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Abstract. We present Herbrand expansion proofs: an abstract representation of
proofs in first-order classical logic, derived from a form ofHerbrand’s theorem.
These objects are essentially Miller’sexpansion tree proofswith a notion of cut.
We show a function mapping sequent calculus proofs to Herbrand expansion
proofs, and a system of reductions which we conjecture givescut-elimination
for a subclass of HEPs including those which arise as the translations of sequent
proofs.

1 Introduction

The question of when two proofs in (some formalism for) classical logic are morally
equal has seen significant treatment in recent years [3, 4, 11, 10, 14, 9, 8, 12]; each treat-
ment must find its own way of avoidingJoyal’s Paradox; that the naı̈ve way of extend-
ing the identity on proofs in intuitionistic natural deduction leads to collapse (every
proof of a given sequent is identified). These studies are almost exclusively focused on
propositional classical logic, for two reasons. First is that this problem is already hard;
and the well-known barriers to a good semantics for classical logic exist in a quantifier
(and indeed negation-) free setting. The second is a prejudice that the proof-theory of
first-order quantifiers is uninteresting.

This workshop paper introducesHerbrand expansion proofs(HEPs) – an abstract
representation of proofs in first-order classical logic. (The cut-free Herbrand expansion
proofs can be seen as an alternative presentation of Miller’s expansion tree proofs [13].)
We see Herbrand expansion proofs as a modular semantics for proofs in first-order
classical logic, in the sense that, given any notion of proof-identity on propositional
proofs, we may produce a class ofaugmentedHerbrand expansion proofs, incorporating
that notion. What is surprising is that the notion of proof-identity we obtain from HEPs
themselves is non-trivial, even when the notion of identityon propositional proofs is
trivial. The problem of constructive cut-elimination for HEPs is nontrivial; the intuitive
cut-reduction rules that we will present in this paper exhibit both non-confluence, and
non-termination. We conjecture that, as in the sequent calculus, there is a strategy for
cut-elimination, and that further, unlike the sequent calculus, this strategy can be made
confluent in a non-trivial way, giving rise to a category of Herbrand expansion proofs.

⋆ Supported by the Swiss National Science Foundation grant “Algebraic and Logical Aspects of
Knowledge Processing.”



1.1 Related work

Cut elimination for a system of expansion-tree-like objects for second-order propo-
sitional multiplicative linear logic may also be found in Strassburger [15], where the
procedure is simpler owing to the lack of contractions. An abstract form of Herbrand’s
theorem is suggested in [8], which has a different characterto that discussed here. The
author has very recently become aware of the work of Willem Heijltjes, who is studying
similar objects to those considered here.

1.2 Conventions

We work over a signatureΣ of functions and relation symbols, in first-order logic with-
out equality and without non-logical axioms. All formulae are assumed to be written
in negation normal form (with negation pushed down to the atoms). Within a formula,
we assume that bound variables are distinct from free variables, and that each quantifier
binds a distinct bound variable , which we call itseigenvariable. We will say that a se-
quenceS of formulaesatisfies the eigenvariable conditionif each quantifier appearing
in a formula ofS binds a distinct bound variable. We take the following definition of a
sequent:

Definition 1.1. A sequentΓ is a sequenceA1, . . . , An of formulae satisfying the eigen-
variable condition, such that no variable appears both freeand bound inΓ.

A lower caseq will be used to denote a quantifier (either∀ or ∃), and in context the
symbolq̄ will denote the dual quantifier. The metavariableX will stand forL or R, and
X̄ will stand, in context, forL if X is R, and vice versa.

2 Herbrand expansion proofs

Herbrand’s theorem, as originally devised [7], introducesa systemH (what we would
now call a Hilbert system) for first-order classical logic. The axioms are all tautologies,
and the inference rules are antiprenexing, universal and existential generalization,∃-
contraction (replacing a subformula∃x1A(x1) ∨ ∃x2A(x2) by ∃xA(x)). In fact, any
valid first-order formula has a proof in which first come the generalizations, then the
antiprenexing operations, and finally the∃-contractions. We may see such a proof as
a triple of expansion̂A, a prenexification ofÂ, and a substitution. Anexpansion-tree
proof can be seen as a generalization of this proof system, where the explicit prenex-
ification is replaced by a correctness criterion. A pair of expansion and substitution is
correct if a certaindependence relationis acyclic. AnHerbrand expansion proofwill
be a generalization of this structure, where a proof can in addition contain cuts. In this
section, we describe this generalization.

Definition 2.1. (a) Ann-hole-contextis a sequent with precisely n occurrences each
of the special atom{}(thehole). We writeΓ{} . . .{} to denote ann-hole context.

(b) If Γ{} is an n-hole context, we writeΓ{A1} . . . {An} for the sequent given by
replacing the leftmost hole withA1, the next leftmost withA2, and so on.
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We define the dual¬Γ{} of a contextΓ{} by setting¬{} := {} and using the usual
definition of negation. The negation ofΓ{A} can be easily seen to be¬Γ{¬A}.

Definition 2.2. Let A be a formula in negation normal form. Anexpansionof A is
defined as follows:A is an expansion ofA, and ifC{∃x.B(x)} is an expansion ofA,
thenC{∃x1.B(x1) ∨ ∃x2.B(x2)} is an expansion ofA.

An expansion of a sequentΓ = A1 . . . An is a sequent̂Γ = Â1 . . . Ân of expansions
of the members ofΓ. Note that an expansion̂A of A induces a surjective mapping from
the bound variables of̂A to the bound variables ofA. Given a variablex in Â, denote
the unique corresponding variable inA by x̌.

Definition 2.3. LetA be a formula satisfying our variable restrictions. Define the ma-
trix A∗ of A by induction over the structure ofA. If A is quantifier-free, thenA∗ = A,
and otherwise

(A ∗ B)∗ = A∗ ∗ B∗; (qx.B)∗ = B∗.

Definition 2.4. A validating substitutionσ for a formulaA is a substitution which as-
signs to each existentially bound variable ofA a term, such thatσA∗ is valid.

Given a formulaB and a validating substitutionσ for B, we say that they arecom-
patibleif there is a proof in systemH starting withσB∗ (an axiom ofH), in which first
we derive a formulaQ.B in prenex normal form using generalization, and then derive
A from Q.B using anti-prenexification. Clearly, if there is a compatible substitution for
B, theB is valid. We can replace the existential condition of compatibility by using the
dependence relation

Definition 2.5. LetB be a formula, letV be the set of bound variables occurring inB,
and letσ be a validating substitution forB. Define the following relations onV :

(a) (scoping) y ≪ x if q.x occurs within the scope ofq.y in A;
(b) (instantiation) y ⊏ x if y ∈ fv σ(x);
(c) (dependence relation) ⊳ is the transitive closure of(≪ ∪ ⊏).

Theorem 2.1. LetB be a formula, and letσ be a validating substitution forB. Thenσ
andB are compatible if and only if⊳ is irreflexive.

Informally, a cut-free Herbrand expansion proof of a formula A is a pair of an
expansionÂ of A, and a compatible substitutionσ for Â. We extend this definition to
sequents in an evident fashion (to be made formal when we introduce cuts).

Example 2.1.A cut-free Herbrand expansion proof of(∃x.A ∨ ∃x.B) ⊢ ∃x.(A ∨ B)
(written in one-sided form) is given by the pair of the sequent

(∀y.(¬A(y)) ∧ ∀z.(¬B(z))), (∃xL(A(xL) ∨ B(xL)) ∨ ∃xR(A(xR) ∨ B(xR))).

and the substitution[xL := y, xR := z].
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The general definition of an Herbrand expansion proof involves cuts. We will rep-
resent a cuts by conjunctionsA∧¬A of dual formulae. The intuition is that a proof of a
sequentΓ with a cut is a proof ofΓ, A∧¬A. Note, however, that in a sequent proof, we
can form a cut on a formulaA in which a variablex is free, and then later universally
quantify overx. We will need a similar freedom to have a variable free in a cut, but
bound in the conclusion.

Definition 2.6. Let Θ be a sequenceA1| . . . |An of formulae satisfying the eigenvari-
able condition (but not necessarily the separation of free and bound variables). We will
call a pair of a sequent and such a sequenceΘ anextensionof Γ, writing Γ | Θ for the
pair, if together they satisfy the eigenvariable condition. A cut-extensionof Γ will be an
extensionΓ | Θ in whichΘ is a sequence of conjunctions of dual formulae (a sequence
of cut-pairs).

The definition of the expansion of a cutB is a little delicate, since a variable might
occur free in a cut but not in the conclusion.

Definition 2.7. Let Γ | Θ be a cut-extension ofΓ, and letB ∈ Θ be a cut-pair. Let
Y = {y1, . . . , yn} be the set of variables free inB but bound elsewhere inΓ | Θ.

(a) Anexpansion of a cutB in contextΓ | Θ is a formulaB̂′, whereB̂′ is the expansion
of a formulaB′, andB′ = B[y1 := z1, . . . yn := zn], for any variablesz1, . . . , zn.
An expansion ofΘ = B1, . . . , Bn is a sequencêB′

1, . . . , B̂
′
n.

(b) AnexpansionofΓ | Θ is a pair of an expansion ofΓ and an expansion ofΘ, written
Γ̂ | Θ̂. The matrix(Γ | Θ)∗ of Γ | Θ is the matrix of the sequenceΓ, Θ.

Where possible, we will use the following displayed notation for a pair of an exten-
sion and an expansion ofΓ:

Γ̂ | Θ̂b

Γ | Θ

Definition 2.8. A validating substitutionσ for Γ | Θ is a substitution which assigns to
each existentially bound variable ofΓ̂ | Θ̂ a term, such thatσ(Γ | Θ)∗ is valid.

We use the notion of pre-proof (also often referred to as a proof-structure) for something
which has the form of a proof, but which does not necessarily correspond to a genuine
proof.

Definition 2.9 (Herbrand pre-proof). An Herbrand pre-proofΦ of a sequentΓ is a
triple of a cut-extensionΓ | Θ of Γ, an expansion̂Γ | Θ̂ of Γ | Θ, and a validating
substitutionσΦ for Γ̂ | Θ̂.

To see that a pre-proof is correct (that it should be regardedas a proof) we generalize the
notion of adependence relationfor expansion-tree proofs:̂Γ | Θ̂, taking into account
the fact that variables may be free in a cut but bound elsewhere.

Definition 2.10. Let Φ = (Γ | Θ, Γ̂ | Θ̂, σΦ) be an Herbrand pre-proof. Define the
following relations on the variables bound in̂Γ | Θ̂:
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(a) (scoping) y ≪ x if q.x occurs within the scope ofq.y; and
(b) (instantiation) y ⊏ x if y ∈ fv σ(x), or if x is bound in the expansion of a cut-pair

Ai ∧ ¬Ai in whichy is free.
(c) (dependence relation) ⊳Φ of Φ is the transitive closure of the union of≪ and⊏.

Definition 2.11 (Correctness).An Herbrand expansion proof (HEP) is an Herbrand
pre-proofΦ for which⊳Φ is irreflexive. We will call an HEP of a sequentΓ cut-freeif
the extension ofΓ in the proof is the trivial extension.

We establish completeness for this system by showing that any sequent possessing a
proof in the sequent calculus also has an HEP. This has the bonus of giving a function
mapping sequent proofs to HEPs. Most of the cases of this proof are trivial, but the
case of contraction is more problematic. We show instead theadmissibility of a “deep”
contraction rule, and will need the following easy fact about expansions:

Fact 1. An expansion of a sequentΓ{A} has the form̂Γ{A1} . . . {An}, whereA1 . . . An

are expansions ofA, andΓ̂{} . . .{} is an expansion ofΓ{}.

Theorem 2.2. Let GS be the usual context splitting, one-sided, sequent calculus for
first-order classical logic, with explicit structural rules. For each ruleρ of GS, and for
the cut-rule, given Herbrand expansion proofs of the premises we may construct an
Herbrand expansion proof of the conclusion.

Proof.AX: An Herbrand proof ofa,¬a (wherea is atomic) is given by

(a,¬a, a,¬a, ∅).

Since there are no cuts, it is trivially correct.
∨R: Given a correct Herbrand proof

(Γ, A ∨ B | Θ, Γ̂, Â ∨ B̂ | Θ̂, σ)

of Γ, A, B, the pair
(Γ, A ∨ B | Θ, Γ̂, Â ∨ B̂ | Θ̂, σ)

is a correct Herbrand proof ofΓ, A ∨ B.
∧R: Given a correct Herbrand expansion proofΦ1 = (Γ, A | Θ, Γ̂, Â | Θ̂, σ1) of Γ, A,

and a correct Herbrand expansion proofΦ2 = (∆, B | Θ′, ∆̂, B̂ | Θ̂′, σ2) of ∆, B,
the triple

Φ3 = (Γ, ∆, A ∧ B | Θ | Θ′, Γ̂, ∆̂, Â ∧ B̂ | Θ̂ | Θ̂′, σ1 ∪ σ2)

is an Herbrand pre-proof ofΓ, ∆, A ∧ B. To see correctness, observe that the re-
duction ordering onΦ3 is the disjoint union of the reduction orderings onΦ1 and
Φ2.

∃R: Given an HEP

Φ := (Γ, A[x := t] | Θ, Γ̂, Â[x := t] | Θ̂, σ)
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of Γ, A(t),
Ψ := (Γ, ∃x.A | Θ, Γ̂, ∃x.Â | Θ̂, σ ∪ {〈y, t〉})

is an Herbrand pre-proof. The relation⊳Ψ is irreflexive as there is no bound variable
y such thaty ⊏ x (since otherwisey would appear both free and bound in the
conclusion ofΦ.)

∀R: Given an Herbrand proof

Φ := (Γ, A | Θ, Γ̂, Â | Θ̂, σ)

of Γ, A,
Φ := (Γ, ∀x.A | Θ, Γ̂, ∀x.Â | Θ̂, σ)

is a pre-proof. To see correctness, observe that there is noy such thaty ≪ x.
W: Given an Herbrand proof

Φ := (Γ | Θ, Γ̂ | Θ̂, σ)

The triple
Ψ := (Γ, A | Θ, Γ̂, A | Θ̂, σ′)

is a correct HEP ofΓ, A, whereσ′ is the union ofσ and a substitution assigning a
fresh unbound variable to each existentially bound variable ofA.

C: We show admissibility for correct HEPs of a deep contraction rule

Γ{A ∨ A}
DeepC

Γ{A}

by induction over the structure ofA. Admissibility of usual (shallow) contraction
follows as a corollary.
Consider first the case whereA is atomic. Suppose we have a correct HEP

(Γ{a ∨ a} | Θ, Γ̂{a ∨ a} . . . {a ∨ a} | Θ̂, σ)

of Γ{a ∨ a}. Then clearly

(Γ{a} | Θ, Γ̂{a} . . . {a} | Θ̂, σ)

is a correct HEP ofΓ{a}. Now assume thatDeepC is admissible for formulaB andC.
We show that it holds forB ∧ C, B ∨ C, ∃z.B and∀z.B.

(a) An correct HEP ofΓ{(B ∨ C) ∨ (B ∨ C)} has the form

(Γ{(B∨C)∨(B∨C)} | Θ, Γ̂{(B1∨C1)∨(B2∨C2)} . . . {(Bn−1∨Cn−1)∨(Bn∨Cn)} | Θ̂, σ).

Clearly

(Γ{(B∨B)∨(C∨C)} | Θ, Γ̂{(B1∨B2)∨(C1∨C2)} . . . {(Bn−1∨Bn)∨(Bn−1∨Cn)} | Θ̂, σ)

is an HEP ofΓ{(B ∨ B) ∨ (C ∨ C)}. This HEP is correct, since no new cuts or
quantifiers have been formed. Apply the induction hypothesis to obtain an HEP of
Γ{B ∨ C}.
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(b) An HEP ofΓ{∃x.B ∨ ∃y.B} has the form

(Γ{∃x.B ∨ ∃y.B} | Θ, Γ̂{A1 ∨ A2} . . . {An−1 ∨ An} | Θ̂, σ).

But this is also an HEP ofΓ{∃x.B}, since ifC andD are expansions of an exis-
tential formula∃x.B, then so isC ∨ D. This HEP is correct, since no new cuts or
quantifiers have been formed.

(c) An HEP ofΓ{∀x.B ∨ ∀y.B} has the form

Φ := (Γ{∀x.B∨∀y.B} | Θ, Γ̂{∀x1B1∨∀y1.B2} . . . {∀xnB2n−1∨∀yn.B2n} | Θ̂, σ1).

The following is then clearly a pre-proof:

Ψ := (Γ{∀z.(B ∨ B)} | Θ[x := z, y := z],

Γ̂{∀z1(B1 ∨ B2)} . . . {∀zm(B2n−1 ∨ B2n)} | Θ̂[xi := zi, yi := zi], σ2).

whereσ2 is [xi := zi, yi := zi] ◦ σ1. Suppose thatΨ is not correct. Then there is a
path in≪Ψ ∪ ⊏Ψ , which wlog begins and ends withzi, since if the path does not
touch anyzi then it is also a path in≪Φ ∪ ⊏Φ. That path has the form

zi ⊏ a1 ⊏ . . . an ≪ zi

This path lifts to an evident path in≪Φ ∪ ⊏Φ. Observe that,an must be a variable
appearing inΦ, and thatan ≪Φ xi, yi. An easy induction onn yields that there is
a cycle on≪Ψ ∪ ⊏Ψ if and only id there is a cycle on≪Φ ∪ ⊏Φ, and therefore
△Ψ is irreflexive.
By the induction hypothesis, we derive an Herbrand expansion proof ofΓ{∀z.B}.

(d) An HEP ofΓ{(B ∧ C) ∨ (B ∧ C)} has the form

Φ :=(Γ{(B ∧ C) ∨ (B ∧ C)} | Θ,

Γ̂{(B1 ∧ C1) ∨ (B2 ∧ C2)} . . . {(Bn−1 ∧ Cn−1) ∨ (Bn ∧ Cn)} | Θ̂, σ).

Given such a proof,

Ψ :=(Γ{(B ∨ B) ∧ (C ∨ C)} | Θ,

Γ̂{(B1 ∨ B2) ∧ (C1 ∨ C2)} . . . {(Bn−1 ∨ Bn) ∧ (Cn−1 ∨ Cn)} | Θ̂, σ)

is a preproof ofΓ{(B ∨ B) ∧ (C ∨ C)} (noting that since

(A ∧ B) ∨ (C ∧ D) ⇒ (A ∨ C) ∧ (B ∨ D)

is a tautology, if the substituted matrix ofΦ is valid, then so is the substituted
matrix of Ψ ). It is correct, since⊳Φ=⊳Ψ . By the induction hypothesis we obtain
an Herbrand expansion proof ofΓ{B ∧ C}.

Finally, we show how to simulate the application of a sequentcalculus cut:
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CUT Given an Herbrand expansion proofΦ1 := (Γ1, A | Θ, Γ̂, A1 | Θ̂1, σ1) of Γ, A,
and an Herbrand expansion proofΦ2 := (Γ2,¬A | Θ′, Γ̂,¬A2 | Θ̂2, σ2) of
∆,¬A, the triple

Ψ = (Γ, Γ2 | Θ | Θ2 |A ∧ ¬A, Γ̂1, Γ̂2, Â ∧ B̂ | Θ̂1 | Θ̂2|A1 ∧ ¬A2, σ3)

(whereσ3 = σ1 ∪ σ2) is a preproof ofΓ1, Γ2. This proof is correct since any cycle
in ≪Ψ ∪ ⊏Ψ must be a cycle in either≪Φ1

∪ ⊏Φ1
or in ≪Φ2

∪ ⊏Φ2
. But Φ1 and

Φ2 are both correct, so there can be no such cycle.

Since the cut-rule is admissible, we have a notion ofcompositionfor Herbrand
proofs.

Example 2.2.Recall the proof in Example 2.1. A proof of the opposite entailment is
given by the pair

(∃w.(A(w)) ∨ ∃v.(B(v)), ∀u.(¬A(u) ∧ ¬B(u)), [w, v := u])

By admissibility of cut, we obtain a proofΨ of, essentially,∃x.A ∨ ∃x.B) ⊢ ∃x.A ∨
∃x.B. Written in one-sided notation with the eigenvariable condition, the conclusion of
Ψ is

Γ = ∃w.(A(w)) ∨ ∃v.(B(v)), ∀y.(¬A(y)) ∧ ∀z.(¬B(z))

andΨ has extension and expansion

Γ | (∃xL(A(xL) ∨ B(xL)) ∨ ∃x2(A(xL) ∨ B(xL))) ∧ ∀u.(¬A(u) ∧ ¬B(u))b

Γ | (∃x(A(x) ∨ B(x)) ∧ ∀u.(¬A(u) ∧ ¬B(u))

and substitution[w, v := u, xL := y, xL := z].

Theorem 2.3. Herbrand expansion proofs are sound and complete for first-order clas-
sical logic.

Proof. Consider first the class of cut-free HEPs. These are sound, since instantiation,
prenexification, and deep∃-contraction are implications in classical logic. They are
complete, since any sequent provable in the classical sequent calculus has an HEP.

Completeness for general HEPs follows immediately. For soundness, suppose that
an HEPΦ has an unsound conclusionΓ. ThenΦ must contain at least one cut. For each
cut Ci in Φ, let C′

i = ∃x1 . . . ∃xnC[y := x], wherey are the variables free inC but
bound elsewhere in the extension ofΦ. Similarly, let Ĉ′

i = ∃z1 . . .∃zmĈ[w := z],
whereĈi is the expansion ofC in Φ, and wherew are the variables free in̂C but bound
elsewhere in the expansion ofΦ. Then

(Γ, C′
1, . . . C

′
m, Γ̂, Ĉ′

1, . . . Ĉ
′
m, [z := w] ◦ σ)

is a cut-free Herbrand proof with an unsound conclusion – contradiction.
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Remark 2.1.That this is a structured version of Herbrand’s theorem is clear – a first-
order sentenceA is provable if and only if it has an cut-free Herbrand expansion proof,
if and only if there is a valid substitution instance of an expansion ofA. The approach
extends to cases with equality and non-logical universal axioms. Most proof-theoretic
demonstrations of Herbrand’s theorem begin with Gentzen’smidsequent theorem for
formulae in prenex normal form, and so give the theorem for prenex sentences only;
here we derive the theorem for all sentences.

3 Cut-reduction for Herbrand expansion proofs

3.1 Cut-correct proofs

Since the cut-free Herbrand proofs are complete, it is clearthat cut-elimination holds.
The evident much harder problem is to give a constructive proof of this fact.

Problem 3.1.Provide an algorithm which, when given an Herbrand expansion proof
with cuts ofΓ, constructs a cut-free Herbrand expansion proof ofΓ.

This is a more general problem than cut-elimination, since there are HEPs which
are not the image of a sequent calculus proof. To see this, consider the correct HEP

Φ =
∃x.A, ∀y.¬A | (∃z1.A ∨ ∃z2.A) ∧ ∀w.¬Ab

∃x.A, ∀y.¬A | ∃z.A ∧ ∀w.¬A

, [x, z1 := w, z2 := y] (1)

It is not possible for the “cut” inΦ to originate from a sequent calculus cut, because of
the dependency between the variables on the left and right sides of the cut.

The cut-reduction step QSTRUCT in the next section requires that ifx appears in
one side of a cut, andy in the other, thenx 6⊳ y. We will call such proofscut-correct:

Definition 3.1. LetB = A ∧ ¬A be a cut pair in an Herbrand expansion proofΦ, and
B̂ its expansion inΦ. Theleft branchof B is the left conjunct of̂B. The right branch is
the right conjunct ofB̂. DefineSB

0 to be the set of all pairs(x, y) such thatx is bound
in the left branch ofB andy in the right branch ofB andSB

1 to be the set of all pairs
(x, y) such thatx is bound in the right branch ofB, andy is bound in the left branch
of B.

Definition 3.2. (a) Anorientationfor a pre-proofΦ = (Γ | Θ, Γ̂ | Θ̂, σΦ) is a func-
tion f from the elements ofΘ to {0, 1}.

(b) A pre-proofΦ is cut-correct if, for eachi ∈ Θ, and each member(x, y) of (Si
X),

we have that⊳Φ ∪(x, y) is irreflexive.
(c) A pre-proofΦ is sequent-correctif, for each orientationf of Φ, ⊳Φ ∪

⋃

i∈Θ(Si
f(i))

is irreflexive.

Clearly, if a proof is sequent-correct, it is cut-correct. Intuitively, checking sequent-
correctness amounts to checking the existence of2|Θ| prenexifications of̂Γ | Θ̂ com-
patible withσ, one for each orientationf ; if f(B) = 0, then all quantifiers from the
left branch ofB occur before all quantifiers from the right branch, and vice versa if
f(B) = 1. The following is an easy induction on the structure of sequent-calculus
proofs:
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Lemma 3.1. The translation of any sequent calculus proof is sequent-correct.

We are left with the question of the status of HEPs that are notsequent-correct.
Consider the following sequent calculus proof:

⊢ ¬A(y), A(y)
∀R, ∃R

⊢ ∀y.¬A, ∃z2.A

⊢ A(w2),¬A(w2)
∀R, ∃R

⊢ ∃z1.A, ∀w2.A

⊢ A(w1),¬A(w1)
∀R, ∃R

⊢ ∃x.A, ∀w1.A
∧R

⊢ ∃x.A, ∀w2.¬A, ∃z1.A ∧ ∀w1¬A
∧R

⊢ ∃xA, ∀y¬A, ∃z1.A ∧ ∀w1.¬A, ∃z2.A ∧ ∀w2.¬A
CR

⊢ ∃xA, ∀y¬A, ∃z.A ∧ ∀w.¬A

Notice that we cannot replace the conjunctions in this proofwith cuts, owing to the
contraction. The translation into Herbrand expansion proofs of this proof is

Φ =
∃x.A, ∀y.¬A, (∃z1.A ∨ ∃z2.A) ∧ ∀w.¬Ab

∃x.A, ∀y.¬A∃z.A,∧∀w.¬A

, [x, z1 := w, z2 := y]

that is, the same as (1) but with∃z.A∧∀w.¬A as part of the conclusion rather than as a
cut. What we see is that non sequent-correct HEPs can arise asa result of “contracting
cuts”. This kind of behaviour is not allowed in the sequent calculus, but is allowed in, for
example, the Calculus of Structures [1]. In particular, [2]gives syntactic cut-elimination
for a system of first-order classical logic with such features.

3.2 Cut-reductions steps for cut-correct HEPs

We give, in this section, three reductions, TRIV, QLOG and QSTRUCT, on HEPs. These
rules operate where the cut-formula is in prenex normal form; a similar treatment works
in the general case, but we omit the details for space reasons.

For each reduction, we identify a cut (theprincipal cut, which for simplicity we
assume is the first appearing) in a proofΦ1, and give a proofΦ2 in which this cut is
either removed, or replaced by a cut(s) (theresulting cuts) such that the proof has lower
complexity. For all but one case, this reduction of complexity will be the rank:

Definition 3.3 (Rank of an HEP).The rank of an HEPΦ is the sum of the number of
logical symbols appearing in all cuts inΦ.

TRIV The simplest reduction (TRIV) is the removal of a purely propositional cut (i.e. a
cut containing no quantifiers). Leta be quantifier free in :

Φ1 = (Γ | a ∧ ¬a | Θ, Γ̂ | a ∧ ¬a | Θ̂, σ)

Such a cut may be deleted: the matrix of the resulting expansion remains valid, andΦ2

has lower rank thanΦ1.:
Φ2 = (Γ | Θ, Γ̂ | Θ̂, σ)
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QLOG We will call a cut between∃x.A and∀y.¬A logical if the expansion of∃x.A in

Φ has the form∃x.Â. Given a proofΦ1 containing such a cut

Φ1 = (Γ | ∃x.A ∧ ∀y.¬A | Θ, Γ̂ | ∃x.A1 ∧ ∀y.¬A2 | Θ̂, σΦ1
)

we construct a proofΦ2

Φ2 = (Γ | A ∧ ¬A | Θ[y := σΦ1
(x)], Γ̂ | A1 ∧ ¬A2 | Θ̂[y := σΦ1

(x)], σΦ2
)

whereσΦ2
= [y := σΦ1

(x)] ◦ σΦ1
. The rank ofΦ2 is smaller than that ofΦ1. Call this

reduction QLOG.

QSTRUCTThis leaves the case where the existential branch of a cut is of the formB∨C

(where it has a nontrivial expansion at the top level); we will call such cutsstructural
cuts. We now detail the reduction QSTRUCT for such cuts. The redex of this reduction
will have the following shape

Φ1 = (Γ | ∃y.A ∧ ∀x.¬A | Θ, Γ̂ | (B ∨ C) ∧ (∀x.¬Â) | Θ̂, σΦ1
) (2)

and we will refer to the variablex as the principal variable of the cut.
The reduction of this cut is similar to the naı̈ve pushing of acut past a contraction in

LK [5]; to form the reductΦ2 we replace the cut with two cuts∃yL.AL∧∀xL.¬AL and
∃yR.AR ∧ ∀xR.¬AR, with the expansion of∃yL.AL given byB, and the expansion of
∃yR.AR beingC. In the sequent calculus this requires the duplication of a whole sub-
proof, and then the contraction of all the conclusions of that subproof. Here we can be
more subtle – we only duplicate subformulae in the context which depend hereditarily
on the principal variablex. Informally, we replace each maximal subformula inΓ of
the form∃z.D, such thatx ⊳ z, by ∃zL.DL ∨ ∃zR.DR. The formal definition ofΦ2

is a little more involved. We describe the extension, expansion and substitution in the
appendix.

Proposition 3.1. If Φ is a correct proof, the resultΨ of reducing a cut inΦ is also a
correct proof.

Example 3.1.Recall the HEPΨ in Example 2.2; this is a proof with a prenex cut, and
so falls under our cut-reduction system.Ψ is a redex of QSTRUCT. We will see now
how our system eliminates the cut. Define

Γ̂ := (∃wL.(A(wR)) ∨ ∃wR.(A(wR))) ∨ ∃vL.(B(vL)) ∨ ∃vR.(B(vR)),

∀y.(¬A(y)) ∧ ∀z.(¬A(z))

and
BX := ∃xX(A(xL) ∨ B(xX)) ∧ ∀u.(¬A(uX) ∧ ¬B(uX))

Reducing the cut inΨ results in an HEP

Φ = (Γ | BX | BR, Γ̂ | BX | BR, [wX , vX := uX , xL := y, xR := z])

Two applications of QLOG and TRIV yields the cut-free HEP

Ψ = (Γ, Γ̂, [vL, wL := y, vR, wR := z])

11



Note that this proof is clearly not the “identity” proof on∃x.A ∨ ∃y.A; this suggests
that, in algebraic models built over this system,∃x.A ∨ ∃x.B will not be isomorphic
to ∃x.(A ∨ B). By duality,∀x.(A ∧ B) is not isomorphic to∀x.A ∧ ∀x.B, contrary to
intuitionistic logic where∀x.(A ∧ B) ∼= ∀x.A ∧ ∀x.B.

3.3 The challenge of normalization

Just as in the sequent calculus, there are infinite chains of reductions in the above sys-
tem; unlike the sequent calculus, there are also non-normalizing HEPs. All the known
examples of non-normalizing terms fall outside of the classof sequent-correct proofs,
and we conjecture that all sequent-correct proofs are weakly normalizing. What is un-
fortunate is that sequent-correctness is not preserved by QSTRUCT:

Example 3.2.Consider an sequent-correct HEP of the form

Φ =
Γ̂1 | ∀z.B ∧ ∃z̄¬B | ∀x∃yA ∧ (∃v1∀w1¬A ∨ ∃v2∀w2¬A)b

Γ | ∀z.B ∧ ∃z̄¬B | ∀x∃yA ∧ ∃v∀w¬A

[y := z, z̄ := x, v2 := w1]

Reducing the right-hand cut using QSTRUCT results in a proof with expansion

Γ̂2 | ∀z.B ∧ (∃z̄L¬B ∨ ∃z̄R¬B) | ∀xL∃yLA ∧ ∃v1∀w1¬A | ∀xR∃yRA ∧ ∃v2∀w2¬A)b

Γ | ∀z.B ∧ ∃z̄¬B | ∀x∃yA ∧ ∃v∀w¬A | ∀x∃yA ∧ ∃v∀w¬A

with substitution[yX := z, z̄X := xX , v2 := w1]. This HEP is not sequent-correct;
there is a pathz, z̄R, xR, v2, w1, yL, z, with evident orientation.

We consider the best course of attack for giving normalization for sequent-correct
HEPs to be identifying those applications of QSTRUCTwhich preserve sequent-correctness
(since every known non-normalizing proof is not sequent correct) This is the subject of
ongoing work.

4 Further work

In addition to the problem of normalization, we wish to studythe properties of these
proofs as proof-net-like objects. HEPs exhibit many of the properties associated with
proof-nets [6], but they clearly identify too many proofs (in particular, all proofs of a
given tautology). Nevertheless, we may consider the question of sequentialization. A
very general proof for the cut-free case is given in [13]; another may be easily found by
treating HEPs as strategies for proof search in G3 [16]. Bothof these give sequential-
ization for the cut-free, cut-correct HEPs. A good sequentialization for HEPs with cuts
(where we use a context splitting cut) seems impossible, since there is no information
about how to split the context. For this reason, it seems natural to consider sequential-
ization and other proof-net like properties in the setting of augmentedHEPs, where we
replace validity of the substituted matrix with a proof or proof-like object. Two obvious
cases are the following:

12



(a) A Proof-net for first-order classical logicis a pairΦ, φ of an HEPΦ and a proof-net
[11] φ with conclusion the substituted matrix ofΦ.

(b) A Combinatorial proof for first-order classical logicis a pairΦ, φ of an HEPΦ and
a combinatorial proof [8]φ with conclusion the substituted matrix ofΦ.

In both cases, we replace our reduction TRIV with the relevant propositional cut-elimination.
The study of these systems is ongoing work.
Thanks The idea for this work arose from discussions with David Pym,while the au-
thor was at the University of Bath. Special thanks go to Willem Heijltjes for spotting an
serious error the development of this work. The author is also grateful to Kai Brünnler,
Lutz Strassburger, Dominic Hughes and Francois Lamarche for useful discussions.
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A The reduction QSTRUCT: formal definition

Given a cut-correct HEP

Φ1 = (Γ | ∃y.A ∧ ∀x.¬A | Θ, Γ̂ | (B ∨ C) ∧ (∀x.¬Â) | Θ̂, σΦ1
) (3)

we define its reductΦ2 = (K, K̂, σ2) under QSTRUCT.

Definition A.1. If A is a formula, thenAL is the result of alpha renaming each bound
variablex asxL, and similarly forAR.

Suppose thatx ⊳ z, and that there is a cutB appearing inΦ1 such that the variable
z is bound inΦ1 but free in the expansion ofB. This cut must be duplicated inΦ2. Let
Θ2 be a sequence of cut-pairs derived fromΘ by replacing each cut pairB such that
z ∈ fv(B̂) andx ⊳ z by BL | BR . Then the extension ofΦ2 is

K = Γ | ∃yL.AL ∧ ∀xL.¬AL| ∃yR.AR ∧ ∀xR.¬AR | Θ2.

In the expansion, whether or not a subformula is duplicated depends on whether it
depends hereditarily onx. We define two functionsTL,TR from variables bound inΦ1

to variables bound inΦ2, which are the identity on variables not copied by QSTRUCT,
and which otherwise give us one of the two copies.

TX(x) = x (4)

TX(z) =

{

z x 6⊳ z, z 6= x

zX x ⊳ z
(5)

Extend that function to all terms as follows

TX(a) = a a a constant (6)

TX(f(t1, . . . , tn)) = f(TX(t1), . . . ,TX(tn)) (7)

We now extend these functions to formulae; on quantified formulae we rename those
bound variables depending onx:

TX(qz.B) =

{

qzX .TX(B) x ⊳ z

qz.TX(B) x 6⊳ z

with the value ofTX on other formulae given by

TX(R(t1 . . . tn)) = R(TX(t1), . . .TX(tn)) R a relation symbol

TX(¬B) = ¬TX(B)

TX(B ∗ C) = TX(B) ∗ TX(C) ∗ = ∧,∨

We define now a function fromHD (hereditary duplication) from formulae to se-
quences of formulae. This function will help define the expansion ofΦ2. We ensure that
each duplicated cut has an expansion by setting

HD(A) = TL(A) | TR(A) z ∈ fv(A), x ⊳ z.

14



For all other formulaeA, HD(A) is a formula. On an existentially bound formulaeA,
HD(A) depends on the eigenvariable of the quantifier:

HD(∃z.B) =

{

∃z.HD(B) x 6⊳ z

∃zL.TL(B) ∨ ∃zR.TR(B) x ⊳ z

Otherwise

HD(R(t1 . . . tn)) = R(t1 . . . tn)

HD(¬B) = ¬HD(B)

HD(B ∗ C) = HD(B) ∗ HD(C) ∗ = ∧,∨

HD(∀z.B) = ∀z.HD(B)

ExtendHD to a function from sequences to sequences in the obvious way.The expan-
sion ofΦ2 is

K̂ = HD(Γ̂) | B ∧ (∀xL.¬TL(Â)) | C ∧ (∀xR.¬TR(Â)) | HD(Θ̂).

Finally, letσ2 be defined as follows:

σ2(z) = σ(z) if x 6⊳Φ z (8)

σ2(zL) = TL(σ(z)) (9)

σ2(zR) = TR(σ(z)). (10)

We have, in conclusion
Φ2 = (K, K̂, σ2)
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