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Abstract. We present Herbrand expansion proofs: an abstract repagisenof
proofs in first-order classical logic, derived from a formktérbrand’s theorem.
These objects are essentially Milleegpansion tree proof@ith a notion of cut.
We show a function mapping sequent calculus proofs to Hedbexpansion
proofs, and a system of reductions which we conjecture givggelimination
for a subclass of HEPs including those which arise as thelaions of sequent
proofs.

1 Introduction

The question of when two proofs in (some formalism for) dlzedogic are morally
equal has seen significant treatment in recent years [3,40114, 9, 8, 12]; each treat-
ment must find its own way of avoidintpyal’'s Paradoxthat the naive way of extend-
ing the identity on proofs in intuitionistic natural dediact leads to collapse (every
proof of a given sequent is identified). These studies arestlexclusively focused on
propositional classical logic, for two reasons. First igtttinis problem is already hard;
and the well-known barriers to a good semantics for claskige exist in a quantifier
(and indeed negation-) free setting. The second is a pgudat the proof-theory of
first-order quantifiers is uninteresting.

This workshop paper introducéterbrand expansion proofd¢HEPSs) — an abstract
representation of proofs in first-order classical logih€Tut-free Herbrand expansion
proofs can be seen as an alternative presentation of Mispansion tree proofs [13].)
We see Herbrand expansion proofs as a modular semanticsdofsgn first-order
classical logic, in the sense that, given any notion of pidehtity on propositional
proofs, we may produce a classaafgmentedHerbrand expansion proofs, incorporating
that notion. What is surprising is that the notion of prodémtity we obtain from HEPs
themselves is non-trivial, even when the notion of identitypropositional proofs is
trivial. The problem of constructive cut-elimination foBRs is nontrivial; the intuitive
cut-reduction rules that we will present in this paper eittbibth non-confluence, and
non-termination. We conjecture that, as in the sequentutacthere is a strategy for
cut-elimination, and that further, unlike the sequent ghls, this strategy can be made
confluent in a non-trivial way, giving rise to a category ofrbi@nd expansion proofs.
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1.1 Related work

Cut elimination for a system of expansion-tree-like olgefttr second-order propo-
sitional multiplicative linear logic may also be found inr&sburger [15], where the
procedure is simpler owing to the lack of contractions. Astedrt form of Herbrand’s
theorem is suggested in [8], which has a different chardottrat discussed here. The
author has very recently become aware of the work of Willenjiti¢s, who is studying
similar objects to those considered here.

1.2 Conventions

We work over a signatur® of functions and relation symbols, in first-order logic with
out equality and without non-logical axioms. All formulagassumed to be written
in negation normal form (with negation pushed down to thenso Within a formula,
we assume that bound variables are distinct from free i@sabnd that each quantifier
binds a distinct bound variable , which we call éigienvariable We will say that a se-
quenceS of formulaesatisfies the eigenvariable conditidreach quantifier appearing
in a formula ofS binds a distinct bound variable. We take the following défami of a
sequent:

Definition 1.1. A sequent’ is a sequencd, ..., A, of formulae satisfying the eigen-
variable condition, such that no variable appears both fa@el bound inl".

A lower case; will be used to denote a quantifier (eitheor 3), and in context the
symbolg will denote the dual quantifier. The metavariallewill stand for L or R, and
X will stand, in context, fod. if X is R, and vice versa.

2 Herbrand expansion proofs

Herbrand’s theorem, as originally devised [7], introduaesystenH (what we would
now call a Hilbert system) for first-order classical logitieTaxioms are all tautologies,
and the inference rules are antiprenexing, universal aislegiial generalizatiorg-
contraction (replacing a subformuta:; A(z1) V Jze A(z2) by JzA(z)). In fact, any
valid first-order formula has a proof in which first come thexgelizations, then the
antiprenexing operations, and finally tBecontractions. We may see such a proof as
a triple of expansiond, a prenexification ofd, and a substitution. Aexpansion-tree
proof can be seen as a generalization of this proof system, wherexghlicit prenex-
ification is replaced by a correctness criterion. A pair gbaxsion and substitution is
correct if a certairdependence relatiois acyclic. AnHerbrand expansion proodvill
be a generalization of this structure, where a proof can dit@d contain cuts. In this
section, we describe this generalization.

Definition 2.1. (a) Ann-hole-contexis a sequent with precisely n occurrences each
of the special atonj}(thehole). We writel'{} . .. {} to denote am-hole context.

(b) If T'{} is ann-hole context, we writd'{A;}...{A,} for the sequent given by
replacing the leftmost hole witH,, the next leftmost withl,, and so on.



We define the duatl'{} of a contexf{} by setting—{} := {} and using the usual
definition of negation. The negation bf A} can be easily seen to bd'{—A}.

Definition 2.2. Let A be a formula in negation normal form. Agxpansionof A is
defined as followsA is an expansion aoft, and if C{3z.B(z)} is an expansion ofl,
thenC{3z,.B(x1) V Jz2.B(z2)} is an expansion ofl.

An expansion of a sequefit= A; ... A, isasequert = A, ... A, of expansions
of the members of'. Note that an expansmm of Ainduces a surjective mapping from
the bound variables of to the bound variables of. Given a variable: in A, denote
the unique corresponding variablednby 7.

Definition 2.3. Let A be a formula satisfying our variable restrictions. Define tha-
trix A* of A by induction over the structure of. If A is quantifier-free, themd* = A
and otherwise

(AxB)" = A"« B, (qz.B)* = B™.

Definition 2.4. A validating substitutiorr for a formula A is a substitution which as-
signs to each existentially bound variable4f term, such that A* is valid.

Given a formulaB and a validating substitution for B, we say that they areom-
patibleif there is a proof in systerH starting withc B* (an axiom ofH), in which first
we derive a formula). B in prenex normal form using generalization, and then derive
A from Q. B using anti-prenexification. Clearly, if there is a completgubstitution for
B, the B is valid. We can replace the existential condition of corilitly by using the
dependence relation

Definition 2.5. Let B be a formula, lel” be the set of bound variables occurringfih)
and leto be a validating substitution foB. Define the following relations oW’

(a) (scoping) y < x if g. occurs within the scope qfy in A,;
(b) (instantiation) y C = if y € fvo(x);
(c) (dependencerelation) < is the transitive closure gk« U ).

Theorem 2.1. Let B be a formula, and let be a validating substitution foB. Theno
and B are compatible if and only i is irreflexive.

Informally, a cut-free Herbrand expansion proof of a forendl is a pair of an
expansiond of A, and a compatible substitutienfor A. We extend this definition to
sequents in an evident fashion (to be made formal when wedate cuts).

Example 2.1.A cut-free Herbrand expansion proof @fz.A vV 3z.B) + 3z.(A Vv B)
(written in one-sided form) is given by the pair of the sequen

(Vy.(mA(y)) AVz.(—B(2))), (Fzr(A(xzr) vV B(zr)) V zr(A(zg) V B(xgr))).

and the substitutiofxy, := y, zr := z|.



The general definition of an Herbrand expansion proof inesleuts. We will rep-
resent a cuts by conjunctionsA — A of dual formulae. The intuition is that a proof of a
sequent’ with a cut is a proof of', A A —A. Note, however, that in a sequent proof, we
can form a cut on a formuld in which a variabler is free, and then later universally
quantify overz. We will need a similar freedom to have a variable free in g but
bound in the conclusion.

Definition 2.6. Let © be a sequencet, | ... |A,, of formulae satisfying the eigenvari-
able condition (but not necessarily the separation of fred hound variables). We will
call a pair of a sequent and such a sequefican extensiorof I', writing I | © for the

pair, if together they satisfy the eigenvariable conditidreut-extensiorof I" will be an
extensiorl” | © in which© is a sequence of conjunctions of dual formulae (a sequence
of cut-pairg.

The definition of the expansion of a cét is a little delicate, since a variable might
occur free in a cut but not in the conclusion.

Definition 2.7. LetI" | © be a cut-extension df, and letB € © be a cut-pair. Let
Y ={y1,...,yn} be the set of variables free i but bound elsewhere ifi | ©.

(a) Anexpansion ofacuB in contextl’ | O is a formulaB’, whereB’ is the expansion
of aformulaB’, andB’ = B[y := z1,...yn := 2], for any variablesy, . . ., z,.
An expansiono® = By,..., B, isa sequencé{, ceey B},

(b) AnexpansiorofT | © is a pair of an expansion d@f and an expansion @, written
' | ©. The matrix(T' | ©)* of T" | © is the matrix of the sequen&e©.

Where possible, we will use the following displayed notafior a pair of an exten-
sion and an expansion bf
rNeé
Y

rle

Definition 2.8. A validating substitutiorr for I' | © is a substitution which assigns to
each existentially bound variable bf| © a term, such that#(I" | ©)* is valid.

We use the notion of pre-proof (also often referred to as afpstructure) for something
which has the form of a proof, but which does not necessavityespond to a genuine
proof.

Definition 2.9 (Herbrand pre-proof). An Herbrand pre-proof? of a sequent” is a
triple of a cut-extensio | © of I', an expansiod” | © of I' | ©, and a validating
substitutionog forI' | ©.

To see that a pre-proof s correct (that it should be regaadedoroof) we generalize the
notion of adependence relatiofor expansion-tree proof§: | ©, taking into account
the fact that variables may be free in a cut but bound elsesvher

Definition 2.10. Let® = (I' | ©, T'| 6, 05) be an Herbrand pre-proof. Define the
following relations on the variables boundin| ©:



(a) (scoping) y < x if g.« occurs within the scope qfy; and

(b) (instantiation) y C = if y € fvo(x), or if z is bound in the expansion of a cut-pair
A; N —A; inwhichy is free.

(c) (dependencerelation) <14 of @ is the transitive closure of the union &f andrC.

Definition 2.11 (Correctness)An Herbrand expansion proof (HEP) is an Herbrand
pre-proof® for which <4 is irreflexive. We will call an HEP of a sequehtcut-freeif
the extension df in the proof is the trivial extension.

We establish completeness for this system by showing thasaquent possessing a
proof in the sequent calculus also has an HEP. This has theshafrgiving a function
mapping sequent proofs to HEPs. Most of the cases of thisf areotrivial, but the
case of contraction is more problematic. We show insteaddin@ssibility of a “deep”
contraction rule, and will need the following easy fact atexpansions:

Fact 1. Anexpansion of asequeli{ A} hasthe form'{A;}...{A,}, whered, ... A,
are expansions of, andI'{}...{} is an expansion df{}.

Theorem 2.2. Let GS be the usual context splitting, one-sided, sequent cadcidu
first-order classical logic, with explicit structural rude For each rulep of GS, and for
the cut-rule, given Herbrand expansion proofs of the presiiwe may construct an
Herbrand expansion proof of the conclusion.

Proof Ax: An Herbrand proof ofi, —a (wherea is atomic) is given by
(a,—a, a,—a, D).

Since there are no cuts, it is trivially correct.
VR: Given a correct Herbrand proof

(T,AVB|O, I'AVEB|6,o)

of I, A, B, the pair
(T,AVB|©, IAVB|6,o0)

is a correct Herbrand proof df, A v B.

AR: Given a correct Herbrand expansion prdof= (I, A | ©, T', A | ©, o1) of I, A,
and a correct Herbrand expansion préef= (A, B | ©’, A, B|©’, 03) of A, B,
the triple

&3=(T,AANB|O |0, IAANB|6 |6, 01Uoy)

is an Herbrand pre-proof df, A, A A B. To see correctness, observe that the re-
duction ordering o3 is the disjoint union of the reduction orderings én and
d,.

JR: Given an HEP



of I', A(t), X o
U= ,32.4]0, IF2.A|0, c U{{y,1)})

is an Herbrand pre-proof. The relatieny is irreflexive as there is no bound variable
y such thaty C x (since otherwise would appear both free and bound in the
conclusion of®.)

YR: Given an Herbrand proof

&:=(A|0, IA| 6, 0)

of I', A, X o
¢:=(T,Ve.A| O, I''Vz.A | O, o)

is a pre-proof. To see correctness, observe that thereyjsooh thaty < .
W: Given an Herbrand proof

$:=(I1|0, I'|6,o0)

The triple R X
v:.=([A|0, I'A|0,0)

is a correct HEP of, A, wherec’ is the union ofr and a substitution assigning a
fresh unbound variable to each existentially bound vagialblA.
C: We show admissibility for correct HEPs of a deep contoaciule

by induction over the structure of. Admissibility of usual (shallow) contraction
follows as a corollary.
Consider first the case whereis atomic. Suppose we have a correct HEP

(T{aVa}|©, T{aVva}...{aVa}|O, o)
of I'{a V a}. Then clearly
(T{a} | ©, T{a}...{a} |6, 0)

is a correct HEP of {a}. Now assume thddeepC is admissible for formuld andC.
We show that it holds foB A C, B v C, 3z.B andvz.B.

(@) AncorrectHEP of {(B Vv C) Vv (B V C)} has the form
(T{(BVC)V(BVC)} | ©, T{(B,VC)V(BaVCy)} .. {(Bno1VCr_1)V(B,VCh)} | O, o).
Clearly
(T{(BVB)V(CVC)} | ©, T{(B1VB2)V(C1VCy)} .. {(Buo1VBy)V(Br_1VCy)}| 6, o)

is an HEP ofT{(B Vv B) v (C' v C)}. This HEP is correct, since no new cuts or
guantifiers have been formed. Apply the induction hypothtsbbtain an HEP of
r{BvCj}.



(b)

(©)

(d)

An HEP ofl'{3z.B Vv Jy.B} has the form
(T{3z.BV 3y.B} | ©, T{A; VvV Ay}...{A,_1VA,}|6,0).

But this is also an HEP df{3z.B}, since ifC and D are expansions of an exis-
tential formuladz. B, then so is” v D. This HEP is correct, since no new cuts or
guantifiers have been formed.

An HEP ofl'{Vz.B V Vy.B} has the form

@ := (I{V2.BWy.B} | ©, T{Va,B1\VWy1.Bs} ... {V2pBop_1VVyn.Ban} | O, 01).
The following is then clearly a pre-proof:
U= (I{Vz.(BV B)} | Oz :=z,y :=z],
D{Vz1(B1 V B2)} .. Az (Ban-1V Bay)} | Oz := 2,y := 2], 09).

whereos is [x; := z;,y; := 2z;] o 1. Suppose tha¥ is not correct. Then there is a
path in<y U Cy, which wlog begins and ends with, since if the path does not
touch anyz; then itis also a path ik U C¢. That path has the form

ZCarC.o.oap K2

This path lifts to an evident path k¢ U C4. Observe thatg,, must be a variable

appearing inb, and that,, <¢ x;,y;. An easy induction om yields that there is

a cycle on<y U Cy if and only id there is a cycle o ¢ U Cg, and therefore

Ay is irreflexive.

By the induction hypothesis, we derive an Herbrand expansioof of '{Vz.B}.

An HEP ofT'{(B A C) V (B A C)} has the form
&:=T{(BAC)V(BANC)}|O,

f{(Bl A Cl) V (BQ A CQ)} . {(Bn—l A Cn—l) \Y (Bn A Cn)} | é, 0').
Given such a proof,

v .=T{(BVB)A(CV(O)}|O,
D{(B1VBa) A(CLVC)} ... {(Bu1 VB A(Croi VCL)}| O, 0)
is a preproof of’{(B V B) A (C Vv C)} (noting that since
(AANB)V(CAD)= (AVC)AN(BV D)
is a tautology, if the substituted matrix df is valid, then so is the substituted

matrix of ). It is correct, sincedg=<ly. By the induction hypothesis we obtain
an Herbrand expansion proofB{ B A C'}.

Finally, we show how to simulate the application of a sequaitulus cut:



CuT Given an Herbrand expansion prabf := (I'1, A | ©, T',4; | ©1, o1) of T', 4,
and an Herbrand expansion prodf := (I';,—A | ©', T',=A4y | O9, 02) of
A, —A, the triple

W= ([,Ty|0]|03]AN—A, T1,I5,ANB|O;|Os|A; A4y, 03)

(whereos = o1 U 0y) is a preproof of'1, I's. This proof is correct since any cycle
in <¢ U Cy must be a cycle in eitheks, U Cg, Orin <, U Cs,. But®, and
b, are both correct, so there can be no such cycle.

Since the cut-rule is admissible, we have a notiorcafpositionfor Herbrand
proofs.

Example 2.2.Recall the proof in Example 2.1. A proof of the opposite dntant is
given by the pair

(Fw.(A(w)) V Fv.(B(v)), Yu.(mA(u) A =B(w)), [w,v:= u])

By admissibility of cut, we obtain a prodf of, essentiallydz.A vV 3z.B) + Jz. AV
Jx.B. Written in one-sided notation with the eigenvariable dtad, the conclusion of
vis

' =3w.(A(w)) V Ju.(B(v)),Vy.(mA(y)) AVz.(-B(z))

and¥ has extension and expansion

I'| (Frr(A(zr) vV B(zr)) V 3xe(A(xr) V B(zr))) AVu.(mA(u) A —~B(u))

Y
| (3z(A(x) V B(x)) AVu.(mA(u) A =B(u))

and substitutiotw, v := u, zr, ==y, := 2.

Theorem 2.3. Herbrand expansion proofs are sound and complete for fidéwoclas-
sical logic.

Proof. Consider first the class of cut-free HEPs. These are soumck sistantiation,
prenexification, and deep-contraction are implications in classical logic. They are
complete, since any sequent provable in the classical segakulus has an HEP.

Completeness for general HEPs follows immediately. Fondoess, suppose that
an HEP® has an unsound conclusidin Then® must contain at least one cut. For each
cutC; in @, let ¢ = 3x;...3x,Cly := x|, wherey are the variables free i@ but
bound elsewhere in the extension®f Similarly, let C*; = 3z1... 3z, Clw = 2],
where(; is the expansion of' in @, and wheraw are the variables free iff but bound
elsewhere in the expansion®f Then

(r,cy,...c , T,C,...C! | [z :=w]oo)

is a cut-free Herbrand proof with an unsound conclusion -trealiction.



Remark 2.1.That this is a structured version of Herbrand’s theoremesuct a first-
order sentencd is provable if and only if it has an cut-free Herbrand expangiroof,
if and only if there is a valid substitution instance of an axgion ofA. The approach
extends to cases with equality and non-logical universimrag. Most proof-theoretic
demonstrations of Herbrand’s theorem begin with Gentzeridsequent theorem for
formulae in prenex normal form, and so give the theorem fenpxr sentences only;
here we derive the theorem for all sentences.

3 Cut-reduction for Herbrand expansion proofs

3.1 Cut-correct proofs

Since the cut-free Herbrand proofs are complete, it is dlesrcut-elimination holds.
The evident much harder problem is to give a constructivefuwbthis fact.

Problem 3.1.Provide an algorithm which, when given an Herbrand expanproof
with cuts ofT", constructs a cut-free Herbrand expansion prodf.of

This is a more general problem than cut-elimination, sitezd are HEPs which
are not the image of a sequent calculus proof. To see thisja®rthe correct HEP

Jr. A, Vy.—A | (321.AV F22.A) AVw.—A
P = Y ) [J?,Zl =W, 22 = y] (l)
Jr. A, Vy.—A | 3z.A ANVw.—A

It is not possible for the “cut” ird to originate from a sequent calculus cut, because of
the dependency between the variables on the left and rigés sif the cut.

The cut-reduction step XRUCT in the next section requires thatifappears in
one side of a cut, angin the other, then: <4 y. We will call such proofgut-correct

Definition 3.1. Let B = A A —~A be a cut pair in an Herbrand expansion probfand
B its expansion imp. Theleft branchof B is the left conjunct of3. The right branch is
the right conjunct of3. DefineS{ to be the set of all pairéz, y) such thatr is bound
in the left branch of3 andy in the right branch ofB and S¥ to be the set of all pairs
(x,y) such thatr is bound in the right branch aB, andy is bound in the left branch
of B.

Definition 3.2. (a) Anorientationfor a pre-proofé = (I' | ©, T'| ©, o) is a func-
tion f from the elements & to {0, 1}.

(b) A pre-proofd is cut-correct if, for each € ©, and each membslr, y) of (S%),
we have thakis U(z, y) is irreflexive.

(c) A pre-proof® is sequent-corredt, for each orientationf of @, <g U Uiee(s}(i))
is irreflexive.

Clearly, if a proof is sequent-correct, it is cut-correcttuitively, checking sequent-
correctness amounts to checking the existenc8®fprenexifications of’ | 6 com-
patible witho, one for each orientatioffi; if f(B) = 0, then all quantifiers from the
left branch of B occur before all quantifiers from the right branch, and vieesa if
f(B) = 1. The following is an easy induction on the structure of sediealculus
proofs:



Lemma 3.1. The translation of any sequent calculus proof is sequentecb

We are left with the question of the status of HEPs that aresaquent-correct.
Consider the following sequent calculus proof:

F A(ws), 2 A(ws F A(wy), 2 A(w,
(w2) ( )VR,HR (w) ( )VR,HR
F-A(y), A(y) Fdz1.A, Vs . A F3dz. A, Vw, . A
——VR,3R AR
FVy.—A, 320 A F 3x. A, Vws.—A, 3z1.A AN Vw,—A R

A

F 3z A Vy—A, 321 A AVwy.—A, Tz0. A A Vws.—A CR
FdzA Vy—A,3z. A ANVw.—A

Notice that we cannot replace the conjunctions in this preitt cuts, owing to the
contraction. The translation into Herbrand expansion fsrobthis proof is

Jr. A, Vy.—A, (321. AV Fz2. A) ANVw.—A
P = Y s @21 = w, 20 =y
dx. A, Vy.—Adz. A, ANVw.— A

thatis, the same as (1) but witlz. A A Vw.— A as part of the conclusion rather than as a
cut. What we see is that non sequent-correct HEPs can ar&éeesslt of “contracting
cuts”. This kind of behaviour is not allowed in the sequettwias, but is allowed in, for
example, the Calculus of Structures [1]. In particulard®s syntactic cut-elimination
for a system of first-order classical logic with such feasure

3.2 Cut-reductions steps for cut-correct HEPs

We give, in this section, three reductiong1V, QLOG and QsTRUCT, on HEPs. These
rules operate where the cut-formulais in prenex normal fargimilar treatment works
in the general case, but we omit the details for space reasons

For each reduction, we identify a cut (tpeincipal cut which for simplicity we
assume is the first appearing) in a pra@gf, and give a proofp, in which this cut is
either removed, or replaced by a cut(s) (tbsulting cut¥ such that the proof has lower
complexity. For all but one case, this reduction of comgiewiill be the rank:

Definition 3.3 (Rank of an HEP).The rank of an HERP is the sum of the number of
logical symbols appearing in all cuts ih.

TRIV The simplest reduction {iv) is the removal of a purely propositional cut (i.e. a
cut containing no quantifiers). Letbe quantifier free in :

=0 ]ar-a|O, T'| ah—-a|O, o)

Such a cut may be deleted: the matrix of the resulting expansimains valid, an@-
has lower rank tha, .:
»,=(T1]0, 16,0)

10



QLOG We will call a cut betweerz. A andVy.— A logical if the expansion ofz. A in
@ has the formiz. A. Given a proofb; containing such a cut

&= (T'| 3z ANYy.—A| O, T'|3z.A; AVy.—A3 | O, 0g,)
we construct a procb,
By = (| AN-A|Bly:=0g, ()], T'| AL A=Ay | Oly := 04, (2)], 0s,)

whereos, = [y := 04, (z)] 0 0g,. The rank ofd, is smaller than that ob,. Call this
reduction QOG.

QsTRUCTThis leaves the case where the existential branch of a ctithie form BV C
(where it has a nontrivial expansion at the top level); we gall such cutsstructural
cuts We now detail the reduction ' rRucTfor such cuts. The redex of this reduction
will have the following shape

&= (| Iy AAVz—A| O, T | (BVCO)A (Vz.—mA) |06, 0g,) (2)

and we will refer to the variable as the principal variable of the cut.

The reduction of this cut is similar to the naive pushing ofiapast a contraction in
LK [5]; to form the reductb, we replace the cut with two culs;,. Ay, AVzy.—Ar and
Jyr.Ar ANVar.—Ag, with the expansion ofiy;,. Ay, given by B, and the expansion of
Jyr.Agr beingC. In the sequent calculus this requires the duplication ohale/sub-
proof, and then the contraction of all the conclusions of thdproof. Here we can be
more subtle — we only duplicate subformulae in the contextlwbepend hereditarily
on the principal variable. Informally, we replace each maximal subformulaZinof
the form3z.D, such thatr <1 z, by 3z;,.Dy, vV 3zz.Dr. The formal definition o,
is a little more involved. We describe the extension, exjmenand substitution in the
appendix.

Proposition 3.1. If @ is a correct proof, the result of reducing a cut in? is also a
correct proof.

Example 3.1.Recall the HERV in Example 2.2; this is a proof with a prenex cut, and
so falls under our cut-reduction systeth.is a redex of @TRUCT. We will see now
how our system eliminates the cut. Define

I:= FQwr.(A(wg)) V Jwg.(A(wg))) V Jur.(B(vy)) V Jug.(B(vg)),
Vy.(A(y)) A V2. (RA(2))

and
Bx = Ekl'x(A({EL) V B(l’x)) A\ Vu(ﬁA(uX) A\ —‘B(UX))

Reducing the cut i results in an HEP
&= (T'| Bx | Bg, r | Bx | Br, [wx,vx :=ux,xr =y, xg = 2])
Two applications of QOG and TRrIV yields the cut-free HEP

U= (Pa Pa ['UL,’U)L =Y, VR, WR = Z])

11



Note that this proof is clearly not the “identity” proof aix. A v Jy.A; this suggests
that, in algebraic models built over this systefi, A vV 3x.B will not be isomorphic

to dz.(A Vv B). By duality,Vz.(A A B) is not isomorphic to/z. A A Va. B, contrary to

intuitionistic logic wherevz.(A A B) =2 V. A AVz.B.

3.3 The challenge of normalization

Just as in the sequent calculus, there are infinite chairedoictions in the above sys-
tem; unlike the sequent calculus, there are also non-naimgHEPSs. All the known
examples of non-normalizing terms fall outside of the clafssequent-correct proofs,
and we conjecture that all sequent-correct proofs are weakimalizing. What is un-
fortunate is that sequent-correctness is not preservedsgQCT.

Example 3.2.Consider an sequent-correct HEP of the form

[y |V2.BA3z2-B | VoIyA A (v Yw, —A V FupVws—A)
& = ly =2,z :=x,v9 := w]

T |Vz.BA3z-B | VadyA A JoVw-A
Reducing the right-hand cut usingsQrucTresults in a proof with expansion

[y |V2.B A (3z,-BV 3zp-B) | VoL Iyr A A JviVwr A | VerIyrA A JvaVws—A)

T'|Vz.BA3JzZ=B | VaIyA A FoVw-A | VaIyA A FoVw-A

with substitutionfyx := z,Zx := xx,v2 := wy]. This HEP is not sequent-correct;
there is a path, zg, x g, v2, w1, yr, z, With evident orientation.

We consider the best course of attack for giving normaliretor sequent-correct
HEPs to be identifying those applications ocd QrRuCTWhich preserve sequent-correctness
(since every known non-normalizing proof is not sequenteszd) This is the subject of
ongoing work.

4  Further work

In addition to the problem of normalization, we wish to stublg properties of these
proofs as proof-net-like objects. HEPs exhibit many of thepprties associated with
proof-nets [6], but they clearly identify too many proofa @articular, all proofs of a
given tautology). Nevertheless, we may consider the questf sequentialization. A
very general proof for the cut-free case is given in [13];taeomay be easily found by
treating HEPs as strategies for proof search in G3 [16]. Béthese give sequential-
ization for the cut-free, cut-correct HEPs. A good sequdizfition for HEPs with cuts
(where we use a context splitting cut) seems impossiblegdinere is no information
about how to split the context. For this reason, it seemsrabtiol consider sequential-
ization and other proof-net like properties in the settifgugmentedHEPS, where we
replace validity of the substituted matrix with a proof oopf-like object. Two obvious
cases are the following:

12



(a) AProof-net for first-order classical logiis a pair®, ¢ of an HEP® and a proof-net
[11] ¢ with conclusion the substituted matrix éf

(b) A Combinatorial proof for first-order classical logis a pair®, ¢ of an HEP® and
a combinatorial proof [8) with conclusion the substituted matrix &f

In both cases, we replace our reductiati\f with the relevant propositional cut-elimination.
The study of these systems is ongoing work.

Thanks The idea for this work arose from discussions with David Pyuinile the au-

thor was at the University of Bath. Special thanks go to Willdeijltjes for spotting an
serious error the development of this work. The author is giateful to Kai Brunnler,

Lutz Strassburger, Dominic Hughes and Francois Lamaraheskful discussions.
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A The reduction QsTRUCT: formal definition

Given a cut-correct HEP

&, = |y AAVz.-A|O, T | (BVC)A (Vz.—A) | O, 0p,) (3)
we define its reduceb, = (K, K, o2) under GTRUCT.

Definition A.1. If A is a formula, thendy, is the result of alpha renaming each bound
variablex asxy, and similarly forAg.

Suppose that < z, and that there is a ci® appearing inp; such that the variable
z is bound ind, but free in the expansion @. This cut must be duplicated ip,. Let
O, be a sequence of cut-pairs derived frérby replacing each cut paiB such that
z € fv(B) andz < z by By, | Br . Then the extension @, is

K=T | Jyr. AL /\VxL.—‘AL| Jyr.Ar AVxr.—AR | Os.

In the expansion, whether or not a subformula is duplicagggedds on whether it
depends hereditarily an We define two function®';,, T iz from variables bound i,
to variables bound ik,, which are the identity on variables not copied bg1@ucT,
and which otherwise give us one of the two copies.

Tx(z) == (4)
R e ©
Extend that function to all terms as follows
Tx(a) =a aaconstant (6)
Tx(f(t1,---,tn)) = f(Tx(t1),.... Tx(tn)) (7)

We now extend these functions to formulae; on quantified idaewe rename those
bound variables depending an
Tx (B
Tx(¢z.B) = ¢2x Tx(B) =<z
g2 Tx(B) x4z
with the value ofT" x on other formulae given by
Tx(R(t1...tn)) = R(Tx(t1),...Tx(ty,)) R arelation symbol
Tx(=B) = -Tx(B)
Tx(B*C)ZTx(B)*Tx(C) * =N\, V

We define now a function frorlID (hereditary duplication) from formulae to se-
quences of formulae. This function will help define the exgian of®,. We ensure that
each duplicated cut has an expansion by setting

HD(A) = T, (A) | Tr(A) z € v(A),z < 2.
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For all other formulaed, HD(A) is a formula. On an existentially bound formulde
HD(A) depends on the eigenvariable of the quantifier:

D(3:.B) = 32.HD(B) x Az
= B HZL.TL(B)\/HZR.TR(B) r <z

Otherwise
HD(R ( tn)) =Rty .. 1)
(ﬂB) =-HD ( )
HD(B* C)=HD(B)«HD(C) *x=A,V
HD(Vz.B) = V2.HD(B)

ExtendHD to a function from sequences to sequences in the obvioushhayexpan-
sion of @, is

K =HD®) | BA (Vz.~TL(A)) | C A (Var.—Tr(A)) | HD(O).

Finally, letoy be defined as follows:

02(2) = 0(2) if v Ag 2 (8)
o2(z1) = Tp(o(2)) 9)
02(2r) = Tr(0o(2)). (10)

We have, in conclusion
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