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Abstract. It is well-known that every IT9-formula is intuitionistically
provable iff it is classically provable. Berger et al. (2002) proposed an
improvement of the A-Translation method which transforms a proof by
contradiction of a IT9-statement into its intuitionistic counterpart and
Schwichtenberg (2007) refined this procedure further. In this paper we
apply this mechanism to Stolzenberg’s Principle (SP), stating that any
infinite boolean sequence has infinite occurrences of either 0’s or 1’s. We
aim at applying the extraction procedures further on Ramsey’s Theo-
rem, which plays a foundational role in combinatorics. Since the proof
of Ramsey’s Theorem is built upon a generalisation of (SP), an essential
component of its computational content is represented by the extracted
program presented in this paper.
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1 Introduction

In the case of intuitionistic proofs, the semantics associated to the logical oper-
ators allows for an interpretation of proofs as programs, via the Curry-Howard
correspondence, but in the classical setting the computational content of proofs
is not explicit. However, for the 13- formulas Vo3yG(z,y) with arithmetical and
decidable kernel, it is known that they are equiderivable in both systems, i.e.

b V23yG(z,y) iff T F; VaIyG(a,y), (1.1)

. denoting derivability in classical, I-; in intuitionistic and t,, in minimal logic.

This suggests that one can obtain the constructive counterpart, and thus
unravel the computational content, of proofs by contradiction of VzIyG(z,y).
Indeed, beginning as early as the 1930’s with the work of Godel, various meth-
ods have been proposed in order to transform classical proofs into constructive
ones. Godel (1958) suggested the so-called Dialectica interpretation and also,

* The author gratefully acknowledges financial support by MATHLOGAPS (MEST-
CT-2004-504029), a Marie Curie Early Stage Training Site.



in parallel with Gentzen, a form of double-negation translation, which has fur-
ther developed into variants. The transformation of concern to us is a hybrid of
the Godel-Gentzen negative translation and Friedman-Dragalin (also known as
A-) translation as presented in Friedman (1978). More precisely, we work with
a refinement of this method, as proposed in Berger et al. (2002) and further
improved in Schwichtenberg (2007), such that the insertion of double negations
is avoided. Due to the key role played by negations in the A-translation, the
extracted term is significantly simplified.

We read formula Vaz3yG(z,y) as “given an input x is there an algorithm
which produces an output y from this input, such that the requirement G on x
is met?”. Our work investigates under which circumstances and with what results
we can synthesise programs from proofs of such specifications, carried out in the
classical setting. More precisely, we analyse the computational potential of proofs
in the fragment of the intuitionistic logic which coincides with the classical logic.

In this paper we apply the refined A-Translation to a corollary of the (infinite)
pigeon hole principle (IPH) stated bellow. IPH is used to prove Ramsey’s The-
orem, a fundamental result in the realm of combinatorics, so before we attempt
at identifying the computational content of the latter, we need to retrieve the
content from the classical proof of (IPH).

Lemma 1.1 (Infinite Pigeon Hole Principle). Any infinite sequence coloured
with finitely many colours has (at least) one colour occurring infinitely often.

For simplicity reasons, we restrict our attention here to the variant of the (IPH)
which regards only a two-colouring, and refer to this as the boolean case or
Stolzenberg’s Principle (SP), adopting the reference from Berardi (2006).

Lemma 1.2 (Stolzenberg’s Principle). Any infinite sequence over {0,1} has
either infinitely many 0’s or infinitely many 1’s.

One cannot expect, however, to extract a computable functional producing such
an infinite subsequence from a given infinite one, because this problem is not
decidable. This amounts to saying that Lemma 1.2 does not have a constructive
proof. For this reason, we restrict our attention to a corollary

Corollary 1 (Finite SP). Any infinite boolean sequence has a finite constant
subsequence of a specified length.

Since this is a I19-statement, and thus intuitionistically provable if classically
provable, we are able transform its classical proof with the refined A-Translation
method and realize the resulting proof. Our purpose is to argue that in this way
we are able to recover the computational content, i.e., produce the algorithm
computing the constant sequence from the given infinite one.

The relevance of the (IPH) is pointed out in Halbeisen (2008). On the one
hand by the Axiom of Choice, (IPH) leads to

Lemma 1.3 (Konig’s Lemma). FEvery infinite, finitely branching tree con-
tains an infinite branch.



On the other hand, Infinite Ramsey’s Theorem can be also proved by (IPH)
and the case of 2 colours by (SP). Further, the finite version of Ramsey’s Theorem
follows by a classical argument, using Koénig’s Lemma (Halbeisen (2008)).

Theorem 1 (Infinite Ramsey’s Theorem). Let n € N\ {0} and S be an
infinite set'. Let colours from some finite set be associated to the n-element
subsets of S. Then there exists an infinite set M C S, which is homogeneous,
i.e., the n-element subsets of M all have the same colour.

Outline. The following section introduces the system in which we are working
and the transformation method which, when combined with the modified realiz-
ability, enables the extraction of computational content from classical proofs. We
present in detail in Section 3 the application of this method to Corollary 1 and
comment on the results. In Section 4 we overview related work and briefly com-
pare our results with those reported in the literature. Since we are reporting on
work in progress, we will conclude with an emphasis on the future perspectives.

2 Recovering the algorithmic content from classical
proofs

2.1 The System as a Negative Fragment of H A

We work in a fragment of Heyting’s Arithmetic with higher types, based on
Godel’s System T. Types are built from base types by the formation of function
and product types

p,o:=N|B|L(p)|[p=0|px0o
Terms are defined inductively by abstraction, application, pairing and projection
from typed variables (z) and constants (constructors and recursion operators)

5,0 5=20 | (P10 | (92710)7 | (19,57)9%° | (12°0)° | (1277 1)°

£ [ £ [ OV | SN | nil"() | consP=HPIZL0) |
N=o=(N=o0=0)=0 L =o=(p=L —>0=>0)=>0
Ry ( ) | RLEZ? (p=L(p) ) |
CBI\II:0><7:>(N:>U)é0 | Ci(g)éoé(p:ﬂ(p)éa)éa.

We abbreviate constl to t:: 1, denote the element at position m" in the list by
I, and the length of the list by |I|. In this paper we work only over L(N).

Terms are considered to be always typed, but whenever clear from the con-
text, the types will be omitted.

We allow a special unit type? which we denote by € and, by abuse of notation,
take the terms of this special type to be also . We make the following conventions

(€)

et :=¢, te :=1t, gge=¢€
(p=¢)=¢, (e=>0):=0, (e=>¢):=c.
! Ramsey’s Theorem is most commonly stated in terms of graphs: S is taken to be an

infinite complete graph, M a subgraph of S and n the number of edges
2 The necessity of the e type will become clear in the Section 2.3 on realizability.



A special predicate constant atom of arity B is considered, in order to express
boolean valued functions in our language as decidable predicates?. Its logical
interpretation is given by the truth axiom AxT : T, where T := atom(tt).

1 is defined as a nullary predicate variable, since when applying the A-
Translation we will need to substitute an arbitrary formula A for it.

Definition 1. Let P be a predicate variable of arity (p1,...,pn), T a typed vari-
able and tq,...,t, terms. Formulas are built from prime formulas by — and V

A, B :=atom(t?) | P(t{*,...,t?") | L| A— B | V2" A

A abbreviates A; — --- — A, and ¥, p will also denote formulas. To save
on parenthesis, we use the “dot”-notation:

Va. Aj(x) — - — A, (x) stands for Vo(A;(x) — -+ — A, (2)).

Formulas are arithmetical, but the predicate variables, viewed as place hold-
ers for comprehension terms, allow us to “simulate” part of the higher order
logic, while remaining conservative over the first order logic.

We regard the classical (or weak) logical operators as abbreviations

SA=A— 1 AVB:=SA— 5B — 1L
JzA:=(Vo. A— L) — L AAB:= = (A— = B)
For the cases when we do not want a predicate variable for “falsity”, we have
F := atom(ff) and, accordingly, ~A := A — F'.
Since the weak “Ex falso quodlibet”, efq, : L — A, is problematic for the
A-Translation, where we want to substitute for L any formula A, we will work

in the minimal setting (intuitionistic logic without efq ). However, for formulas
A with no free predicate variables one can prove by induction on A that

Fm F— A (efqy) and +F,, (A—F)—>F)— A (Stability)

By the Curry-Howard correspondence, typed terms can be associated to the
inference rules of the natural deduction system (Gentzen (1934)).
We define proof terms to be*

M, N = | QuAMBYA=E | (MAE NAYE | (AP MA@V Al@) | (7" A@)p)A®) |
Ind,, a: Vm". A(0) — (Vn. A(n) — A(Sn)) — A(m) |
Ind; a: VIEP) . A(nil) — Vo, I'MP) (A(l') — Az = 1)) — A1) |
Cases;, 4 : Ym". A(0) — VnA(Sn) — A(m) |
Cases; 4 : VIEP). A(nil) — Vn, I’ A(n::I') — A(l) | AXT : atom(tt)
The sets of free variables F'V (M) and free (open) assumption variables F'A(M)
as well as capture-free substitutions are defined inductively as usual.

3 For instance, 7" < " is formulated as atom(<"""=® (1) s)).

4 The variable condition is imposed on the term AzM* corresponding to the rule V' z:
The derivation term M should not contain any open assumption with x as a free
variable.



2.2 Refined A-Translation

A-Translation is a combination of the Gddel-Gentzen negative translation (or
double-negation translation) and the A-translation. The former associates to
each formula v its negative translation ¢, which is classically equivalent to 1,
but weaker than it intuitionistic logic®. We have

Ik ap iff T9 F; 9

Friedman (1978) defines the “A-translation” ¢* as the result of simultaneously
replacing in ¢ each atomic subformula ¢ by (¢ V A). We call this Friedman’s
“trick”, since the known A-Translation is a combination of this remark and the
double negation translation. Let I'4 be I" with each formula ¢ replaced by ¢4.

If 'ty then T4 9V A,
and further, if ¢ is L, since L. VA= A,
if I'F; L then ' F; A.
If we now combine the two translations and take A to be Vx3yG(z,y), then
from I" . Va3y. G(x,y) we can infer I'* F; Va3yG(z, y).

However, the above mentioned method is not efficient in practice, since all 1’s
inserted by the double negation will A-translate to Vz3yG(z,y), which is compu-
tationally relevant. We present in what follows the refinement from Berger et al.
(2002), which identifies the cases where the double negation is not necessary.

Inspired from Seisenberger (2003), we restrict “decidable formulas” to

Definition 2 (Decidable formulas). A formula is said to be decidable if it
is built from atomic formulas, atom(t), only by propositional connectives and
quantifiers which are either boolean or range over finite sets of naturals.

Lemma 2.1 (Case Distinction). Let B be an arbitrary formula and C a de-
cidable formula. Then we have

+(-C—-B)— (C—B)—B (Cases)
The proof, by structural induction on C, is sketched in Berger et al. (2002).

Definition 3. If a formula “ends” with L, it is said to be relevant and otherwise
it is called irrelevant. That is, C is a relevant formulas iff

C:=1|B—-C|VzC

® For reasons of brevity, we omit this definition, but refer the reader to Godel (1933);
Gentzen (1934).



Let P range over atomic formulas. Goal formulas G and definite formulas D
are defined inductively to be

G:=P | L | D— G, provided D relevant \/ D quantifier-free
| VG,  provided G irrelevant \/ VG decidable ,

D:=P | L |G— D, provided D relevant \/ G irrelevant
| VaD.

These families of formulas are chosen such that Friedman’s “trick” is ap-
plied only to L and such that the insertion of double negations is avoided. Fur-
thermore, by substituting 1 by F' whenever possible - and such situations are
identified by the following lemma - we can confine the substitution even further.

Lemma 2.2. Let A denote A[L := F|. For definite formulas D and goal for-
mulas G we have from F — L deriwations in intuitionistic arithmetic of

DF — D, (2.1)

G— (GF - 1)— L. (2.2)

A more detailed version can be found in Schwichtenberg (2007) and the

proof, by simultaneous induction, follows the line of its variant from Berger

et al. (2002). In order to show (2.2) we need (Cases), so G has to be a decidable

formula, which justifies some of the restrictions from Definition 3. The formula
(2.2) can be extended (see Schwichtenberg (2007)) to G — (G¥ — 1) — L.

Having kept L only in the relevant positions, we use Friedman’s trick to
substitute for it A := JyG(z,y). Putting the pieces of the puzzle together,

Lemma 2.3. Consider that we are given
FeVa. D — H — 3y G(z,v), (2.3)
where G is a goal, D are definite and H are arbitrary formulas. Then
Fi Vo, DY — H[L =3y GF(z,y)] — 3y GF(z,v). (2.4)
Proof (Sketch). (2.3) is transformed according to Lemma 2.2 to
Fi (F— 1) — D" - H -V (Vy. GF(z,y) —» 1) — L.
If we now substitute in this latter 1 by Jy G (x,y), since
Fi F— 3y G (z,y) and +; Vy. GF (z,y) — Ty G (2,9),
we obtain (2.4).

2.3 Realizers

We assign to every formula a computational type 7(A). If the proof M of A has
no computational content we call A is computationally irrelevant and mark this
by assigning to A the type €. We let [M] := ¢, with [M] denoting the program
extracted from the proof of A. A is computationally relevant when 7(A) # e.



Since we do not a priori know what comprehension term will be substituted
for the predicate variable P, we assign it some type variable ap. With this and
the conventions we made in (g), we consider the following typing rules

5 if P does not have content

T(P(r)) := {

7(A — B) :=71(A) = 7(B),
T(VaPA) :== p = 7(A).

ap otherwise,

Let rmr A denote (Kreisel’s) modified realizability, which reads “the term r
realizes the formula A” and is defined by

P(s%) Pr(r,s) if P is a predicate variable with assigned ap
rmr P(s =
P(s) if P is a predicate constant

rmrVeA =VrrzmrA

rmrA— B:=Vz.zmrA — rzmrB

Here P* is a new predicate variable of arity (7(r), o) associated to P of arity o
The extracted term of a derivation is obtained inductively

[u’] = g4 (27" the object variable associated with u4),
[AuAMEBYA=B] .= AT (W [M]7P),

[MA—BNA] = [M]TA=BN]TA,

[P M)A = AP [M]T),

[MY#4A] — [M]7 A,

In particular, for our induction schemes, when o := 7(A) # ¢, we have

N=o N=o=0 o L P L o o
ndy o] = RE=077 [lnd, ] o RO

with the following associated conversion rules

RN(Oafag) :fa RN(Snmf’g) :g(anN(nvag))
RL(niIa fa g) = fv RL(n:: la fa g) = g(nvl,RL(lva g))

For “Cases”

_ ngaé(N:m):m CL(p)éab(péL(p)éo‘)éa’

[Cases, 4] : [Cases; 4] := Lo )

[134

we associate the “if ... then ... else” construct

Cy.o(n, f,g)=if (n = 0) then f else g (n — 1),
Cro(l, f,g) =if (I =nil) then f else (g ly cdr 1),

with (cdr 1) denoting the list [ without its head element .



Theorem 2 (Soundness). (Berger et al. (2002)) Let M be a derivation of
B.Then there is a derivation of [M]mr B from the assumptions

{27 mr Clu® € FA(M)}.

To determine the realizer for (2.4), let us first assume that we have terms s
and t realizing H and D, respectively, and the proofs

FD— H — smrH[L/3yGF (y)], D — H — tmr DY,
Let M be the derivation of (2.4) and [M] its extracted program. By Theorem 2
- H — D — [M]stmr3yGF(y)
If we extend the definition of modified realizability by
rmr3xA(x) := rOmr A(rl), where (32" A) := p x 7(A)

we obtain
H — D — [M]stOmr GF([M]st1). (2.5)

3 Case Study - Infinite Tape

Recall Lemma 1.2 (SP): Any infinite recursive sequence over {0,1} has either
infinitely many 0’s or infinitely many 1’s.

The most intuitive way to represent the infinite (boolean) sequence is by
=101} i e. the sequence which has the implicit property that Vk glb{o’l}f k=b.
However, since we have in mind a generalisation to more colours, we choose to
encode the sequence as fY~¥ with the property that Vk. fk < 2

Since we do not allow = (5 A) — A (weak stability), we make the double
negation explicit in the assumption

Infr:=Vk. 5 (fk<2)— L.
Definition 4. We say that f has an infinite monochromatic subsequence iff
cof(r) :==YnIk.n < k A f(k) =r. for somer € {0,1}
(SP) can be now expressed as
V. Infy — (Vr.oop(r) —» L) — L (SP)

Proof (of (SP)). Assume by contradiction that neither 0, nor 1 occur infinitely
often ( = 0o0y(0) and = oof(1)). Take n and m to be the last occurrences of
0 and 1, respectively, and use Inf; on the maximum of m and n, denoted by
mUn. Since f (mUn) < 2, the value at this point must be either 0 or 1, which
comes in contradiction with one of our two initial claims and thus proves (SP).



In what follows, we give the term associated with this proof. Consider the
following lemmas being already proved

L; :Vni,ne. n; < (ng Ung) Leg:Vn.n<1l—-n=0

Leasepist : Vni,ma.np < Sng — (np <ng — L) — (g =ng — 1) — L.
Then Mgp proves (SP), where

Mgp =AM 20 0=0) (w0 My, o))"

My (0 ::/\n)\wgk'nék_’f b=0=L (w lMoof(l))J‘

M<><>f(1) ::)\mAka'mSka k:lﬂL. (ka‘ (fk<2—1)—1 (m L n))\u{ (’mun)<2. Mé_D)J_
MCD ::LCaseDist (f (m U Tl)) 1 u1 Méézsim)<l—>L Méézgn)Zl—)l

Measer =M =Y (w (m U n) (Ly mn) <09 (L ug)f (mHm=0)+
Megsez :=w1 (mUn) (Ly mn)m<(m"'")

Since (SP) is not constructive, we restrict our attention to the I19-statement
Corollary 1 (Finite SP, see Section 1). We break its proof in two small steps and
first show an auxiliary lemma, which states that the sequence of length n can
be obtained from the infinite monochromatic sequence. This trivial fact is an
essential component of the proof, as its computational content constitutes the
algorithm for selecting of indices from the monochromatic subsequence.

Let [ be the list that we expect to output with the extracted algorithm, when

provided f and m. The list [ should have the following properties
— has the specified length, |I| =n

— is not constant, Vm. Sm < n — l,, <ls,, (denote this by G1(I,n))
— f has colour r € {0,1} at each point from the list, Vm. m <n — fl, =r
(denote this by Ga(f,l,n,r))

Cumulating in = G(n,r) the specifications for I,
Gy(n,r) =Vl |l|=n— Gi(l,n) = Gaf,l,n,7) — L,
the auxiliary lemma can be expressed as
Vf,r. ocop(r) = Vn. Gg(n,r) — L (SPAux)
Before presenting the proof term for SPAux, we give an intuition on the proof

Proof (SPAux). Fix arbitrary f and r and assume oco¢(r). We show = Gf(n,r)
by induction on n.

Base case If n = 0 then we take the empty list and use “Ex falso quodlibet”.
Step case By case distinction on n we identify if the list provided by (IH) is
non-empty.
Case n=0 We populate the empty list from the (IH) with the element Iy
obtained from oof(r) on n = 0. With (I :) the first conjunct of Ge(f, 1,7)
follows trivially and the other two by ”Ex falso quodlibet”.



Case S(n) Since n # 0, the list provided by the (IH) is not empty, so it is
1::my. With respect to Snq, we know from oo (r) that there exists a next
element, ny, which is fresh (thus complying with the second requirement
on the list) and has the value r in the sequence f (with this the third
clause of Ge is fulfilled). Thus, we have the list [ :: nq :: ng.

We take K(f,r,n):=Vk.n <k — fk=r— L (sooos(r) :=Vn. = K(f,rmn)).
USlng Ly: V'ﬁq, No. Sn1 <ng —mni <no
Lcompat(n1, P) :Vng. ng =ng — P — P(ng :=nq)
the proof term Mgp Ay is

MSPAuJC = AfATAwOOJ(T)An Indn,ﬁGf(n,T) an;SS(O,T)MSthe%, = Gf(n,r)— = G(Sn,r)

Mygse = /\UOG(O’T)~ ug nil AXTIMI=0 (Am. efdnirg,, <nit,, ) (A efa s, =)
Mitep == An. Cases,, = G, (nr)— = G(Sn,r) " Mn=0Msn,
Mi—o = MO 7 2§07y (T = 25O N 20 0 My 09
Mg (.r,0) = )\k)\vggk)\w{kﬂ. us (k:) AxTIRI=1 (Am. efq(k:)5m<(k:)m)Gl((k:)’l)
OAmAu™ <Y, (Leompat (m, f(k:)1 = 1) 1(Lcou) ™= wy )? Fm=r)Gz(f,(k), 1r)
Ms, := /\n/\ulg(sn’r)HJ')\ug(s(sn)’T).
ur (M. Casesy, (s, 1, 11 efq®E™ )™ Apy Ay, MG () GlSmn)
My, ., = )\u‘lnll ::l‘z‘:s")\uﬁg(nl ::lz’sn))\ufi(f’m o, Snor) (woof(r) (Sny) MK(f,r,Snl))L
Mg (f.r5ny) = Ner Ay SN M =T (g (ky img 2 1p) uiy Ma, Mgy )™*
where G := G1((k1 :mq1 ::12),5(Sn)) and Gy := Ga(f, (k1 ::nq ::12),S(Sn), r)
Mg, := dm. Cases,, ¢, m At <SG Ly (kysing o)y (kysing s l)ovr)

()\m)\vg(sm)<s(5"). (u‘1n21 2 l2|=Sn m UQ)(’I’H lo)sm<(ng i lg)m)

1

Mg, = Am. Cases, cz, m (Au®<3C™ wy) AmAvy™ 5" (uy 5 mv3))

We are now able to prove (Finite SP). We give first the intuition on the proof.

Proof (Finite SP). Let n be arbitrary, but fixed. Suppose we have an infinite
sequence f over {0, 1}. By (SP) (Lemma 1.2), this means that we either have a
constant “1” or a constant “0” infinite subsequence. In either case, by SPAux,
there exists a finite subsequence of length n.

This apparently simple proof is relevant to our investigation since it is but a first
step, yet important, towards analysing the computational potential of Ramsey’s
Theorem. In what follows, we present the proof formally.

We are not interested in the colour of the extracted subsequence, so we take
GL(f,l,n) :=¥Ym.Sm <n — fl,, = fls,, an alter the goal to

G'(n) =Vl |l|=n— Gi(l,n) = G4(f,l,n) — L,



Thus, the proof term for the Corollary 1 is MCVOJ:« Infg—=¥n. G'(nr)—L

Mcor = A2 00 ™. Mgp fo (Ardw™ ). Msp aue frwn Mg, ()
Mg (nry = N =" Nug E N2 (g ug Mgy m)*
May(fim) = )\m)\uim<". (L=rrans (flm) 7 (flsm)(uz m (Ly mnaug)™<")Ftm=r
(La (Fls) (1 S 1sm=r)r=Slsm ) ftm=Slsm.
where we have used the lemmas
L_prans :=Vn1,n9,n3. N1 =Ny — No = N3 — N1 = N3

Ly :=Vnq,no. Sny < no —ny < ng Lo :=Vni,n0.n1 =ng — ng =ny

3.1 Combining the Refined A-Translation with the Modified
Realizability

We first need to verify that we are in the conditions of Lemma 2.3. The Corollary
which we have proven is of the form Vf,n. D — (VI G — 1) — L, where

D :=Inf:=Vk. ~(fk<2)— 1, Gz:=Gi(,n):=YVm.Sm<n—lsy, <ln,
Gy :=|l| =n, Gz :=Go(f,l,n,r) :=Vm. m <n — fl,, =

For all i € {1,2,3}, G; does not contain 1, so GI' := G,. D is, however,
relevant and with Lemma 2.2
DF — D. (3.1)

Since fk < 2 is a prime formula, thus decidable, we can apply Lemma 2.1
Loasenist(fk) = (fk<2—=F) - 1) = (fk<2—1)— L

and obtain (3.1) by

Mp_pr = AP Ned! 5275 Liwsenise(f, &) Q! <27 efgm =L (ww)) vy

with the corresponding extracted term

[[MDHDF]] = >‘f)\k)\v1 [[LCaseDist(fv k)]] [[efqﬂ U1
= AfAkAvy if (f k < 2) then [efq] else vy

The program extracted from the derivation M., of Corollary 1 is

Meor] := AfAvdndu. [Msp] fo(Ardw. [Mspausz] frwnAl. wl)

e |
=
3
i

n)\ul)\u2. Ul()\lg. if (ZQ = n||) [[efq]] [[Mnl ::l]])

A
Ang Al w (Sny) Aky. ug (k1 iing 1) (Am. m)(Am. m)

,=.
5
i



Putting it all together and normalising, we obtain with (2.5) the following pro-
gram, as output by the Minlog proof system (see the Minlog website)

lambda f,nl.n
Rec nl
(lambda x. x (Nil nat))
(lambda n2,y1,x2.
[if n2
(y1 (lambda 13. R(T(0,0:,0:,x2,x3), T(S n3,(S n3):,(5 n3::n3::11),x2,x3))))
(lambda n4.
y1 (lambda 14.
[if 14 (Nil nat)
(lambda n5,18.
R(T(S n5,(S n5::n5::18),(S nb):,x2,x3),
T(max (n3,n5), (S max(n3,n5)::n5::18),
(S max(n3,n5)::n3::11),x2,x3)))1))1)
(lambda 1. 1)

with

R(T1,T2):= Rec nl (lambda x. x (Nil nat)) Step (lambda 1.1)
Step:=(lambda k1,y2,x3.
[if n (y2 (lambda 1. T1))
(lambda k2.
y2 (lambda 1.[if 1 (Nil nat) (lambda n3,11. T2)]1))1)

and

T(m,11,12,xi,xj) := [if (f m < 2)
[if (f m) (xi 11)
(lambda m. [if m (xj 12) (lambda nO. (Nil nat))])]
(Nil nat)]

where pitN=LN yi(LN:>LN):>LN Rec := RN:>(LN:>LN):>LN

As expected, all the case distinctions are reflected in the program, which
quests recursively the given sequence for the indices at which the values are
identical. We analyse the algorithm in terms of a few examples.

Ezxample 1. We summarise our experiments in Table 1 bellow. f is the input
sequence and n the length of the subsequence.

The first thing to observe, by comparing E.g. 3 and 4 or E.g. 7 and 8, is that
there is a break of symmetry. This due to the fact that we are dependent of the
choice made in the proof of whether to first search the subsequence coloured by
0 or for the one coloured by 1.

Let us analyse the behaviour of our program for the more interesting case of
n = 3, depicted in the 4" column. Suppose that we first ask for the (monochro-
matic) O-subsequence. In this case, the 3 occurrences of 1 are selected only if
they appear consecutively in the given sequence, which suggests that the pro-
gram “stubbornly” investigates the tape to find the 3 indices at which 0 occurs.
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Table 1. Tests

This is the case with E.g. 1,3,5, 7 and 8, where the 0’s are selected, even though
in E.g. 5 and 7 the 1’s occur 3 times much sooner. However, in E.g. 6, the search
is interrupted after finding the 3 consecutive 1’s, although later a 3"¢ 0 appears.

An important feature is that the subsequence of length 3 is not necessarily
selected out of the infinite subsequence. In E.g. 7, for instance, the infinite subse-
quence is the one coloured by 1, yet the 0’s (appearing only 3 times) are selected.
It would be of interest to decouple the realization of (SP) from its corollary and
only later specialise it to n. A combination of A-translation with external real-
izers is presented in Seisenberger (2003) discussed in the next session.

4 Related Work

The lemma that we address in this paper is not a new case study in the realm
of program extraction from proofs. The novelty of this paper consists in investi-
gating its proof purely by means of the refined A-Translation.

Seisenberger (2003) investigates a different proof, which uses the axiom of
dependent choice, the emphasis being on the use of external realizers and the
way the refined A-Translation can be coupled with the modified bar recursion.
Naturally, this introduces new realizers for bar recursion in the extracted term,
making it slightly more complicated.

One difference arising from using a different proof is that our algorithm starts
the search in the natural way at the first element of the list. Due to the use of
dependent choice, Seisenberger (2003) reports that the first element is skipped.

Seisenberger (2003) treats the case of subsequences of length two, so since
we treat here the more general case, we refrain from a minute comparison. We
only point out that the asymmetry is encountered in both works. This is due to
the choice which is made already in the proof of (Lemma 1.2) as to first quest
for monochromatic sequences coloured by 0 or for the 1-coloured subsequences.

The asymmetry has been pointed out also in Urban (2000), where the same
proof as the one we presented here is analysed, although in its simplified version
of determining subsequences of length 2. Whereas there is a similitude in the
programs for the simplified case, the asymmetry reported in Urban (2000) arises



in the process of normalisation by cut-elimination, which is the method used for
retrieving the computational content from classical proofs. Urban (2000) argues
that there exist distinct normal forms corresponding to one proof, since in the
process of cut-reduction, one has the freedom in which direction to propagate
the cuts, so which reductions to apply. Such a non-deterministic choice gives rise
to distinct programs, corresponding to the same proof. However, in the case of
double negation or A-Translation, we need to make this choice at the proof level,
because such transformations methods preserve the structure of the proof.

5 Conclusions and Future Work

We have presented in this paper a successful application of the refined A-
Translation to Stolzenberg’s Principle, which is a simplified version of the Infinite
Pigeon Hole Principle. We have pointed out that the computational content of
(IPH) is an important component of the algorithm hidden in the classical proof
Ramsey’s Theorem and the work reported here is but a first step.

(SP) can be generalised to the (IPH). The proof of the latter is by induction
over the number of colours, the step case using the same argument as (SP).
More precisely, one makes a case distinction on whether the colour r+ 1 appears
infinitely often and in case it does, the claim follows by SP Aux. In the other case,
we take the subsequence starting at the last occurrence of r + 1, say n/, which is
guaranteed to have r colours and thus gives us the monochromatic subsequence
by the (IH). We do this by taking a copy of the initial sequence, with the first
positions up to n’, replaced by the colour at n’ + 1, i.e, f := An. f(nUn'). Tt
would be interesting to see what is the increase in complexity of this program
and what causes it as the proof level. Clearly, one reason is the outer induction
on the number of colours.

On the other hand, one can choose to formulate the goal differently

YrIr3l |l =n A (Vm. Sm <n — sy < lp) A (Vm.m <n — fl, =r)

By this we would produce also the colour of the monochromatic sequence, which
is however of no relevance. We see this as a potential case study for the uniform
quantifiers presented in Berger (2005), which mark variables as computationally
irrelevant.

We are currently also comparing in a joint work with Trifon Trifonov the
current results for the A-Translation with those obtained by Dialectica.
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