
Herbrand Sequent Extraction ?

Stefan Hetzl1, Alexander Leitsch1, Daniel Weller1, and
Bruno Woltzenlogel Paleo1

{hetzl, leitsch, weller, bruno}@logic.at
Institute of Computer Languages (E185),

Vienna University of Technology,
Favoritenstraße 9, 1040 Vienna, Austria

Abstract. Computer generated proofs of interesting mathematical the-
orems are usually too large and full of trivial structural information,
and hence hard to understand for humans. Techniques to extract spe-
cific essential information from these proofs are needed. In this paper we
describe an algorithm to extract Herbrand sequents from proofs writ-
ten in Gentzen’s sequent calculus LK for classical first-order logic. The
extracted Herbrand sequent summarizes the creative information of the
formal proof, which lies in the instantiations chosen for the quantifiers,
and can be used to facilitate its analysis by humans. Furthermore, we
also demonstrate the usage of the algorithm in the analysis of a proof of
the equivalence of two different definitions for the mathematical concept
of lattice, obtained with the proof transformation system CERES, which
performs cut-elimination by resolution.

1 Introduction

The problem of analyzing and understanding computer generated proofs plays a
fundamental role and its importance can be expected to grow, as automated and
interactive deduction methods and computer processing power improve. Such
computer generated proofs are formal, in the sense that they strictly follow
axioms and rules of inference of formal logical calculi, as Hilbert calculi, natural
deduction calculi or sequent calculi. The main advantages of formal proofs are:

– Formal proofs, when viewed and studied as a model and ideal for informal
mathematical proofs, allow meta-mathematical investigations into the foun-
dations of Mathematics.

– The correctness of formal proofs can be easily checked, by verifying whether
the formal axioms and rules of the calculus were correctly employed.

– Formal proofs for formalized statements (formulas) can be constructed by
computers executing automated or interactive theorem provers [15].

– Automated proof transformations can be employed to obtain new formal
proofs from previously existing ones [2, 3]. Subsequently, the analysis and

? Supported by the Austrian Science Fund (project P19875) and by the Programme
Alban (project E05M054053BR)



interpretation of the new formal proofs might lead to the discovery of new
informal proofs of the original theorems containing interesting mathematical
arguments.

However, formal representations of real mathematical proofs or computer
generated proofs of real mathematical problems usually have some drawbacks
that make them difficult to be analyzed and understood by mathematicians.
Firstly, the size of a formal proof is usually huge ([1]), which makes it hard to
be visualized as a whole. Secondly, many of its individual inferences are only
structural, necessary not to carry some essential idea about the proof, but only
to satisfy the formalities of the calculus. Thirdly, inference rules of proof calculi
not always correspond easily to natural inferences in informal proofs. Together
these drawbacks imply that, given a formal proof, it is not easy for humans to
understand its essential idea, because it is hidden in a large data structure of
repetitive, bureaucratic and non-intuitive formalities. Therefore there is a need
for summarization of formal proofs or for extraction of its hidden crucial infor-
mation, whenever these proofs are intended to be analyzed and understood by
humans. This need has become especially clear to us during the development and
use of our automated proof transformation system CERES1 for the cut-elimination
of real mathematical proofs in classical first-order logic [2].

This paper describes one possible technique that helps to overcome these
difficulties in the particular case of first-order logic. Our technique relies on
the concept of Herbrand sequent (a generalization of Herbrand disjunction [10]),
which can be used to summarize the creative content of first-order formal proofs,
which lies in the instantiations chosen for quantified variables. Although we use
sequent calculi, the idea described here could be adapted to other calculi, since it
relies on a general property of first-order logic, as stated by Herbrand’s theorem,
and not on specific features of particular calculi.

After describing the technique, we demonstrate its use with the analysis of a
computer generated proof of the equivalence of two different lattice definitions.

2 The Sequent Calculus LKDe

Our formal proofs are written in an extension of Gentzen’s sequent calculus LK,
which is called LKDe and has the following additional features:

– Arbitrary but pre-defined atomic formulas are allowed in the axioms. This
has the advantage that typical mathematical axioms (e.g. symmetry and
reflexivity of equality, associativity of addition, . . . ) do not need to be carried
along all the formal proof in the antecedents of the sequents, but can instead
appear simply as non-tautological axiom sequents in the leaf nodes of the
proof. On the other hand, Gentzen’s cut-elimination theorem [8] holds in
this calculus only in a modified form, since atomic cuts are not necessarily
eliminable.

1 CERES Website: http://www.logic.at/ceres



– There are additional rules for equality and mathematical definitions, in order
to make the calculus more comfortable to use in the formalization of real
mathematical proofs, which use equality and definitions of concepts very
often.

A partial description of the sequent calculus LKDe follows. A full description
can be found in [3]. Additionally, by LKe we denote the LKDe calculus without
definition rules.

Definition 1 (Sequent). A sequent is a pair A1, . . . , An ` C1, . . . , Cm of se-
quences of first-order logic formulas. The first sequence, A1, . . . , An, is the an-
tecedent of the sequent and the second sequence, C1, . . . , Cm, is the consequent
of the sequent. We use the symbols Γ ,Π,Λ and ∆, possibly with subscripts, to
denote sequences of formulas in the antecedent and consequent of sequents.

1. The Axioms: We allow standard axiom sequents of the form A ` A, for
A atomic, and axiom sequents of the form ` t = t for any term t, to express
the reflexivity of equality. Moreover, depending on the background theory
under consideration, we also have non-tautological atomic axiom sequent
schemas. Commutativity of addition, for example, could be expressed with
the sequent schema ` t1+t2 = t2+t1 for all terms t1 and t2, and any instance
of this schema could be used as an axiom sequent in an LKDe-proof within
a background theory in which the commutativity of addition is valid.

2. Propositional rules: LKDe has rules for the propositional connectives: ∨,
→, ¬ and ∧, as exemplified below:

Γ ` ∆,A Π ` Λ,B
Γ,Π ` ∆,Λ,A ∧B ∧ : r

A, Γ ` ∆
A ∧B,Γ ` ∆ ∧ : l1

A,Γ ` ∆
B ∧A,Γ ` ∆ ∧ : l2

3. First-order rules: LKDe has rules for the existential (∃) and universal (∀)
quantifiers.

Γ ` ∆,A{x← α}
Γ ` ∆, (∀x)A

∀ : r
A{x← t}, Γ ` ∆

(∀x)A,Γ ` ∆ ∀ : l

The ∀ : r and ∃ : l rules must satisfy the eigenvariable condition: the variable
α must not occur in Γ nor in ∆ nor in A. Quantifiers introduced by them
are called strong quantifiers. For the ∀ : l and the ∃ : r rules the term t must
not contain a variable that is bound in A. Quantifiers introduced by them
are called weak quantifiers.

4. Equality rules:

Γ ` ∆, s = t Π ` Λ,A[s]Ξ

Γ,Π ` ∆,Λ,A[t]Ξ
= (Ξ) : r1

Γ ` ∆, s = t A[s]Ξ , Π ` Λ
A[t]Ξ , Γ,Π ` ∆,Λ

= (Ξ) : l1

Γ ` ∆, t = s Π ` Λ,A[s]Ξ

Γ,Π ` ∆,Λ,A[t]Ξ
= (Ξ) : r2

Γ ` ∆, t = s A[s]Ξ , Π ` Λ
A[t]Ξ , Γ,Π ` ∆,Λ

= (Ξ) : l2

where Ξ is a set of positions in A and s and t do not contain variables that
are bound in A. The transitivity and symmetry of equality can be derived
from these rules together with the reflexivity axiom.



5. Structural rules: weakening, contraction and permutation, as well as the
following cut-rule:

Γ ` ∆,A A,Π ` Λ
Γ,Π ` ∆,Λ cut

6. Definition rules: They correspond directly to the extension principle in
predicate logic and introduce new predicate and function symbols as ab-
breviations for formulas and terms. Let A be a first-order formula with the
free variables x1, . . . , xk ,denoted by A[x1, . . . , xk], and P be a new k-ary
predicate symbol (corresponding to the formula A). Then the rules are:

A[t1, . . . , tk], Γ ` ∆
P (t1, . . . , tk), Γ ` ∆ d : l

Γ ` ∆,A[t1, . . . , tk]

Γ ` ∆,P (t1, . . . , tk)
d : r

for arbitrary sequences of terms t1, . . . , tk. Definition introduction is a simple
and very powerful tool in mathematical practice, allowing the easy introduc-
tion of important concepts and notations (e.g. groups, lattices, . . . ) by the
introduction of new symbols.

Definition 2 (Skolemization). The skolemization of a sequent removes all its
strong-quantifiers and substitutes the corresponding variables by skolem-terms
in a validity preserving way (i.e. the skolemized sequent is valid iff the original
sequent is valid). LKDe-proofs can also be skolemized, as described in [4], essen-
tially by skolemizing the end-sequent and recursively propagating the skolemiza-
tion to the corresponding formulas in the premises above. Such skolemized proofs
can still contain strong quantifiers that go into cuts.

Remark 1. Skolemization, as introduced by Skolem, consisted of removing weak-
quantifiers (existential quantifiers) in a satisfiability-preserving way. In this sense,
our definition is a dual skolemization, which is also known as herbrandization.

Remark 2. There are many algorithms for skolemization. They can be classified
as either prenex, which firstly transform formulas and sequents into a prenex
form (i.e. with all quantifiers occurring in the beginning of formulas), or struc-
tural, which leave weak quantifiers in their places. It has been shown that prenex
skolemization can result in a non-elementary increase in the Herbrand Com-
plexity of an LK-Proof [4]. Moreover, prenexification impairs the readability
of formulas. Therefore we use structural skolemization algorithms [5], whenever
skolemization is necessary or desirable for our proof transformations.

Example 1. The sequent

(∀x)((∃z)P (x, z) ∧ (∀y)(P (x, y)→ P (x, f(y)))) ` (∀x)(∃y)P (x, f2(y))

can be structurally skolemized to

(∀x)(P (x, g(x)) ∧ (∀y)(P (x, y)→ P (x, f(y)))) ` (∃y)P (a, f2(y))

where a is a skolem-constant and g is a skolem-function.



3 The CERES Method

Our motivation to devise and implement Herbrand sequent extraction algorithms
was the need to analyze and understand the result of proof transformations
performed automatically by the CERES-system, among which the main one is
Cut-Elimination by Resolution: the CERES method [6].

The method transforms any LKDe-proof with cuts into an atomic-cut nor-
mal form (ACNF) containing no non-atomic cuts. The remaining atomic cuts
are, generally, non-eliminable, because LKDe admits non-tautological axiom
sequents.

The ACNF is mathematically interesting, because cut-elimination in formal
proofs corresponds to the elimination of lemmas in informal proofs. Hence the
ACNF corresponds to an informal mathematical proof that is analytic in the
sense that it does not use auxiliary notions that are not already explicit in the
axioms or in the theorem itself.

The transformation to ACNF via Cut-Elimination by Resolution is done
according to the following steps:

1. Construct the (always unsatisfiable [6]) characteristic clause set of the orig-
inal proof by collecting, joining and merging sets of clauses defined by the
ancestors of cut-formulas in the axioms of the proof.

2. Obtain from the characteristic clause set a grounded resolution refutation,
which can be seen as an LKe-proof by exploiting the fact that the resolution
rule is essentially a cut-rule restricted to atomic cut-formulas only.

3. For each clause of the characteristic clause set, construct a projection of the
original proof with respect to the clause.

4. Construct the ACNF by plugging the projections into the leaves of the
grounded resolution refutation tree (seen as an LKe-proof) and by adjusting
the refutation accordingly. Since the projections do not contain cuts and the
refutation contains atomic cuts only, the resulting LKDe proof will indeed
be in atomic-cut normal form.

This method has been continuously improved and extended. The character-
istic clause sets evolved to proof profiles, which are invariant under rule permu-
tations and other simple transformations of proofs [12, 11]. The resolution and
the sequent calculi are now being extended to restricted second-order logics.

The CERES-system automates the method described above, using either Ot-
ter2 or Prover93 as resolution-based first-order theorem provers to obtain the
refutation of the characteristic clause set. However, current fully-automated
resolution-based theorem provers have difficulties to refute some characteris-
tic clause sets produced by CERES [1]. On the other hand, interactive theorem
provers are typically not resolution-based. Therefore, we are currently developing
our own flexible, interactive and resolution-based first-order theorem prover.

2 Otter Website: http://www-unix.mcs.anl.gov/AR/otter/
3 Prover9 Website: http://www.cs.unm.edu/ mccune/prover9/



4 An Algorithm for Herbrand Sequent Extraction

Herbrand sequents are a generalization of Herbrand disjunctions [10] for the
sequent calculus LK.

Definition 3 (Herbrand Sequents of a Sequent). Let s be a closed sequent
containing weak quantifiers only. We denote by s0 the sequent s after removal
of all its quantifiers. Any propositionally valid sequent in which the antecedent
(respectively, consequent) formulas are instances (i.e. their free variables are
possibly instantiated by other terms) of the antecedent (respectively, consequent)
formulas of s0 is called a Herbrand sequent of s.

Let s be an arbitrary sequent and s′ a skolemization of s. Any Herbrand
sequent of s′ is a Herbrand sequent of s.

Remark 3. In Gentzen’s original sequent calculus LK, Herbrand sequents are
tautologies. In a sequent calculus with arbitrary atomic axioms, as LKDe, a
valid sequent is only valid with respect to the axioms used in the proof. Hence,
the Herbrand sequent will not be a tautology, but only propositionally valid with
respect to the axioms used in the proof.

Remark 4. It would be possible to define a Herbrand sequent of an arbitrary
sequent s without using skolemization. This could be achieved by imposing
eigenvariable conditions on the instantiations chosen for the originally strongly
quantified variables. However, the use of skolemization is advantageous, because
skolem symbols store information about how the originally strongly quantified
variables depend on the weakly quantified variables. This information would
be lost if, instead of skolem terms, we had eigenvariables. Hence, skolemization
improves readability of the Herbrand sequent.

Example 2 (Herbrand Sequents). Consider the valid sequent

(∀x)((∃z)P (x, z) ∧ (∀y)(P (x, y)→ P (x, f(y)))) ` (∀x)(∃y)P (x, f2(y))

The following sequents are some of its Herbrand sequents, where g is a skolem-
function and a is a skolem-constant produced by skolemization:

1. P (a, g(a)) ∧ (P (a, g(a))→ P (a, f(g(a)))),
P (a, g(a)) ∧ (P (a, f(g(a)))→ P (a, f2(g(a)))) ` P (a, f2(g(a)))

2. P (g(a), g2(a)) ∧ (P (g(a), g2(a))→ P (g(a), f(g2(a)))),
P (g(a), g2(a)) ∧ (P (g(a), f(g2(a)))→ P (g(a), f2(g2(a)))) ` P (g(a), f2(g2(a)))

3. P (b, g(b)) ∧ (P (b, c)→ P (a, f(c))), P (a, g(a)) ∧ (P (a, g(a))→ P (a, f(g(a)))),
P (a, g(a)) ∧ (P (a, f(g(a)))→ P (a, f2(g(a)))) ` P (a, f2(g(a))), P (a, f2(d))

The first two Herbrand sequents above are minimal in the number of formu-
las, while the third is not.

Apart from its usage as an analysis tool, as described in this paper, the con-
cept of Herbrand disjunction (or Herbrand sequent) also plays an important role
in the foundations of Logic and Mathematics, as expressed by Herbrand’s The-
orem. A concise historical and mathematical discussion of Herbrand’s Theorem,
as well as its relation to Gödel’s Completeness Theorem, can be found in [7].



Theorem 1 (Herbrand’s Theorem). A sequent s is valid if and only if there
exists a Herbrand sequent of s.

Proof. Originally in [10], stated for Herbrand disjunctions. Also in [7] with more
modern proof calculi.

Herbrand’s theorem guarantees that we can always obtain a Herbrand se-
quent from a correct proof, a possibility that was realized and exploited by
Gentzen in his Mid-Sequent Theorem for sequents consisting of prenex formulas
only.

Theorem 2 (Mid-Sequent Theorem). Let ϕ be a prenex LK-Proof without
non-atomic cuts. Then there is an LK-Proof ϕ′ of the same end-sequent such
that no quantifier rule occurs above propositional and cut rules.

Proof. The original proof, for Gentzen’s original sequent calculus LK and cut-
free LK-Proofs, defines rule permutations that shift quantifier rules downwards.
The iterated application of the permutations eventually reduces the original
proof to a normal form fulfilling the mid-sequent property [8]. The rule permu-
tations can be easily extended to proofs containing atomic cuts.

Remark 5. ϕ′ has a mid-sequent, located between its lower first-order part and
its upper propositional part. This mid-sequent is a Herbrand sequent of the
end-sequent of ϕ, after skolemization of ϕ′.

However, Gentzen’s algorithm has one strong limitation: it is applicable only
to proofs with end-sequents in prenex form. Although we could transform the
end-sequents and the proofs to prenex form, this would compromise the readabil-
ity of the formulas and require additional computational effort. Prenexification
is therefore not desirable in our context, and hence, to overcome this and other
limitations in Gentzen’s algorithm, we developed three other algorithms. In this
paper we describe one of them in detail [4], which was chosen to be implemented
within CERES. The other two are described in [17, 16]. Other approaches, based
on the epsilon calculus [13] or on functional interpretation [9], also exist.

4.1 Extraction via Transformation to Quantifier-free LKeA

The algorithm requires a temporary transformation to an extension of the calcu-
lus LKe, called LKeA and obtained by the addition of the following two rules,
which allow the formation of array formulas 〈A1, . . . , An〉 from arbitrary formu-
las Aj , j ∈ {1, 2, . . . , n}. They will be used to replace some contraction rules in
the original proof.

∆,A1, Γ1, . . . , An, Γn, Π ` Λ
∆, 〈A1, . . . , An〉, Γ1, . . . , Γn, Π ` Λ

〈〉 : l
Λ ` ∆,A1, Γ1, . . . , An, Γn, Π

Λ ` ∆, 〈A1, . . . , An〉, Γ1, . . . , Γn, Π
〈〉 : r

To extract a Herbrand sequent of the end-sequent of an LKDe-proof ϕ with-
out cuts containing quantifiers, the algorithm executes two transformations:



1. Ψ (definition 4): produces a quantifier-rule-free LKeA-proof where quantified
formulas are replaced by array-formulas containing their instances.

2. Φ (definition 5): transforms the end-sequent of the resulting LKeA-proof
into an ordinary sequent containing no array-formulas.

Remark 6. The restriction to proofs such that cuts do not contain quantifiers is
necessary because otherwise the cut-formulas in each branch of the cut would be
substituted by different arrays and the corresponding cut inference in the LKeA-
proof would be incorrect. The extracted sequent would not be propositionally
valid, and therefore not a Herbrand sequent. This restriction is not a problem,
because we analyze proofs in atomic-cut normal form produced by the CERES
method.

Let ϕ be an LKDe-Proof without cuts containing quantifiers. A Herbrand
sequent of the end-sequent of ϕ can be obtained by computing:

H(ϕ) .= Φ(end-sequent(Ψ(ϕ)))

Definition 4 (Ψ : Transformation of Quantifier-free LKeA).
The mapping Ψ transforms an LKDe-Proof ϕ such that cuts do not contain

quantifiers into a quantifier-rule-free LKeA-Proof by executing the following two
phases:

1. ϕ′ is constructed by recursively omitting (starting from above downwards) all
definition rules and quantifier rules.

2. ϕ′ is generally not an LK-Proof, because its remaining contraction rules are
not necessarily correct anymore. Therefore these “false” contraction rules
are replaced (starting from above downwards) by 〈〉 : l and 〈〉 : r rules. If

Γ,A1, ∆1, . . . , An, ∆n ` Λ
Γ,A,∆1, . . . ,∆n ` Λ

c∗ : l

occurs in ϕ′ and Ai 6= Aj, for some i and j in {1, 2, . . . , n}, then replace it
by:

Γ,A1, ∆1, . . . , An, ∆n ` Λ
Γ, 〈A1, . . . , An〉, ∆1, . . . ,∆n ` Λ

〈〉 : l

Analogously, “false” contractions in the right (c∗ : r) are substituted by 〈〉 : r
rules. The introduction of arrays requires a corresponding adaption of the po-
sitions in equality rules, so that paramodulations are executed in all formulas
of the array.

Ψ(ϕ) is the quantifier-rule-free LKeA-Proof obtained by executing the two
steps above.

Example 3. Let ϕ be the following LKDe-proof:



[ϕ′]

P (0), P (0)→ P (s(0)), P (s(0))→ P (s2(0)) ` P (s2(0))
∀ : l

P (0), P (0)→ P (s(0)), (∀x)(P (x)→ P (s(x)) ` P (s2(0))
∀ : l

P (0), ∀x(P (x)→ P (s(x)), (∀x)(P (x)→ P (s(x)) ` P (s2(0))
c : l

P (0), ∀x(P (x)→ P (s(x)) ` P (s2(0))
∧ : l

P (0) ∧ (∀x)(P (x)→ P (s(x)) ` P (s2(0))

Firstly we omit all definition and quantifier rules and obtain the following
LKDe-pseudoproof ϕc with a false contraction:

[ϕ′]

P (0), P (0)→ P (s(0)), P (s(0))→ P (s2(0)) ` P (s2(0))
c∗ : l

P (0), (∀x)(P (x)→ P (s(x)) ` P (s2(0))
∧ : l

P (0) ∧ (∀x)(P (x)→ P (s(x))) ` P (s2(0))

Then we replace the false contraction rule by an array formation rule, thus
obtaining the LKeA-Proof Ψ(ϕ) below:

[ϕ′]

P (0), P (0)→ P (s(0)), P (s(0))→ P (s2(0)) ` P (s2(0))
〈〉 : l

P (0),
〈
P (0)→ P (s(0)), P (s(0))→ P (s2(0))

〉
` P (s2(0))

∧ : l
P (0) ∧

〈
P (0)→ P (s(0)), P (s(0))→ P (s2(0))

〉
` P (s2(0))

Definition 5 (Φ: Expansion of Array Formulas). The mapping Φ trans-
forms array formulas and sequents into first-order logic formulas and sequents.
In other words, Φ eliminates 〈. . .〉 and can be defined inductively by:

1. If A is a first-order logic formula, then Φ(A) .= A
2. Φ(〈A1, . . . , An〉)

.= Φ(A1), . . . , Φ(An)
3. If Φ(A) = A1, . . . , An, then Φ(¬A) .= ¬A1, . . . ,¬An

4. If Φ(A) = A1, . . . , An and Φ(B) = B1, . . . , Bm, then Φ(A ◦ B) .= A1 ◦
B1, . . . , A1 ◦Bm, . . . , An ◦B1, . . . , An ◦Bm, for ◦ ∈ {∧,∨,→}

5. Φ(A1, . . . , An ` B1, . . . , Bm) .= Φ(A1), . . . , Φ(An) ` Φ(B1), . . . , Φ(Bm)

Φ has not been defined over formulas that contain array formulas in the
scope of quantifiers. This is not necessary, because Ψ transforms LKDe-proofs
into LKeA-proofs where this situation never occurs.

Example 4. Let Ψ(ϕ) be the LKeA-Proof in Example 3. Then, its end-sequent,
after mapping array formulas to sequences of formulas, is:

Φ(end-sequent(Ψ(ϕ))) =

(
P (0) ∧ (P (0)→ P (s(0))),

P (0) ∧ (P (s(0))→ P (s2(0)))

)
` P (s2(0))

Theorem 3 (Soundness). Let ϕ be an LKDe-Proof in atomic cut normal
form. Then the sequent H(ϕ), extracted by the algorithm defined above, is a
Herbrand sequent of the end-sequent of ϕ.



Proof. A proof (fully available in [17]) can be sketched in the following way. We
have to show that:

1. The formulas of H(ϕ) are substitution instances of the formulas of the end-
sequent of ϕ without their quantifiers.

2. H(ϕ) is a valid sequent.

Item 1 follows clearly from the definitions of Φ and Ψ , because Ψ substitutes
quantified sub-formulas of the end-sequent by array-formulas containing only
substitution instances of the respective sub-formulas, and Φ expands the the
array-formulas maintaining the structure of the formulas where they are located.

Item 2 can be proved by devising a transformation ΦP that maps the in-
termediary LKDeA-proof Ψ(ϕ) to an LKDe-proof ΦP (Ψ(ϕ)) by substituting
〈〉 : l rules by sequences of ∧ : l rules and 〈〉 : r rules by sequences of ∨ : r
rules. Ψ(ϕ) does not contain quantifier rules. Therefore ΦP (Ψ(ϕ)) is essentially
a propositional LKe-proof, in which the arrays of the end-sequent were substi-
tuted by either nested ∧ connectives or nested ∨ connectives. The end-sequent
of ΦP (Ψ(ϕ)) can be shown, by structural induction, to be logically equivalent to
the extracted sequent Φ(end-sequent(Ψ(ϕ))). Therefore the extracted sequent is
valid.

5 Analysis of the Lattice Proof

In this section, the usefulness of a Herbrand sequent for understanding a formal
proof will be demonstrated on a simple example from lattice theory . There are
several different, but equivalent, definitions of lattice. Usually, the equivalence of
several statements is shown by proving a cycle of implications. While reducing
the size of the proof, this practice has the drawback of not providing direct proofs
between the statements. Cut-elimination can be used to automatically generate
a direct proof between any two of the equivalent statements. In this section, we
will demonstrate how to apply cut-elimination with the CERES-system followed
by Herbrand sequent extraction for this purpose.

5.1 The Lattice Proof

Definitions 7, 8 and 10 list different sets of properties that a 3-tuple 〈L,∩,∪〉 or
a partially ordered set 〈S,≤〉 must have in order to be considered a lattice.

Definition 6 (Semi-Lattice). A semi-lattice is a set L together with an oper-
ation ◦ which is

– commutative: (∀x)(∀y) x ◦ y = y ◦ x,
– associative: (∀x)(∀y)(∀z) (x ◦ y) ◦ z = x ◦ (y ◦ z) and
– idempotent: (∀x) x ◦ x = x.



Definition 7 (Lattice: definition 1). A L1-lattice is a set L together with
operations ∩ (meet) and ∪ (join) s.t. both 〈L,∩〉 and 〈L,∪〉 are semi-lattices
and ∩ and ∪ are “inverse” in the sense that

(∀x)(∀y) x ∩ y = x↔ x ∪ y = y.

Definition 8 (Lattice: definition 2). A L2-lattice is a set L together with
operations ∩ and ∪ s.t. both 〈L,∩〉 and 〈L,∪〉 are semi-lattices and the absorption
laws

(∀x)(∀y) (x ∩ y) ∪ x = x and (∀x)(∀y) (x ∪ y) ∩ x = x

hold.

Definition 9 (Partial Order). A binary relation ≤ on a set S is called partial
order if it is

– reflexive (R): (∀x) x ≤ x,
– anti-symmetric (AS): (∀x)(∀y) ((x ≤ y ∧ y ≤ x)→ x = y) and
– transitive (T): (∀x)(∀y)(∀z) ((x ≤ y ∧ y ≤ z)→ x ≤ z).

Definition 10 (Lattice: definition 3). A L3-lattice is a partially ordered set
〈S,≤〉 s.t. for each two elements of S there exist

– greatest lower bound (GLB) ∩, i.e.

(∀x)(∀y)(x ∩ y ≤ x ∧ x ∩ y ≤ y ∧ (∀z)((z ≤ x ∧ z ≤ y)→ z ≤ x ∩ y)),

– least upper bound (LUB) ∪, i.e.

(∀x)(∀y)(x ≤ x ∪ y ∧ y ≤ x ∪ y ∧ (∀z)((x ≤ z ∧ y ≤ z)→ x ∪ y ≤ z)).

The above three definitions of lattice are equivalent. We will formalize the
following proofs of L1 → L3 and L3 → L2 in order to extract a direct proof of
L1→ L2, i.e. one which does not use the notion of partial order.

Proposition 1. L1-lattices are L3-lattices.

Proof. Given 〈L,∩,∪〉, define x ≤ y as x ∩ y = x. By idempotence of ∩, ≤
is reflexive. Anti-symmetry of ≤ follows from commutativity of ∩ as (x ∩ y =
x ∧ y ∩ x = y) → x = y. To see that ≤ is transitive, assume (a) x ∩ y = x and
(b) y ∩ z = y to derive

x ∩ z =(a) (x ∩ y) ∩ z =(assoc.) x ∩ (y ∩ z) =(b) x ∩ y =(a) x

So ≤ is a partial order on L.
By associativity, commutativity and idempotence of ∩, we have (x∩y)∩x =

x ∩ y, i.e. x ∩ y ≤ x and similarly x ∩ y ≤ y, so ∩ is a lower bound for ≤. To
see that ∩ is also the greatest lower bound, assume there is a z with z ≤ x and
z ≤ y, i.e. z ∩ x = z and z ∩ y = z. Then, by combining these two equations,
(z ∩ y) ∩ x = z, and therefore, z ≤ x ∩ y.



To show that ∪ is an upper bound, derive from the axioms of semi-lattices
that x∪(x∪y) = x∪y which, by the “inverse” condition of L1 gives x∩(x∪y) = x,
i.e. x ≤ x∪y and similarly for y ≤ x∪y. Now assume there is a z with x ≤ z and
y ≤ z, i.e. x∩z = x and y∩z = z and by the “inverse” condition of L1: x∪z = z
and y ∪ z = z. From these two equations and the axioms of semi-lattices, derive
(x∪ y)∪ z = z which, by the “inverse” condition of L1, gives (x∪ y)∩ z = x∪ y,
i.e. x ∪ y ≤ z.

Proposition 2. L3-lattices are L2-lattices.

Proof. We want to show the absorption law (x∩y)∪x = x. That x ≤ (x∩y)∪x
follows immediately from ∪ being an upper bound. But x∩ y ≤ x because ∩ is a
lower bound. Furthermore also x ≤ x, so x is an upper bound of x∩y and x. But
as ∪ is the lowest upper bound, we have (x∩y)∪x ≤ x which by anti-symmetry
of ≤ proves (x∩y)∪x = x. For proving the other absorption law (x∪y)∩x = x,
proceed symmetrically.

By concatenation, the above two proofs show that all L1-lattices are L2-
lattices. However, this proof is not a direct one, it uses the notion of partially
ordered set which occurs neither in L1 nor in L2. By cut-elimination we will
generate a direct formal proof automatically.

5.2 Overview of the Analysis

The analysis of the lattice proof followed the steps below:

1. Formalization of the lattice proof in the sequent calculus LKDe: semi-auto-
mated by HLK4. Firstly the proof was written in the language HandyLK,
which can be seen as an intermediary language between informal mathemat-
ics and LKDe. Subsequently, HLK compiled it to LKDe.

2. Cut-Elimination of the formalized lattice proof : fully automated by CERES,
employing the cut-elimination procedure based on resolution, sketched in
Section 3, to obtain an LKDe-proof in Atomic-Cut Normal Form (ACNF),
i.e. a proof in which cut-formulas are atoms.

3. Extraction of the Herbrand sequent of the ACNF : fully automated by CERES,
employing the algorithm described in Section 4.

4. Use of the Herbrand sequent to interpret and understand the ACNF, in order
to obtain a new direct informal proof.

5.3 Formalization of the Lattice Proof

The full formal proof has 260 rules (214 rules, if structural rules (except cut)
are not counted). It is too large to be displayed here. Below we show only a part
of it, which is close to the end-sequent and depicts the main structure of the
proof, based on the cut-rule with L3 as the cut-formula. This cut divides the
4 HLK Website: http://www.logic.at/hlk/



proof into two subproofs corresponding to propositions 1 and 2. The full proofs,
conveniently viewable with ProofTool5, are available in the website of CERES.

[pR]
` R

[pAS ]
` AS

[pT ]
` T

` AS ∧ T ∧ : r

` R ∧ (AS ∧ T )
∧ : r

` POSET d : r
[pGLB ] [pLUB ]

L1 ` GLB ∧ LUB ∧ : r

L1 ` POSET ∧ (GLB ∧ LUB)
∧ : r

L1 ` L3
d : r

[p2
3]

L3 ` L2
L1 ` L2

cut

– L1 ≡ ∀x∀y((x ∩ y) = x ⊃ (x ∪ y) = y) ∧ ((x ∪ y) = y ⊃ (x ∩ y) = x)
– L2 ≡ ∀x∀y(x ∩ y) ∪ x = x ∧ ∀x∀y(x ∪ y) ∩ x = x
– L3 ≡ POSET ∧ (GLB ∧ LUB)
– pAS , pT , pR are proofs of, respectively, anti-symmetry (AS), transitivity (T)

and reflexivity (R) of ≤ from the axioms of semi-lattices.
– p2

3 is a proof that L3-lattices are L2-lattices, from the axioms of semi-lattices.

5.4 Cut-Elimination of the Lattice Proof

Prior to cut-elimination, the formalized proof is skolemized by CERES, resulting in
a proof of the skolemized end-sequent L1 ` (s1∩s2)∪s1 = s1∧(s3∪s4)∩s3 = s3,
where s1, s2, s3 and s4 are skolem constants for the strongly quantified variables
of L2. Then CERES eliminates cuts, producing a proof in atomic-cut normal (also
available for visualization with ProofTool in the website of CERES).

The ACNF is still quite large (214 rules; 72 rules not counting structural rules
(except cut)). It is interesting to note, however, that the ACNF is smaller than
the original proof in this case, even though in the worst case cut-elimination can
produce a non-elementary increase in the size of proofs [14].

5.5 Herbrand Sequent Extraction of the ACNF of the Lattice Proof

The Herbrand sequent of the ACNF, after set-normalization and removal of
remaining quantified sub-formulas introduced by weakening (or as the non-
auxiliary formula of ∨ and ∧ rules) in the ACNF, is:

(A1) s1 ∪ (s1 ∪ (s1 ∩ s2)) = s1 ∪ (s1 ∩ s2)→ s1 ∩ (s1 ∪ (s1 ∩ s2)) = s1,
(A2) s1 ∩ s1 = s1 → s1 ∪ s1 = s1,
(A3) (s1 ∩ s2) ∩ s1 = s1 ∩ s2︸ ︷︷ ︸

(A3i)

→ (s1 ∩ s2) ∪ s1 = s1,

(A4) (s1 ∪ (s1 ∩ s2)) ∪ s1 = s1 → (s1 ∪ (s1 ∩ s2)) ∩ s1 = s1 ∪ (s1 ∩ s2),
(A5) s3 ∪ (s3 ∪ s4) = s3 ∪ s4︸ ︷︷ ︸

(A5i)

→ s3 ∩ (s3 ∪ s4) = s3

(C1) ` (s1 ∩ s2) ∪ s1 = s1︸ ︷︷ ︸
(C1i)

∧ (s3 ∪ s4) ∩ s3 = s3︸ ︷︷ ︸
(C1ii)

5 ProofTool Website: http://www.logic.at/prooftool/



5.6 Construction of the informal proof

After extracting a Herbrand sequent from the ACNF, the next step is to con-
struct an informal, analytic proof of the theorem, based on the ACNF, but using
only the information about the variable instantiations contained in its extracted
Herbrand sequent. We want to stress that in the following, we are not performing
syntactic manipulations of formulas of first-order logic, but instead we use the
formulas from the Herbrand sequent of the ACNF as a guide to construct an
analytical mathematical proof.

Theorem 4. All L1-lattices 〈L,∩,∪〉 are L2-lattices.

Proof. As both lattice definitions have associativity, commutativity and idempo-
tence in common, it remains to show that the absorption laws hold for 〈L,∩,∪〉.
We notice that, as expected, these properties coincide with the conjunction (C1)
for arbitrary s1, . . . , s4 on the right hand side of the Herbrand sequent and so we
proceed by proving each conjunct for arbitrary s1, . . . , s4 ∈ L:

1. We notice that (A3i) + (A3) imply (C1i). So we prove these properties:
(a) First we prove (A3i):

s1 ∩ s2 =(idem.) (s1 ∩ s1) ∩ s2 =(assoc.) s1 ∩ (s1 ∩ s2) =(comm.)

s1 ∩ (s2 ∩ s1) =(assoc.) (s1 ∩ s2) ∩ s1

(b) Assume (s1∩s2)∩s1 = s1∩s2. By definition of L1-lattices, (s1∩s2)∪s1 =
s1. Thus, we have proved (A3).

2. Again, we notice that (A5i) + (A5) + commutativity imply (C1ii) and use
this fact:
(a) s3 ∪ s4 =(idem.) (s3 ∪ s3) ∪ s4 =(assoc.) s3 ∪ (s3 ∪ s4). We have proved

(A5i).
(b) Assume s3∪(s3∪s4) = s3∪s4. By definition of L1-lattices, s3∩(s3∪s4) =

s3. This proves (A5).

So we have shown that for arbitrary s1, . . . , s4 ∈ L, we have (s1∩s2)∪s1 = s1
and (s3 ∪ s4) ∩ s3 = s3, which completes the proof.

Contrary to the proof in Section 5.1, we can now directly see the algebraic
construction used to prove the theorem. This information was hidden in the syn-
thetic argument that used the notion of partially ordered sets and was revealed
by cut-elimination.

6 Conclusion

We have described a new algorithm for Herbrand sequent extraction, which is
better than Gentzen’s mid-sequent reduction because it can be applied to proofs
that are not in prenex form. Its use as a tool for the analysis of computer gen-
erated proofs was successfully demonstrated with a simple proof about lattices,



which was automatically transformed to atomic-cut normal form by the CERES
system.

Our algorithm still lacks support for definition rules, because they are re-
moved by the transformation to LKeA. We are planning to improve on this and
to be able to reinsert defined formulas in the extracted Herbrand sequent, in
order to further improve its readability.

The technique described here is not limited to sequent calculi, since it relies
on Herbrand’s theorem, which is applicable to first-order logic in general. For
proofs in natural deduction, for example, normalization (elimination of detours)
would be required before Herbrand disjunction extraction in the same way that
cut-elimination is required within the sequent calculus formalism. Resolution is
another example of calculus that could benefit from an adaption of this tech-
nique. Resolution refutations are usually obtained by automated theorem provers
and are usually even harder for humans to understand. The general idea behind
Herbrand sequent extraction could be extended to an algorithm applicable to
resolution deductions as well.

References

1. Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik
Spohr. Ceres: An Analysis of Fürstenberg’s Proof of the Infinity of Primes. to
appear in Theoretical Computer Science.

2. Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik
Spohr. Cut-Elimination: Experiments with CERES. In Franz Baader and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR) 2004, volume 3452 of Lecture Notes in Computer Science, pages 481–495.
Springer, 2005.

3. Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik
Spohr. Proof Transformation by CERES. In Jonathan M. Borwein and William M.
Farmer, editors, Mathematical Knowledge Management (MKM) 2006, volume 4108
of Lecture Notes in Artificial Intelligence, pages 82–93. Springer, 2006.

4. Matthias Baaz and Alexander Leitsch. On skolemization and proof complexity.
Fundamenta Matematicae, 20:353–379, 1994.

5. Matthias Baaz and Alexander Leitsch. Cut normal forms and proof complexity.
Annals of Pure and Applied Logic, 97:127–177, 1999.

6. Matthias Baaz and Alexander Leitsch. Cut-elimination and Redundancy-
elimination by Resolution. Journal of Symbolic Computation, 29(2):149–176, 2000.

7. S. R. Buss. On Herbrand’s theorem. Lecture Notes in Computer Science, 960:195,
1995.

8. G. Gentzen. Untersuchungen über das logische Schließen. In M.E.Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland Publishing
Company, Amsterdam - London, 1969.

9. Philipp Gerhardy and Ulrich Kohlenbach. Extracting herbrand disjunctions by
functional interpretation. Archive for Mathematical Logic, 44(5), 2005.

10. J. Herbrand. Recherches sur la Theorie de la Demonstration. PhD thesis, Univer-
sity of Paris, 1930.

11. Stefan Hetzl. Characteristic Clause Sets and Proof Transformations. PhD thesis,
Vienna University of Technology, 2007.



12. Stefan Hetzl and Alexander Leitsch. Proof transformations and structural invari-
ance. Algebraic and Proof-theoretic aspects, LNAI 4460:201–230, 2007.

13. David Hilbert and Paul Bernays. Grundlagen der Mathematik II. Springer, 2nd
edition, 1970.

14. Richard Statman. Lower bounds on Herbrand’s theorem. Proceedings of the Amer-
ican Mathematical Society, 75:104–107, 1979.

15. G. Sutcliffe and C. Suttner. The State of CASC. AI Communications, 19(1):35–48,
2006.

16. Bruno Woltzenlogel Paleo. Herbrand sequent extraction. Master’s thesis, Tech-
nische Universitaet Dresden; Technische Universitaet Wien, Dresden, Germany;
Wien, Austria, 2007.

17. Bruno Woltzenlogel Paleo. Herbrand Sequent Extraction. VDM-Verlag, Saar-
bruecken, Germany, 2008.


