Applied Logic, 114:3–25, 2002.
4. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.
5. K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Di-

alectica, 12:280–287, 1958.
6. M.-D. Hernest. Light Functional Interpretation. Lecture Notes in Computer Science,

3634:477 – 492, 2005. Computer Science Logic: 19th International Workshop, CSL 2005.
7. M.-D. Hernest. Optimized programs from (non-constructive) proofs by the light (monotone)

Dialectica interpretation. PhD Thesis, École Polytechnique and Universität München, 2006.
http://www.brics.dk/˜danher/teza/thesfull.pdf.

8. M.-D. Hernest and P. Oliva. Hybrid functional interpretations. In A. Beckmann, C. Dim-
itracopoulos, and B. Löwe, editors, Logic and Theory of Algorithms: 4th “Computability
in Europe” (CiE) conference, Athens, Greece, volume 5028 of Lecture Notes in Computer
Science, pages 251–260. Springer Verlag, 2008.

9. U. Kohlenbach. A note on Spector’s quantifier-free rule of extensionality. Archive for Math-
ematical Logic, 40:89–92, 2001.

10. P. Oliva. An analysis of Gödel’s Dialectica interpretation via linear logic. To appear in
Dialectica, for preprint see http://www.dcs.qmul.ac.uk/˜pbo/.

11. P. Oliva. Unifying functional interpretations. Notre Dame Journal of Formal Logic,
47(2):263–290, 2006.

12. P. Oliva. Computational interpretations of classical linear logic. In Proceedings of WoL-
LIC’07, LNCS 4576, pages 285–296. Springer, 2007.

13. H. Schwichtenberg. Content in proofs of list reversal. Marktoberdorf Summer School (2007),
http://www.math.lmu.de/˜schwicht/papers/mod07/mod07.pdf.

14. H. Schwichtenberg. Dialectica interpretation of well-founded induction. To appear in Math-
ematical Logic Quarterly, for preprint see http://www.math.lmu.de/˜schwicht/
publikationen.html.

15. H. Schwichtenberg. Minimal Logic for Computable Functionals. MinLog documentation,
http://www.math.lmu.de/˜minlog/minlog/mlcf.pdf, December 2005.

16. C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by
an extension of principles in current intuitionistic mathematics. In J. C. E. Dekker, editor,
Recursive Function Theory: Proceedings of Symposia in Pure Mathematics, volume 5, pages
1–27. American Mathematical Society, Providence, Rhode Island, U.S.A., 1962.

17. T. Trifonov. Finding Dialectica realisers for axioms. http://www.math.lmu.de/

˜trifonov/talks/20070414/, April 2007. Invited talk at the 6th Proof, Compu-
tation, Complexity workshop, http://www.cs.swan.ac.uk/pcc07/.

18. A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis,
volume 344 of Lecture Notes in Mathematics. Springer-Verlag, 1973.

http://www.brics.dk/~danher/teza/thesfull.pdf
http://www.dcs.qmul.ac.uk/~pbo/
http://www.math.lmu.de/~schwicht/papers/mod07/mod07.pdf
http://www.math.lmu.de/~schwicht/publikationen.html
http://www.math.lmu.de/~schwicht/publikationen.html
http://www.math.lmu.de/~minlog/minlog/mlcf.pdf
http://www.math.lmu.de/~trifonov/talks/20070414/
http://www.math.lmu.de/~trifonov/talks/20070414/
http://www.cs.swan.ac.uk/pcc07/

	Light Dialectica Revisited
	Hernest & Trifonov

