
Ingredients of a Deep Inference Theorem Prover

Ozan Kahramanoğulları

ozank@doc.ic.ac.uk

Department of Computing, Imperial College

Abstract. Deep inference deductive systems for classical logic provide
exponentially shorter proofs than the sequent calculus systems, however
with the cost of higher nondeterminism and larger search space in proof
search. We report on our ongoing work on proof search with deep in-
ference deductive systems. We present systems for classical logic where
nondeterminism in proof search is reduced by constraining the context
management rule of these systems. We argue that a deep inference sys-
tem for classical logic can outperform sequent calculus deductive systems
in proof search when nondeterminism and the application of the contrac-
tion rule are controlled by means of invertible rules.

1 Introduction

Automated theorem proving is finding broader applications with the emergence
of increasingly powerful SAT-solvers, which provide yes-no answers to unsatisfi-
ability queries that are then often verified on an interactive theorem prover (see,
e.g., [23, 1]). Along these lines, there is an increasing interest in analytical proofs
such as those delivered by a sequent calculus system.

In the sequent calculus, proofs are constructed by applying the inference rules
bottom-up at a top-level connective at each proof step. Allowing the application
of the inference rules only at a top-level connective provides a rigid procedure for
constructing proofs with little nondeterminism. This procedure also simplifies the
standard techniques for studying the proof theoretical properties of deductive
systems, e.g., cut-elimination. This is because the notion of main connective
drives the proof construction as well as the case analysis in proof theoretical
investigations (see, e.g., [22]).

For instance, when classical logic proofs are considered, the construction of
a proof in the sequent calculus boils down to transforming the formula in the
conclusion to a formula in conjunctive normal form. In the one-sided sequent
calculus, this procedure is driven by the context management rule R∧. 1

` R,Φ ` T, Ψ
R∧

` R ∧ T , Φ, Ψ

1 This rule is often equipped with implicit contraction, which copies the context of the
conjunction to both branches at every instance. This results in less nondeterminism
in proof construction, however also in a greater size of the proof.

In an instance of this rule, the space between the two branches at the premise
is a meta-level conjunction and the commas in the sequents are meta-level dis-
junctions. Thus, this rule implements the distributivity law that performs the
transformation into conjunctive normal form. In a proof construction, once this
rule is applied exhaustively, the axiom can be applied at the leaf of each branch
to obtain a proof. However, this results in copying of the contexts at each proof
construction step and, for some formulae, in an exponential growth of the size
of the proof.

Example 1. Consider the formula

[(a ∧ b) ∨ ([ā ∨ b̄] ∧ c ∧ [ā ∨ b̄] ∧ d) ∨ c̄ ∨ d̄] .

This formula belongs to a class of tautologies, called Statman tautologies [15],
proofs of which grow exponentially in the size of the formulae in the cut-free
sequent calculus. This is because the sequent calculus can access the subformulae
only by opening up the formula at the main connective and proofs are then
constructed by spreading the context of the top-level conjunction to the branches
of the proof tree.

It is possible to construct polynomial size proofs of Statman tautologies by
applying the inference rules from inside to out, which is achieved in the sequent
calculus by using the cut-rule. However, it is also possible to achieve this by
allowing the application of the inference rules at arbitrary depths inside logical
expressions: deep inference [8] is a recent proof theoretical methodology that
generalises the notion of inference in the sequent calculus in such a way. Thus,
in deep inference deductive systems, inference rules can be applied at arbitrary
depths inside the logical expressions, similar to term rewriting rules [12, 14].
Deep inference provides a greater freedom in construction of the proofs.

Because previously available techniques on the sequent calculus do not gener-
alise to the deep inference setting, proof theory with deep inference required the
development of new tools and techniques (see, e.g., [8, 3, 18, 12]). The rich com-
binatoric analysis of proofs, provided by deep inference, reveals proof theoretical
properties of different logics that are otherwise not observable by traditional
proof theoretical means, e.g., permutability of inference rules in deductive sys-
tems for different logics (see, e.g., [18, 3, 4]). The duality between the cut rule and
the axiom which remains hidden in the sequent calculus also becomes explicit in
deep inference deductive systems (see, e.g., [8, 2, 19, 9]). Moreover, deep inference
makes it possible to design deductive systems tailored for computer science ap-
plications [8, 10], and not designable with any bounded depth deductive system
[21]. The computer science notion of locality, i.e., an operation having a bounded
computational cost, also finds a meaningful proof theoretical interpretation in
deep inference deductive systems [5, 17, 20].

When deep inference deductive systems are considered from the point of
view of computation as proof search, we observe that the applicability of the
inference rules at arbitrary depths inside logical expressions makes it possible to
start the construction of the proofs from subformulae. This capability provides

many more different proofs some of which are are exponentially shorter proofs
than those provided by the sequent calculus, while some others correspond to the
sequent calculus proofs; as Bruscoli and Guglielmi showed in [6], deep inference
polynomially simulates the sequent calculus. However, in proof search with deep
inference deductive systems the breadth of the search space increases rather
quickly, because there are more number of applicable instances of the inference
rules at each proof search step. This results in a trade-off between shorter proofs
and larger breadth of the search space.

In deep inference deductive systems, context management is performed by
the switch rule. In [13, 11], we have introduced a rule called deep lazy interac-
tion switch that reduces nondeterminism in proof search. We have shown that
multiplicative linear logic remains complete when this rule is replaced with the
switch rule in these systems.

The rule deep lazy interaction switch exploits an interaction scheme, which
is determined by the instances of the axiom rule, between the atoms of the
formula being proved. Exchanging this rule with the switch rule in deductive
systems results in a reduction in nondeterminism without loosing the shorter
proofs available due to deep inference. However, non-deterministic proof search
still remains computationally expensive, in general, because the search space
expands rather quickly. In contrast, in the sequent calculus, it is possible to
overcome nondeterminism in classical logic by resorting to invertible rules, which
essentially transform the formula being proved into a formula in conjunctive
normal form. However, this transformation results in an exponential growth of
the size of the proof in the size of the formula being proved due to the implicit
applications of the contraction rule that copy contexts.

In this paper, we argue that our approach for reducing nondeterminism in
deep inference proof search can be exploited together with the idea of using in-
vertible rules to design a competitive deep inference theorem prover that delivers
shorter proofs than those obtained by the sequent calculus. We first show that
the techniques presented in [13, 11] can be carried to classical logic to replace
the switch rule in this system with the deep lazy interaction switch rule. With
the aim of moving from non-deterministic proof search to deterministic proof
construction, we then propose a set of rules that includes rules obtained from
deep lazy interaction switch rule. We then introduce a strategy that works on
these rules. This strategy aims at reducing the size of the formula being proved
by exploiting deep inference and applying invertible rules while going up in the
proof. For this purpose, we delay the application of the rules for context man-
agement and contraction, thus minimise the growth of the proofs in contrast
to the proofs in the sequent calculus systems. We conjecture that the strategy
preserves the short proofs that are available due to deep inference.

2 Classical Logic with Deep Inference

In deep inference, the laws such as associativity and commutativity, which are
usually implicitly imposed on formulae, become explicit by means of an under-

lying equational system: we work with congruence classes of formulae that we
call structures (see, e.g., [8, 2]). Let us see classical logic structures.

Definition 1. There are countably many atoms, denoted by a, b, c, The struc-
tures P , Q, R, S. . . of classical logic are generated by

R ::= a | ā | tt | ff | [R ∨ R] | (R ∧ R) ,

where a stands for any atom; negation is defined on the atoms as a (non-
identical) involution ·̄, thus dual atom occurences, as a and ā, can appear in
the structures. tt and ff are the units true and false. A structure [R ∨ R] is a
disjunction, (R∧R) is a conjunction. Structures are considered to be equivalent
modulo relation ≈, which is the smallest congruence relation induced by the equa-
tional system consisting of the equations for associativity and commutativity
for disjunction and conjunction, and the equations [ff ∨ R] ≈ R, (tt ∧ R) ≈ R,
[tt ∨ tt] ≈ tt and (ff ∧ ff) ≈ ff for unit. We denote the structures in the same
equivalence class by picking a structure from the equivalence class. If there is
no ambiguity, when writing the structures, we drop the superfluous brackets by
resorting to the equations for associativity.

Remark 1. Negation is defined only on atoms. This is not a limitation because
of De Morgan laws.

Example 2. With respect to the congruence relation ≈, for the following struc-
tures we have [(b̄ ∧ (ā ∧ c̄)) ∨ [b ∨ [a ∨ c]]] ≈ [[b ∨ (((ā ∧ c̄) ∧ tt) ∧ b̄)] ∨ [c ∨ a]]
and we can denote both structures with [(ā ∧ b̄ ∧ c̄) ∨ a ∨ b ∨ c].

Definition 2. A structure context, denoted as in S{ }, is a structure with a
hole. The structure R is a substructure of S{R} and S{ } is its context.

Example 3. Let S{ } = [{ } ∨ b ∨ c], R = ā, T = (b̄ ∧ c̄) and U = a. Then
S [(R ∧ T) ∨ U] = [(ā ∧ b̄ ∧ c̄) ∨ a ∨ b ∨ c].

Definition 3. An inference rule is a scheme of the kind
T

ρ
R

, where ρ is the

name of the rule, T is its premise and R is its conclusion. A typical deep infer-

ence rule has the shape
S{T}

ρ
S{R}

and specifies a step of rewriting 2 determined

by the implication T ⇒ R inside a generic context S{ }. In an instance of ρ,
we say that R is the redex and T is the contractum. A system S is a set of
inference rules.

Definition 4. [19] The following are the rules of the system KSg, which are
called atomic interaction (ai↓), switch (s), contraction (c↓) and weakening (w↓),
respectively.

S{tt}
ai↓

S [a ∨ ā]

S([R ∨ U] ∧ T)
s
S [(R ∧ T) ∨ U]

S [R ∨ R]
c↓

S{R}

S{ff}
w↓

S{R}

2 Because we consider the inference rules for proof-search, we consider their bottom-up
applications which result in proofs that grow bottom-up from the conclusion. Thus,
in this paper, these rewritings are those that rewrite the conclusion to the premise.

Definition 5. A derivation ∆ is a finite chain of instances of inference rules. A
derivation can consist of just one structure. The top-most structure in a deriva-
tion is called the premise, and the bottom-most structure is called the conclusion.
A derivation ∆ whose premise is T , conclusion is R, and inference rules are in

S will be written as
T

R

S∆ . A proof Π is a finite derivation whose premise is

the unit tt. A rule ρ is derivable for a system S if for every instance of the
T

ρ
R

there is a derivation in system S with the premise T and the conclusion R. Two
systems S and S ′ are equivalent if they prove the same structures.

3 Proof Search

Applicability of the inference rules to substructures provides shorter proofs that
are not available in the sequent calculus. However, this also results in a greater
non-determinism in proof search: with deep inference, the inference rules become
applicable at many more positions than in the sequent calculus. Because of this,
the breadth of the search space grows rather quickly. In [13, 11], we have intro-
duced a technique for reducing this non-determinism in proof search without
loosing the shorter proofs that are available due to deep inference. In the follow-
ing, we first show that this technique can be applied to system KSg in order to
reduce the size of the breadth of the search space, and integrated into a proof
construction strategy that exploits invertible rules.

Definition 6. Given a structure R, atR is the set of all the atoms in R. We
define atR as the set obtained by negating all the atoms in the set atR.

Example 4. For R = [ā ∨ b ∨ (a ∧ b̄)], we have atR = atR = {a, ā, b, b̄}.

Definition 7. A structure R is a proper disjunction, if there are two structures
R′ and R′′ with R = [R′ ∨ R′′] where R′ 6= tt 6= R′′ and R′ 6= ff 6= R′′. A
structure R is a proper conjunction, if there are two structures R′ and R′′ with
R = (R′ ∧ R′′) where R′ 6= tt 6= R′′ and R′ 6= ff 6= R′′.

Example 5. The structure [a∨b] is a proper disjunction, whereas a and (a∧[b∨c])
are not. (a ∧ [b ∨ c]) is a proper conjunction.

Definition 8. [11] Consider the switch rule

S([R ∨ U] ∧ T)
s .
S [(R ∧ T) ∨ U]

We say that it is deep lazy interaction switch (dlis) if U is not a proper disjunc-
tion, R is not a proper conjunction and atR ∩ atU 6= ∅.

The idea behind the condition of the rule dlis can be explained as follows: the
atomic interaction rule (rule ai↓) annihilates dual atoms in a disjunction while
going up in a proof. This indicates an interaction scheme in proof construction
that is determined by dual atoms sharing a disjunction context, i.e., S [S1{a} ∨
S2{ā}]. Because the switch rule manages the disjunctive context of a conjunction
in order to bring the structures closer in a disjunction, we can constraint this
rule to manage the context in a way that will result in interactions, that is,
instances of the rule ai↓. If structures R and U do not contain dual atoms, that
is, if at R ∩ atU = ∅, then they cannot interact. Thus, the rule dlis allows to
bring only interacting structures closer in a disjunction.

Example 6. Consider the structure [(ā ∧ b̄ ∧ c̄) ∨ a ∨ b ∨ c] with the following
instances of the switch rule where the R and U structures of the switch rule are
shaded:

[([a ∨ ā] ∧ b̄ ∧ c̄) ∨ b ∨ c]
(i.)

[(ā ∧ b̄ ∧ c̄) ∨ a ∨ b ∨ c]

[([(b̄ ∧ c̄) ∨ a] ∧ ā) ∨ b ∨ c]
(ii.)

[(ā ∧ b̄ ∧ c̄) ∨ a ∨ b ∨ c]

(i.) is an instance of dlis, because R = ā and U = a, and thus at R̄ ∩ atU =
{a} 6= ∅. (ii.) is not instances of dlis.

In [11], we have show that the rule dlis can replace the rule s in a deep
inference system for multiplicative linear logic that consists of the rules ai↓ and s.
The system obtained remains complete for multiplicative linear logic and admits
a much smaller proof search space than the original system, while preserving the
shorter proofs that are available due to deep inference. This is because the rule
dlis exploits the interaction scheme, determined by the rule ai↓ that annihilates
dual atoms inside disjunction while going up in the proofs.

The switch rule simulates the context management rule R∧ of the sequent
calculus as follows:

` R,Φ ` T, Ψ
R∧

` R ∧ T , Φ, Ψ
;

([R O Φ] � [T O Ψ])
s

[([R O Φ] � T) O Ψ]
s

[(R � T) O Φ O Ψ]

Once the rule R∧ is applied, the sequents in the two branches cannot exchange
any formula, thus the communication between the formula at the two branches
becomes impossible while going up in the proofs. Proofs are thus constructed
by obtaining dual atoms at each branch, so that the axiom can be applied, and
weakening rule is applied to annihilate the excessive formulae at each branch
that do not contribute to the instance of the axiom.

The rule interaction switch (dlis) realises this idea, while exploiting the ca-
pability of the switch rule to manage the contexts gradually and constraining
the formula that is considered at each proof search step, however with the possi-
bility to be applied at arbitrary depths inside logical expressions. In its shallow
instances, this rule is analogous to constraining the rule R∧ such that the sequent
Φ consists of a single formula, and R is not a conjunction formula. Because such

a restriction in the sequent calculus would not affect the size of the proofs, this
allows the rule dlis to polynomially simulate the sequent calculus proofs while
providing shorter proofs due to deep inference. Because the rule dlis does not
impose any restriction on the deep applicability of the inference rules, it does
not cause a loss in shorter proofs.

Thanks to deep inference, we can construct proofs of classical logic structures
with system KSg where the contraction and weakening rules are pushed to the
bottom of the proofs as in the theorem below. This capability provides a means
to carry the ideas in [11] to prove that the rule s can be replaced with the rule
dlis in system KSg without loosing completeness.

Definition 9. System KSg with deep lazy interaction switch, or system KSgdli

is the system { ai↓ , dlis , c↓ , w↓ }.

Theorem 1. [14] If a structure R has a proof in system KSg, then there exist
structures R1, R2, R3, R′

1
, R′

2
, and R′

3
and proofs of the following forms:

tt

R3

{w↓ }∆3

R2

{ ai↓ }∆2

R

{ s, c↓ }∆1

i.
;

tt

R3

{w↓ }∆3

R2

{ ai↓ }∆2

R1

{ s }∆1,b

R

{ c↓ }∆1,a

ii.
;

tt

R′
3

{ ai↓ }∆2

R2

{w↓ }∆3

R1

{ s }∆1,b

R

{ c↓ }∆1,a

iii.
;

tt

R′
3

{ ai↓ }∆2

R′
2

{ s }∆′

1,b

R′
1

{w↓ }∆′

3

R

{ c↓ }∆1,a

Theorem 2. Systems KSg and KSgdli are equivalent.

Proof (sketch). Every proof in KSgdli is a proof in KSg. For the other direction,
apply Theorem 1 to a tautology R to obtain a proof of the form

tt

R′

{ ai↓ , s }Π

R

{w↓ , c↓ }

The proof Π above is in a system which is similar to multiplicative linear logic
with the only difference that the equalities [tt ∨ tt] ≈ tt and (ff ∧ ff) ≈ ff hold
for this system. We can thus replace the proof Π with a proof in { dlis , ai↓ } by
applying the procedure in [11] where we replace proofs of multiplicative linear
logic structures in system { s , ai↓ } with proofs in { dlis , ai↓ }.

The completeness argument that we use in [11] is based on the strong rela-
tionship between cut-elimination and completeness: we use a technique, called
splitting, which was originally introduced as a cut-elimination technique for deep

inference systems [8]. In Theorem 2, we use the splitting argument on system
{ ai↓ , dlis } together with a semantic cut elimination argument on system KSg.
However, Theorem 2 indicates that a splitting theorem on system KSgdli can be
used to show the completeness of this system.

Remark 2 (Splitting for system KSgdli). We can state the splitting theorem for
system KSgdli as follows: for all structures R, T , and P , if [(R ∧ T) ∨ P] is

provable in KSgdli then there exist P1, P2, and a derivation
[P1 ∨ P2]

P

KSgdli∆ such

that [R ∨ P1] and [T ∨ P2] are provable in KSgdli. Given that system KSg

and KSgdli are equivalent, we can easily state this result by resorting to the

contraction rule such that derivation ∆ is given by the derivation
[P ∨ P]

c↓ .
P

This is because there exist proofs of [R ∨ P] and [T ∨ P] in KSg, thus also in
KSgdli by Theorem 2. A constructive proof of this result is a topic of ongoing
work.

Remark 3. In [6], Bruscoli and Guglielmi show that Statman tautologies have
quadratic size proofs in the size of the proved tautologies in system KSg, in con-
trast to their exponential size proofs in the sequent calculus. It is straight-forward
to see that system KSgdli preserves these quadratic size proofs of Statman tau-
tologies.

When deep inference systems are considered from a proof theoretical point of
view, the equalities for unit contribute to the simplicity of this system. However,
from the point of view of proof construction, these equalities result in redundant
rule instances. Because of this, it is desirable to control their applications in
proof construction by means of inference rules that replace these equalities.

Definition 10. We define the following rules that are called unit 1, unit 2, unit
3 and unit 4.

S{R}
u1↓

S [R ∨ ff]

S{R}
u2↓

S(R ∧ tt)

S{tt}
u3↓

S [tt ∨ tt]

S{ff}
u4↓

S(ff ∧ ff)

Remark 4. In the rest of the paper, we assume that the relation ≈ is defined by
only associativity and commutativity of the logical operators. This is because
the equalities for unit, in Definition 1, become redundant in proofs when we
introduce the rules in Definition 10.

Definition 11. The following rules are called co-contraction (c↑) [3], conjunc-
tion weakening (w1↓) and disjunction weakening (w2↓).

S{R}
c↑

S(R ∧ R)

S{ff}
w1↓

S(R ∧ ff)

S{tt}
w2↓

S [R ∨ tt]

Proposition 1. The rules w1↓ and w2↓ are derivable for system KSgdli.

Remark 5. The rule c↑ is the contrapositive of the rule c↓.

Definition 12. The following rule is called contractive deep lazy interaction
switch (cs)

S [([R ∨ U] ∧ T) ∨ U]
cs

S [(R ∧ T) ∨ U]

where U is not a proper disjunction, R is not a proper conjunction and atR ∩
atU 6= ∅.

Proposition 2. The rule cs is derivable for {dlis , c↓}.

Proof. Take the following derivation.

S [([R ∨ U] ∧ T) ∨ U]
dlis

S [(R ∧ T) ∨ U ∨ U]
c↓

S [(R ∧ T) ∨ U]

;

S [([R ∨ U] ∧ T) ∨ U]
cs

S [(R ∧ T) ∨ U]

Definition 13. The system { u1↓ , u2↓ , u3↓ , u4↓ , w1↓ , w2↓ , c↑ , ai↓ , cs } is called
system KG.

Theorem 3. Systems KG and KSgdli are equivalent.

Proof (sketch). All the rules of system KG are derivable for system KSgdli. For the
proof of the other direction, take a proof of a tautology R obtained by applying
Theorem 2 where the instances of the rules c↓ and w↓ are at the bottom of the
proof. We can permute all the instances of the rule w↓ to the top of the proof
where they can be replaced with the instances of the rules w1↓ and w2↓. We
replace each instance of the rule c↓, that has a proper disjunction as its redex,
with two instances of this rule applied to two structures in the disjunction.
We then permute up all the instances of the contractions, where we can either
annihilate the substructures of the contractum in an instance of one of the rules
u1↓ , u2↓ , w1↓ , w2↓ , c↑ and ai↓ , or we can replace the instances of the rules c↓
and dlis with the instances of cs as shown in the proof of Proposition 2.

Remark 6. All the rules of system KG are invertible rules.

Example 7. A proof of the structure in Example 1 in system KG is as follows.
(We omit the instances of the rules u1↓, u2↓, u3↓, u4↓, w1↓ and w2↓.)

tt
ai↓

[b ∨ b̄ ∨ ā ∨ c̄ ∨ d̄]
ai↓

[([a ∨ ā] ∧ b) ∨ ā ∨ b̄ ∨ c̄ ∨ d̄]
cs

[(a ∧ b) ∨ ā ∨ b̄ ∨ c̄ ∨ d̄]
c↑

[(a ∧ b) ∨ ([ā ∨ b̄] ∧ [ā ∨ b̄]) ∨ c̄ ∨ d̄]
ai↓

[(a ∧ b) ∨ ([ā ∨ b̄] ∧ [ā ∨ b̄] ∧ [d ∨ d̄]) ∨ c̄ ∨ d̄]
cs

[(a ∧ b) ∨ ([ā ∨ b̄] ∧ [ā ∨ b̄] ∧ d) ∨ c̄ ∨ d̄]
ai↓

[(a ∧ b) ∨ ([ā ∨ b̄] ∧ [c ∨ c̄] ∧ [ā ∨ b̄] ∧ d) ∨ c̄ ∨ d̄]
cs

[(a ∧ b) ∨ ([ā ∨ b̄] ∧ c ∧ [ā ∨ b̄] ∧ d) ∨ c̄ ∨ d̄]

Definition 14. An instance of the rule cs∗ is an instance of the rule cs, given
in Definition 12, if the rule cs cannot be applied bottom-up to the structures R

and U .

Definition 15. A proof system S p-simulates a proof system S ′ if there is a
polynomial time computable algorithm that transforms every proof in S ′ into a
proof in S .

Definition 16. For any two rules ρ1 and ρ2, the ρ1 ≺ ρ2 denotes a strategy for
the bottom-up application of the rules ρ1 and ρ2 such that when possible always
ρ1 is applied exhaustively before ρ2.

Conjecture 1. For any sequent calculus system S for classical logic where the
inference rules can be applied only at the top-level (main) connective, the fol-
lowing holds: (i.) System KG p-simulates S . (ii.) There are classes of classical
logic structures, e.g., Statman tautologies, for which the strategy given below
provides polynomial size proofs in contrast to their exponential size proofs in
S .

u1↓ ≺ u2↓ ≺ u3↓ ≺ u4↓ ≺ w1↓ ≺ w2↓ ≺ c↑ ≺ ai↓ ≺ cs∗

All the rule instances, except those of the rule cs, shrink the size of the
structure being proved. Then applying the rule cs∗ should allow to construct
proofs by annihilating substructures. Because we prioritise the instances of this
rule in deeper contexts the condition of this rule is applied to smaller structures
and also the structures that are copied by this rule remain smaller substructures.

4 Discussion

We have defined a set of rules within the methodology of deep inference for
classical propositional logic, with the aim of providing the ingredients of a deep
inference theorem prover that performs better than shallow inference theorem
provers. In order to overcome the nondeterminism that is present due to deep
applicability of the inference rules, we have integrated the techniques that were
presented in [13, 11]. The design principle of system KG and the strategy that
we define on this system is keeping all the rules invertible, while delaying the
application of the contraction rule when possible and preserving deep inference.
This way, we can apply the inference rules with the aim of shrinking the size of
the formula being proved and minimise the exponential growth in the size of the
formula due to the instances of the contraction rule when it is possible.

In [6], Bruscoli and Guglielmi show that Statman tautologies have quadratic
size proofs in the size of the proved tautologies in system KSg, in contrast to
their exponential size proofs in the sequent calculus. It is straight-forward to see
that system KSgdli preserves these quadratic size proofs of Statman tautologies.
We believe that system KG and the search strategy that we have defined on
this system do not result in a loss of also other short proofs that are available
due to deep inference, because our restrictions promote the interaction between

dual atoms, while preserving deep applicability of the inference rules. Our long
term goal is developing analytic deep inference theorem provers for modal logics
[7, 16] and fragments of linear logics [19, 18]. In this regard, splitting theorems
can provide the proof theoretical counter-parts of strategies, similar to selection
rules in resolution theorem provers.
Acknowledgements: The author would like to thank Alessio Guglielmi, Paola
Bruscoli and anonymous referees for comments and improvements.

References

1. Hasan Amjad. Compressing propositional refutations. In S. Merz and T. Nipkow,
editors, Proceedings of the 6th International Workshop on Automated Verification

of Critical Systems, volume 185 of ENTCS, pages 3–15. Elsevier, 2007.
2. Kai Brünnler. Atomic cut elimination for classical logic. In M. Baaz and J. A.

Makowsky, editors, CSL 2003, volume 2803 of LNCS, pages 86–97. Springer, 2003.
3. Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. PhD thesis,

Technische Universität Dresden, 2003.
4. Kai Brünnler. Deep inference and its normal form of derivations. In Arnold Beck-

mann, Ulrich Berger, Benedikt Löwe, and John V. Tucker, editors, Computability

in Europe 2006, volume 3988 of LNCS, pages 65–74. Springer, July 2006.
5. Kai Brünnler. Locality for classical logic. Notre Dame Journal of Formal Logic,

47(4):557–580, 2006.
6. Paola Bruscoli and Alessio Guglielmi. On the proof complexity of deep inference.

ACM Transactions on Computational Logic, 2008. In press.
7. Rajeev Goré and Alwen Tiu. Classical modal display logic in the calculus of

structures and minimal cut-free deep inference calculi for S5. Journal of Logic and

Computation, 17(4):767–794, 2007.
8. Alessio Guglielmi. A system of interaction and structure. ACM Transactions on

Computational Logic, 8(1):1–64, 2007.
9. Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference

via atomic flows. Logical Methods in Computer Science, 2008. In press.
10. Alessio Guglielmi and Lutz Straßburger. A system of interaction and structure IV:

The exponentials. In the second round of revision for Mathematical Structures in
Computer Science., 2007.

11. Ozan Kahramanoğulları. Interaction and depth against nondeterminism in deep
inference proof search. submitted, 2008.

12. Ozan Kahramanoğulları. Nondeterminism and Language Design in Deep Inference.
PhD thesis, TU Dresden, 2006.

13. Ozan Kahramanoğulları. Reducing nondeterminism in the calculus of structures.
In Miki Hermann and Andrei Voronkov, editors, Logic for Programming, Arti-

ficial Intelligence, and Reasoning, Proceedings of the 13th International Confer-

ence, LPAR 2006, Phnom Penh, Cambodia, volume 4246 of LNCS, pages 272–286.
Springer, 2006.

14. Ozan Kahramanoğulları. Maude as a platform for designing and implementing
deep inference systems. In Proceedings of the Eighth International Workshop on

Rule-Based Programming, RULE’07, ENTCS. Elsevier, 2008. In press.
15. Richard Statman. Bounds for proof-search and speed-up in the predicate calculus.

Annals of Mathematical Logic, 15:225–287, 1978.

16. Phiniki Stouppa. A deep inference system for the modal logic S5. Studia Logica,
85(2):199–214, 2007.

17. Lutz Straßburger. A local system for linear logic. In M. Baaz and A. Voronkov,
editors, LPAR 2002, volume 2514 of LNAI, pages 388–402. Springer, 2002.

18. Lutz Straßburger. Linear Logic and Noncommutativity in the Calculus of Struc-

tures. PhD thesis, TU Dresden, 2003.
19. Lutz Straßburger. MELL in the calculus of structures. Theoretical Computer

Science, 309:213–285, 2003.
20. Alwen Fernanto Tiu. A local system for intuitionistic logic. In Miki Hermann

and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and

Reasoning, Proceedings of the 13th International Conference, LPAR 2006, Phnom

Penh, Cambodia, volume 4246 of LNCS, pages 242–256. Springer, 2006.
21. Alwen Fernanto Tiu. A system of interaction and structure II: the need for deep

inference. Logical Methods in Computer Science, 2 (2:4):1–24, April 2006.
22. Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge

University Press, 1996.
23. Tjark Weber. Integrating a sat solver with an lcf-style theorem prover. In A. Ar-

mando and A. Cimatti, editors, Proceedings of the Third Workshop on Pragmatics

of Decision Procedures in Automated Reasoning, volume 144 of ENTCS, pages
67–78. Elsevier, 2006.

