
From X to π

Representing the Classical Sequent Calculus in theπ-calculus

Extended Abstract

Steffen van Bakel1, Luca Cardelli2, and Maria Grazia Vigliotti1

1: Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK
2: Microsoft Research Cambridge, 7 J J Thomson Avenue, Cambridge, CB3 0FB, UK
svb@doc.ic.ac.uk,luca@microsoft.com,mgv98@doc.ic.ac.uk

Abstract. We study theπ-calculus, enriched with pairing and non-blocking in-
put, and define a notion of type assignment that uses the type constructor→. We
encode the circuits of the calculusX into this variant ofπ, and show that all
reduction (cut-elimination) and assignable types are preserved. SinceX enjoys
the Curry-Howard isomorphism for Gentzen’s calculusLK , this implies that all
proofs inLK have a representation inπ.

Introduction

In this paper we present an encoding of proofs of Gentzen’s (implicative)LK [15] into
the π-calculus [26] that respectscut-elimination, and define a new notion of type as-
signment forπ so that processes will become witnesses for the provable formulae. The
encoding of classical logic intoπ-calculus is attained by using the intuition of the cal-
culusX , which gives a computational meaning toLK (a first version of this calculus
was proposed in [32, 34, 33]; the implicative fragment ofX was studied in [8]).

X enjoys the Curry-Howard property forLK ; it achieves the isomorphism by con-
structing witnesses, callednets, for derivable sequents. Nets inX have multiple named
inputs and multiple named outputs, that are collectively called connectors. Reduction in
X is expressed via a set of rewrite rules that representcut-elimination, eventually lead-
ing to renaming of connectors. It is well known thatcut-elimination inLK is not conflu-
ent, and, sinceX is Curry-Howard forLK , neither is reduction inX . These two features
–non-confluence and reduction as connection of nets via the exchange of names– lead
us to consider theπ-calculus as an alternative computational model forcut-elimination
and proofs inLK .

The relation between process calculi and classical logic isan interesting and very
promising area of research (similar attempts we made in the context of natural deduction
[24] and linear logic [10]). Our aim is to widen further the path to practical application
of classical logic in computation by providing an interpretation of classical logic into
process algebra, that fully exploits the non-determinism of both LK andπ.

The aim of this paper is to linkLK andπ viaX ; the main achievements are:

– an encoding ofX into π is defined, that preserves the operational semantics – to
achieve this result, reduction inπ is generalised;

– we define a non-standard notion of type assignment forπ (types do not contain
channel information) that encompasses implication;

– the encoding preserves assignable types, effectively showing that all proofs inLK

have a representation inπ – to representLK , π is enriched with pairing [2].

Classical sequents,X , and π

Thesequent calculusLK , introduced by Gentzen in [15], is a logical system in which the
rules only introduce connectives (but on either side of a sequent), in contrast tonatural
deduction(also introduced in [15]) which uses rules that introduce oreliminate con-
nectives in the logical formulae. Natural deduction normally derives statements with a
single conclusion, whereasLK allows for multiple conclusions, deriving sequents of the
form A1, . . . , An ⊢ B1, . . . , Bm, whereA1, . . . , An is to be understood asA1∧ . . .∧An

andB1, . . . , Bm is to be understood asB1∨ . . .∨Bm. The versionG3 of ImplicativeLK

has four rules:axiom, left introductionof the arrow,right introduction, andcut.

(Ax) :
Γ, A ⊢ A, ∆

(⇒L) :
Γ ⊢ A, ∆ Γ, B ⊢ ∆

Γ, A ⇒B ⊢ ∆

(⇒R) :
Γ, A ⊢ B, ∆

Γ ⊢ A ⇒B, ∆
(cut) :

Γ ⊢ A, ∆ Γ, A ⊢ ∆

Γ ⊢ ∆

SinceLK has only introduction rules, the only way to eliminate a connective is to
eliminate the whole formula in which it appears via an application of the(cut)-rule.
Gentzen defined a procedure that eliminates all applications of the(cut)-rule from a
proof of a sequent, generating a proof innormal formof the same sequent, that is,
without a cut. This procedure is defined via local reductionsof the proof-tree, which
has –with some discrepancies– the flavour of term rewriting [25] or the evaluation of
explicit substitutions [14, 1].

The calculusX achieves a Curry-Howard isomorphism, first discovered for Com-
binatory Logic [13], for the proofs inLK by constructingwitnesses(callednets) for
derivable sequents, without any notion of application. In establishing the isomorphism
for X , similar to calculi likeλµ [28] andλµµ̃ [12], Roman names are attached to for-
mulae in the left context, and Greek names for those on the right, and syntactic structure
is associated to the rules. These correspond tovariablesandco-variables, respectively,
in [35], or, alternatively, to Parigot’sλ- andµ-variables [28] (see also [12]).

Gentzen’s proof reductions by cut-elimination become the fundamental principle of
computation inX . Cuts in proofs are witnessed byPα̂ † x̂Q (called thecut of P andQ
via α andx), and the reduction rules specify how to remove them. Sincecut-elimination
in LK is not confluent, neither is reduction inX ; for example, whenP does not contain
α andQ does not containx, reducingPα̂ † x̂Q can lead to bothP andQ. Reduction
in X boils down torenaming: during reduction nets are re-organised, creating nets that
are similar, but with different connector names inside.

X ’s notion of multiple inputs and outputs is also found inπ, and was the original
inspiration for our research. The aim of this work is to find a simple and intuitive en-
coding ofLK -proofs inπ, and to devise a notion of type assignment forπ so that the
types inX are preserved inπ. In this precise sense we view processes inπ as giving

an alternative computational meaning to proofs in classical logic. Clearly this implies
that we had to define a notion of type assignment that uses the type constructor→ for
π; we managed this without having to linearise the calculus asdone in [24], and this is
one of the contributions of this paper.

Although the calculiX andπ are, of course, essentially different, the similarities
go beyond the correspondence of inputs and output between nets inX and processes in
π. Like X , π is application free, and substitution only takes place onchannel names,
similar to the renaming feature ofX , socut-elimination is similar to synchronisation.

Related work

In the past, say before Herbelin’s PhD [20] and Urban’s PhD [32], the study of the rela-
tion between computation, programming languages and logichas concentrated mainly
on natural deduction systems(of course, exceptions exist [16, 18]). In fact, these carry
the predicate ‘natural’ deservedly; in comparison with, for example,sequent style sys-
tems, natural deduction systems are easy to understand and reason about. This holds
most strongly in the context ofnon-classicallogics; for example, the Curry-Howard re-
lation betweenIntuitionistic Logicand theLambda Calculus(with types) is well stud-
ied and understood, and has resulted in a vast and well-investigated area of research,
resulting in, amongst others, functional programming languages and much further to
systemF [17] and the Calculus of Constructions [11]. Abramsky [3, 5]has studied cor-
respondence between multiplicative linear logic and processes, and later moved to the
context of game semantics [4]. In fact, all the calculi areapplicativein that abstrac-
tion and application (corresponding to arrow introductionand elimination) are the main
constructors in the syntax. The link between Classical Logic and continuations and
control was first established for theλC-Calculus [19] (whereC stands for Felleisen’sC
operator).

The introduction-elimination approach is easy to understand and convenient to use,
but is also rather restrictive: for example, the handling ofnegation is not as nicely bal-
anced, as is the treatment of contradiction (normally represented by the type⊥; for a
detailed discussion, see [30]). This imbalance can be observed in Parigot’sλµ-calculus
[28], an approach for representing classical proofs via a natural deduction system in
which there is one main conclusion that is being manipulatedand possibly several al-
ternative ones. Adding⊥ as pseudo-type (only negation, orA→⊥, is expressed;⊥→A
is not a type), theλµ-calculus corresponds tominimal classical logic[6].

Herbelin has studied the calculusλµµ̃ as a non-applicative extension ofλµ, which
gives a fine-grained account of manipulation of sequents [20, 12, 21]. The relation be-
tween call-by-name and call-by-value in the fragment ofLK with negation and conjunc-
tion is studied in the Dual Calculus [35]; as in calculi likeλµ andλµµ̃, that calculus
considers a logic withactiveformulae, so these calculi do not achieve a direct Curry-
Howard isomorphism withLK . The relation betweenX andλµµ̃ has been investigated
in [7, 8]; there it was shown that it is straightforward to mapλµµ̃-terms intoX whilst
preserving reduction, but that it is not possible to do the converse.

Theπ-calculus is equipped with a rich type theory [29]: from the basic type system
for counting the arity of channels to sophisticated linear types in [24], which studies
a relation between Call-by-Valueλµ and a linearπ-calculus. Linearisation is used to

be able to achieve processes that are functions, by allowingoutput over one channel
name only. Moreover, the encoding presented in [24] is type dependent, in that, for
each term, there are differentπ-processes assigned, depending on the original type; this
makes the encoding quite cumbersome. By contrast, our encoding is very simple and
intuitive by interpreting the cut operationally as a communication. The idea of giving
a computational interpretation of the cut as a communication primitive is also used by
[5] and [10]. In both papers, only a small fragment of Linear Logic was considered, and
the encoding between proofs andπ-calculus was left rather implicit.

The type system presented in this paper differs quite drastically from the standard
type system presented in [29]: here input and output channels essentially have the type
of the data they are sending or receiving, and are separated by the type system by putting
all inputs with their types on the left of the sequent, and theoutputs on the right. In our
paper, types give a logical view to theπ-calculus rather than an abstract specification
on how channels should behave.

1 The calculusX

In this section we will give the definition of theX -calculus which has been proven
to be a fine-grained implementation model for various well-known calculi [7], like the
λ-calculus [9],λµ [28] andλµµ̃ [21]. As discussed in the introduction, the calculus
X is inspired by the sequent calculus; the system we will consider in this section has
only implication, no structural rules and a changed axiom.X features two separate
categories of ‘connectors’,plugsandsockets, that act as input and output channels, and
is defined without any notion of substitution or application.

Definition 1 (Syntax). The nets of theX -calculus are defined by the following syntax,
wherex, y range over the infinite set ofsockets, α, β over the infinite set ofplugs.

P, Q ::= 〈x·α〉 | ŷPβ̂·α | Pβ̂ [y] x̂Q | Pα̂ † x̂Q

capsule export import cut

The ·̂ symbolises that the socket or plug underneath is bound in thenet. The notion of
bound and free connector (free socketsfs(P), and free plugsfp(P), respectively, and
fc(P) = fs(P) ∪ fp(P)) is defined as usual, and we will identify nets that only differ in
the names of bound connectors, as usual. We accept Barendregt’s convention on names,
which states that no name can occur both freeandbound in a context;α-conversion is
supposed to take place silently, whenever necessary.

The calculus, defined by the reduction rules below, explainsin detail how cuts are
propagated through nets to be eventually evaluated at the level of capsules, where the
renaming takes place. Reduction is defined by specifying both the interaction between
well-connected basic syntactic structures, and how to dealwith propagating active
nodes to points in the net where they can interact.

It is important to know when a connector is introduced, i.e. is connectable, i.e. is
exposed and unique; this will play an important role in the reduction rules. Informally,
a netP introduces a socketx if P is constructed from sub-nets which do not containx
as free socket, sox only occurs at the “top level.” This means thatP is either an import

with a middle connector[x] or a capsule with left partx. Similarly, a net introduces a
plug α if it is an export that “creates”α or a capsule with right partα.

Definition 2. (P introducesx) : Either P = Qβ̂ [x] ŷR with x 6∈ fs(Q, R), or P =
〈x·α〉.

(P introducesα) : EitherP = x̂Qβ̂·α andα 6∈ fp(Q), or P = 〈x·α〉.

The principal reduction rules are:

Definition 3 (Logical rules). Let α andx be introduced in, respectively, the left- and
right-hand side of the main cuts below.

(cap) : 〈y·α〉α̂ † x̂〈x·β〉 →X 〈y·β〉

(exp) : (ŷPβ̂·α)α̂ † x̂〈x·γ〉 →X ŷPβ̂·γ

(imp) : 〈y·α〉α̂ † x̂(Qβ̂ [x] ẑR) →X Qβ̂ [y] ẑR

(exp-imp) : (ŷPβ̂·α)α̂ † x̂(Qγ̂ [x] ẑR) →X

{
Qγ̂ † ŷ(Pβ̂ † ẑR)

(Qγ̂ † ŷP) β̂ † ẑR

The first three logical rules above specify a renaming procedure, whereas the last
rule specifies the basic computational step: it links the export of a function, available on
the plugα, to an adjacent import via the socketx. The effect of the reduction will be that
the exported function is placed in-between the two sub-terms of the import, acting as
interface. Notice that two cuts are created in the result, that can be grouped in two ways;
these alternatives do not necessarily share all normal forms (reduction is non-confluent,
so normal forms are not unique).

In X there are in fact two kinds of reduction, the one above, and the one which
defines how to reduce a cut when one of its sub-nets does not introduce a connector
mentioned in the cut. This will involve moving the cut inwards, towards a position
where the connectoris introduced. In case both connectors are not introduced, this
search can start in either direction, indicated by the tilting of the dagger.

Definition 4 (Active cuts). The syntax is extended with twoflaggedor activecuts:

P ::= . . . | P1α̂ † x̂P2 | P1α̂ † x̂P2

We define two cut-activation rules.

(a†) : Pα̂ † x̂Q →X Pα̂ † x̂Q if P does not introduceα
(†a) : Pα̂ † x̂Q →X Pα̂ † x̂Q if Q does not introducex

The next rules define how to move an activated dagger inwards.

Definition 5 (Propagation rules). Left propagation:

(d†) : 〈y·α〉α̂ † x̂P →X 〈y·α〉α̂ † x̂P

(cap†) : 〈y·β〉α̂ † x̂P →X 〈y·β〉 β 6= α

(exp-outs†) : (ŷQβ̂·α)α̂ † x̂P →X (ŷ(Qα̂ † x̂P) β̂·γ)γ̂ † x̂P γ fresh
(exp-ins†) : (ŷQβ̂·γ)α̂ † x̂P →X ŷ(Qα̂ † x̂P) β̂·γ γ 6= α

(imp†) : (Qβ̂ [z] ŷR)α̂ † x̂P →X (Qα̂ † x̂P) β̂ [z] ŷ(Rα̂ † x̂P)

(cut†) : (Qβ̂ † ŷR)α̂ † x̂P →X (Qα̂ † x̂P) β̂ † ŷ(Rα̂ † x̂P)

Right propagation:

(†d) : Pα̂ † x̂〈x·β〉 →X Pα̂ † x̂〈x·β〉
(†cap) : Pα̂ † x̂〈y·β〉 →X 〈y·β〉 y 6= x

(†exp) : Pα̂ † x̂(ŷQβ̂·γ) →X ŷ(Pα̂ † x̂Q) β̂·γ

(†imp-outs) : Pα̂ † x̂(Qβ̂ [x] ŷR) →X

Pα̂ † ẑ((Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R)), z fresh
(†imp-ins) : Pα̂ † x̂(Qβ̂ [z] ŷR) →X (Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R) z 6= x

(†cut) : Pα̂ † x̂(Qβ̂ † ŷR) →X (Pα̂ † x̂Q) β̂ † ŷ(Pα̂ † x̂R)

We write →X for the (reflexive, transitive, compatible) reduction relation generated
by the logical, propagation and activation rules.

The reduction→X is not confluent; confluent sub-systems are defined in [8].

Summarising, reduction brings all cuts down to logical cuts where both connectors sin-
gle and introduced, or elimination cuts that are cutting towards a capsule that does not
contain the relevant connector. Cuts towards connectors occurring in capsules lead to
renaming (Pα̂ † x̂〈x·β〉→X P[β/α] and 〈z·α〉α̂ † x̂P →X P[z/x]), and towards non-
occurring connectors leads to elimination (Pα̂ † x̂〈z·β〉→X 〈z·β〉 and〈z·β〉α̂ † x̂P→X

〈z·β〉).

2 Typing for X : from LK to X

X offers a natural presentation of the classical propositional calculus with implication,
and can be seen as a variant of systemLK .

We first define types and contexts.

Definition 6 (Types and Contexts). 1. The set of types is defined by the grammar:
A, B ::= ϕ | A→B, whereϕ is a basic type of which there are infinitely many.

2. A context of socketsΓ is a finite set ofstatementsx:A, such that thesubjectof
the statements (x) are distinct. We writeΓ1, Γ2 to mean the union ofΓ1 andΓ2,
providedΓ1 andΓ2 are compatible (ifΓ1 containsx:A1 andΓ2 containsx:A2 then
A1 = A2), and writeΓ, x:A for Γ, {x:A}.

3. Contexts ofplugs∆ are defined in a similar way.

The notion of type assignment onX that we present in this section is the basic
implicative system for Classical Logic (Gentzen’s systemLK) as described above. The
Curry-Howard property is easily achieved by erasing all term-information. When build-
ing witnesses for proofs, propositions receive names; those that appear in the left part of
a sequent receive names likex, y, z, etc, and those that appear in the right part of a se-
quent receive names likeα, β, γ, etc. When in applying a rule a formula disappears from
the sequent, the corresponding connector will get bound in the net that is constructed,
and when a formula gets created, a new connector will be associated to it.

Definition 7 (Typing for X). 1. Type judgementsare expressed via a ternary relation
P ··· Γ ⊢X ∆, whereΓ is a context ofsocketsand∆ is a context ofplugs, andP is a
net. We say thatP is thewitnessof this judgement.

2. Type assignment forX is defined by the following rules:

(cap) : 〈y·α〉 ··· Γ, y:A ⊢X α:A, ∆
(imp) :

P ··· Γ ⊢X α:A, ∆ Q ··· Γ, x:B ⊢X ∆

Pα̂ [y] x̂Q ··· Γ, y:A→B ⊢X ∆

(exp) :
P ··· Γ, x:A ⊢X α:B, ∆

x̂Pα̂·β ··· Γ ⊢X β:A→B, ∆
(cut) :

P ··· Γ ⊢X α:A, ∆ Q ··· Γ, x:A ⊢X ∆

Pα̂ † x̂Q ··· Γ ⊢X ∆

Notice thatΓ and∆ carry the types of the free connectors inP, as unordered sets.
There is no notion of type forP itself, instead the derivable statement shows howP is
connectable.

Example 8 (A proof of Peirce’s Law).The following is a proof for Peirce’s Law inLK :

(Ax)
A ⊢ A, B

(⇒R)
⊢ A ⇒B, A

(Ax)
A ⊢ A

(⇒L)
(A ⇒B)⇒A ⊢ A

(⇒R)
⊢ ((A ⇒B)⇒A)⇒A

Inhabiting this proof inX gives the derivation:

(cap)
〈y·δ〉 ··· y:A ⊢X δ:A, η:B

(exp)
ŷ〈y·δ〉η̂ ·α ··· ⊢X α:A→B, δ:A

(cap)
〈w·δ〉 ··· w:A ⊢X δ:A

(imp)
(ŷ〈y·δ〉η̂ ·α)α̂ [z] ŵ〈w·δ〉 ··· z:(A→B)→A ⊢X δ:A

(exp)
ẑ((ŷ〈y·δ〉η̂ ·α)α̂ [z] ŵ〈w·δ〉) δ̂·γ ··· ⊢X γ:((A→B)→A)→A

The following soundness result is proven in [8]:

Theorem 9 (Witness reduction). If P ··· Γ ⊢X ∆, andP→X Q, thenQ ··· Γ ⊢X ∆.

3 The asynchronousπ-calculus with pairing and nesting

The notion of asynchronousπ-calculus that we consider in this paper is different from
other systems studied in the literature [22]. One reason forthis change lies directly in
the calculus that is going to be interpreted,X : since we are going to model sending
and receiving pairs of names as interfaces for functions, weadd pairing, inspired by
[2]. The other reason is that we want to achieve a preservation of full cut-elimination;
to this aim, we need to usenon-blockinginputs, by adding the reduction rule(nesting)
(see Definition 12). Without this last addition, we cannot model full cut-elimination;
this was, for example, also the case with the interpretations defined by Milner [26],
Sangiorgi [29], Hondaet al [24], and Thielecke [31], where reduction in the original
calculus had to be restricted in order to get a completeness result. Notice that this last
extension ofπ only relates to cut-elimination: that all proofs inLK are representable in
π is not affected by this, nor is the preservation of types.

To ease the definition of the interpretation function of circuits in X to processes
in theπ-calculus, we deviate slightly from the normal practice, and write either Greek
charactersα, β, υ, . . . or Roman charactersx, y, z, . . . for channel names; we usen for
either a Greek or a Roman name, and ‘◦’ for the generic variable. We also introduce
a structure over names, such that not only names but also pairs of names can be sent
(but not a pair of pairs). In this way a channel may pass along either a name or a pair
of names. We also introduce the let-construct to deal with inputs of pairs of names that
get distributed over the continuation.

Definition 10. Channel names and data are defined by:

a, b, c, d ::= x | α names p ::= a | a, b data

Notice that pairing isnot recursive. Processes are defined by:

P, Q ::= 0 Nil
| P | Q Composition
| ! P Replication
| (νa) P Restriction

| a(x). P Input
| a〈p〉 (Asynchronous) Output
| let x, y = z in P Let construct

We abbreviatea(x). let y, z = x in P by a(y, z). P, and(νm) (νn) P by (νm, n) P.
A (process) context is simply a term with a hole[·].

Definition 11 (Congruence). The structural congruence is the smallest equivalence
relation closed under contexts defined by the following rules:

P | 0 ≡ P

P | Q ≡ Q | P
(P |Q) | R ≡ P | (Q | R)

(νn) 0 ≡ 0

(νm) (νn) P ≡ (νn) (νm) P

(νn) (P | Q) ≡ P | (νn) Q if n 6∈ fn(P)
! P ≡ P | ! P

let x, y = a, b in R ≡ R[a/x, b/y]

Definition 12. 1. Thereduction relationover the processes of theπ-calculus is de-
fined by following (elementary) rules:

(synchronisation) : a〈b〉. P | a(x). Q →π P | Q[b/x]
(binding) : P →π P′ ⇒ (νn) P →π (νn) P′

(composition) : P →π P′ ⇒ P | Q →π P′ | Q

(nesting) : P →π Q ⇒ n(x). P →π n(x). Q
(congruence) : P ≡ Q & Q →π Q′ & Q′ ≡ P′ ⇒ P →π P′

2. We write→∗
π for the reflexive and transitive closure of→π.

3. We writeP ↓ n if P ≡ (νb1 . . . bm) (n〈p〉 |Q) for someQ, wheren 6= b1 . . . bm.
4. We writeQ ⇓ n if there existsP such thatQ →∗

π P andP ↓ n.

Notice that we no longer consider input inπ to beblocking; we are aware that this is a
considerable breach with normal practice, but this is strongly needed in our complete-
ness result (Theorem 20); without it, we can at most show a partial result.

Moreover, notice that

a〈 b, c 〉 | a(x, y). Q →∗
π Q[b/x, c/y]

Definition 13 ([23]). Barbed contextual simulationis the largest relation�π such that
P �π Q implies:

– for each namen, if P ↓ n thenQ ⇓ n;
– for any contextC, if C[P] →π P′, then for someQ′, C[Q] →∗

π Q′ andP′ �π Q′.

4 Type assignment

In this section, we introduce a notion of type assignment forprocesses inπ that de-
scribes the ‘input-output interface’ of a process. This notion is novel in that it assigns
to channels the type of the input or output that is sent over the channel; in that it differs
from normal notions, that would state:

a〈b〉 ··· Γ, b:A ⊢ a:ch(A), ∆

In order to be able to encodeLK , types in our system will not be decorated with channel
information.

As for the notion of type assignment onX terms, in the typing judgements we
always write channels used for input on the left and channelsused for output on the
right; this implies that, if a channel is both used to send andto receive, it will appear on
both sides.

Definition 14 (Type assignment). The types and contexts we consider for theπ-cal-
culus are defined like those of Definition 6, generalised to names. Type assignment for
π-calculus is defined by the following sequent system:

(0) : 0 ··· Γ ⊢π ∆

(!) :
P ··· Γ ⊢π ∆

! P ··· Γ ⊢π ∆

(ν) :
P ··· Γ, a:A ⊢π a:A, ∆

(νa) P ··· Γ ⊢π ∆

(|) :
P ··· Γ ⊢π ∆ Q ··· Γ ⊢π ∆

P | Q ··· Γ ⊢π ∆

(in) :
P ··· Γ, x:A ⊢π x:A.∆

a(x). P ··· Γ, a:A ⊢π ∆

(out) : a〈b〉 ··· Γ, b:A ⊢π a:A, b:A, ∆

(pair-out) : a〈 b, c 〉 ··· Γ, b:A ⊢π a:A→B, c:B, ∆

(let) :
P ··· Γ, y:B ⊢π x:A, ∆

let x, y = z in P ··· Γ, z:A→B ⊢π ∆

Notice that it is possible to derivea〈a〉 ··· ⊢π a:A, although sending a channel name
over that channel itself is never produced by our encoding, nor by the reduction of
processes created by the encoding.

Example 15.We can derive

P ··· Γ, y:B ⊢π x:A, ∆

let x, y = z in P ··· Γ, z:A→B ⊢π ∆

a(z). let x, y = z in P ··· Γ, a:A→B ⊢π ∆

so the following rule is derivable:

(pair-in) :
P ··· Γ, y:B ⊢π x:A, ∆

a(x, y). P ··· Γ, a:A→B ⊢π ∆

Notice that the rule(pair-out) does not directly correspond to the logical rule(⇒R),
as that(pair-in) does not directly correspond to(⇒L); this is natural, however, seen that
the encoding does not map rules to rules, but proofs to type derivations. This apparent
discrepancy is solved by Theorem 21.

In fact, this notion of type assignment does not (directly) relate back toLK . For
example, rules(|) and(!) do not change the contexts, so do not correspond to any rule
in the logic, not even to aλµ-style activation step.

Notice that the casesP ··· Γ ⊢π x:A, ∆ andP ··· Γ, x:A ⊢π ∆ can be generalised by
weakening to fit the lemma.

We now come to the main soundness result for our notion of typeassignment forπ.

Theorem 16 (Witness reduction). If P ··· Γ ⊢π ∆ andP →π Q, thenQ ··· Γ ⊢π ∆.

5 Interpreting X into π

In this section, we define an encoding from nets inX onto processes inπ.
The encoding defined below is based on the intuition as formulated in [8]: the cut

Pα̂ † x̂Q expresses the intention to connect allαs in P andxs in Q, and reduction will
realise this by either connecting allαs to all xs, or all xs to all αs. Translated intoπ,
this results in seeingP as trying to send at least as many times overα asQ is willing
to receive overx, andQ trying to receive at least as many times overx asP is ready to
send overα.

As discussed above, when creating a witness for(⇒R) (the netx̂Pα̂·β, called an
export), the exported interface ofP is the functionality of ‘receiving onx, sending on
α’, which is made available onβ. When encoding this behaviour inπ, we are faced with
a problem. It is clearly not sufficient to limit communication to the exchange of single
names, since then we would have to separately sendx and α, breaking perhaps the
exported functionality, and certainly disabling the possibility of assigning arrow types.
We overcome this problem by sending out a pair of names, as ina〈 v, δ 〉. Similarly,
when interpreting a witness for(⇒L) (the netPα̂ [x] ŷQ, called animport), the circuit
that is to be connected tox is ideally a function whose input will be connected toα,
and its output toy. This means that we need to receive a pair of names overx, as in
x(v, δ). P.

A cut Pα̂ † x̂Q in X expresses two nets that need to be connected viaα andx. If we
modelP andQ in π, then we obtain one process sending onα, and one receiving onx,
and we need to link these viaα(·). x〈·〉. Since each output onα in P takes place only
once, andQ might want to receive in more than onex, we need to replicate the sending;
likewise, since each inputx in Q takes place only once, andP might have more than
one send operation onα, Q needs to be replicated.

We added pairing to theπ-calculus in order to be able to deal with arrow types. No-
tice that using the polyadicπ-calculus would not be sufficient: since we would like the
interpretation to respect reduction, in particular we needto be able to reduce the inter-
pretation of(x̂Pα̂·β) β̂ † ẑ〈z·γ〉 to that ofx̂Pα̂·γ (whenβ not free inP). So, choosing
to encode the export ofx and α over β as β〈x, α〉 would force the interpretation of
〈z·γ〉 to receive a pair of names. But requiring for a capsule to always deal with pairs
of names is too restrictive, it is desirable to allow capsules to deal with single names as
well. So, rather than moving towards the polyadicπ-calculus, we opt for letting com-
munication send a single item, which is either a name or a pairof names. This implies
that a process sending a pair can also successfully communicate with a process not
explicitly demanding to receive a pair.

Definition 17 (Notation). In the definition below, we use ‘◦’ for the generic variable,
to separate plugs and sockets (and their interpretation) from the ‘internal’ variables of
π. Also, although the departure point is to view Greek names for outputs and Roman
names forinputs, by the very nature of theπ-calculus (it is only possible to commu-
nicate using thesamechannel for in and output), in the implementation we are forced
to use Greek names also for inputs, and Roman names for outputs; in fact, we need to
explicitly convert ‘an output sent onα is to be received as input onx’ via ‘ α(◦)x〈◦〉’
(so α is now also an input, andx also an output channel), which for convenience is
abbreviated intoα=x.

Definition 18. The interpretation of circuits is defined by:

〈x·α〉π = x(◦). α〈◦〉

ŷQβ̂·α π = (νy, β) (Q π | α〈 y, β 〉)
Pα̂ [x] ŷQ π = x(v, d). (να) (! P π | ! α=v) | (νy) (! d=y | ! Q π)

Pα̂ † x̂Q π = Pα̂ † x̂Q π = Pα̂ † x̂Q π = (να, x) (! P π | ! α=x | ! Q π)

Notice that the interpretation of the inactive cut is the same as that of activated cuts.
This implies that we are, in fact, also interpreting a variant of X withoutactivated cuts,
allowing arbitrary movement of cuts over cuts, but with the same set of rewrite rules.
This is very different from Gentzen’s original definition – he in fact does not define a
cut-over-cut step, and uses innermost reduction for hisHauptsatzresult – and different
from Urban’s definition – allowing onlyactivatedcuts to propagate is crucial for his
Strong Normalisation result. Also, one could argue that then the reduction rules no
longer present a system ofcut-elimination, since now rule(†cut) reads:

Pα̂ † x̂(Qβ̂ † ŷR) →X (Pα̂ † x̂Q) β̂ † ŷ(Pα̂ † x̂R)

in which it is doubtful that a cut has been eliminated; it is also easy to show that this
creates loops in the reduction system. However, this rewriting is still sound with respect
to typeability. Here we can abstract from these aspects, since we only aim to prove a
simulationresult, for which the encoding above will be shown adequate.

Example 19.The encoding of the witness of Peirce’s law becomes:

ẑ((ŷ〈y·δ〉η̂ ·α)α̂ [z] ŵ〈w·δ〉)δ̂·γ π =
(νz, δ) (z(v, d). (να) ! ((νy, η) (y(◦). δ〈◦〉 | α〈 y, η 〉) | α=v) |

(νw) ! (d=w |w(◦). δ〈◦〉) | γ〈 z, δ 〉)

That this process is a witness of((A→B)→A)→A is a straightforward application of
Theorem 21 below.

The correctness result for the encoding essentially statesthat the image of the en-
coding inπ contains some extra behaviour that can be disregarded.

Theorem 20. If P→X P′, then for someQ, P π →∗
π Q and P′

π �π Q.

This result might appear weak at first glance, but it would be amistake to dismiss
the encoding on such an observation.

Our result states that the encoding ofX into π contains more behaviour than the
original term. In part, the extra behaviour is due to replicated processes, which can be
easily discharged; but, more importantly,π has no notion oferasureof processes: the
cut Pα̂ † x̂Q, with α not in P andx not in Q, in X erases eitherP or Q, but Pα̂ † x̂Q π

then runs toP π | Q π. The result presented in [24] is stronger, but only achievedfor
Call-by-Valueλµ, and at the price of a very intricate translation that depends on types.
Also P π essentially contains all normal forms ofP in parallel; sinceλµ is confluent,
there is only one normal form, so the problem disappears. Moreover, restricting to either
(confluent) call-by-name or call-by-value restrictions, also then the problem disappears.

The following theorem states one of the main results of this paper: it shows that the
encoding preserves types.

Theorem 21. If P ··· Γ ⊢X ∆, then P π ··· Γ ⊢π ∆.

Notice that this theorem links proofs inLK to type derivations in⊢π

6 The Lambda Calculus

We assume the reader to be familiar with theλ-calculus; we just repeat the definition
of (simple) type assignment.

Definition 22 (Type assignment for theλ-calculus).

(Ax) :
Γ, x:A ⊢λ x : A

(→I) :
Γ, x:A ⊢λ M : B

Γ ⊢λ λx.M : A→B

(→E) :
Γ ⊢λ M : A→B Γ ⊢λ N : A

Γ ⊢λ MN : B

The following was already defined in [8]:

Definition 23 (Interpretation of the λ-calculus inX).

⌈⌈x⌋⌋α
λ =

∆

〈x·α〉

⌈⌈λx.M⌋⌋α
λ =

∆

x̂⌈⌈M⌋⌋β
λ
β̂·α β fresh

⌈⌈MN⌋⌋α
λ =

∆

⌈⌈M⌋⌋γ
λ
γ̂ † x̂(⌈⌈N⌋⌋β

λ
β̂ [x] ŷ〈y·α〉) γ, β, x, y fresh

Observe that every sub-net of⌈⌈M⌋⌋α
λ has exactly one free plug, and that this is precisely

α. Moreover, notice that, in theλ-calculus, the output (i.e. result) is anonymous; where
an operand ‘moves’ to carries a name via a variable, but whereit comes from is not
mentioned, since it is implicit. Since inX , a net is allowed to return a result in more
than one way, in order to be able to connect outputs to inputs we have to name the
outputs; this forces a name on the output of an interpretedλ-term M as well, carried
in the sub-script of⌈⌈M⌋⌋α

λ; this nameα is also the name of the current continuation,
i.e. the name of the hole in the context in whichM occurs.

Combining the interpretation ofλ intoX andX into π, we get yet another encoding
of theλ-calculus intoπ [27, 26], one that preserves assignable simple types; as usual,
the interpretation is parametric over a name.

Definition 24 (Interpretation of the λ-calculus in π via X). The mapping⌈⌈·⌋⌋·
π

:

Λ→π is defined by:⌈⌈M⌋⌋α
π = ⌈⌈M⌋⌋α

λ
π

Since in [8] it is shown that the interpretation⌈⌈·⌋⌋·
λ preserves both reduction and

types, the following result is immediate:

Corollary 25 (Simulation of the Lambda Calculus).

1. If M →β N then⌈⌈M⌋⌋γ
π

π� ⌈⌈N⌋⌋γ
π.

2. If Γ ⊢λ M : A, then⌈⌈M⌋⌋α
π
··· Γ ⊢π α:A.

Conclusion

We studied how to give the computational meaning to classical proofs via theπ-calculus.
Our results have been achieved in two steps: (1) we have encodedX into π enriched
with pairing and non-blocking input, and showed that the encoding preserves interest-
ing semantic properties; (2) we have defined a novel and ‘unusual’ type system forπ
and proved that types are preserved by the encoding.

The caveat of the paper was to find the right intuition to reflect the computational
meaning ofcut-elimination in π. Essentially we have interpreted the input inπ as
‘witness’ for the formulae on the left-hand side of the turnstyle in LK , and outputs as
‘witnesses’ for the right-hand side. Arrow-right inLK corresponds to an output channel
that sends a pair of names, while arrow-left corresponds to achannel that inputs a pair
of names (via the let constructor). Thecut-elimination procedure is then interpreted as
a forwarder that connects an input and an output via private channels that have the same
type. Essentially, if we take the view that input are witnesses for fomulae on the left-
hand side of the turnstyle inLK and output are witnesses for fomulae on the right-hand
side of the turnstye inLK then the cut eliminates the same formulue on the right and
on the left of the turnstyle. Thus the representation of a cutin π has to guarantee that
the input’s and the output’s witness of formulae on the rightand left-hand side of the
turnstyle can communicate. This is achieved by using the concept of forwarder, that
connects two processes with different inputs and outputs.

The work that naturally compares with ours is [24], where theencoding ofCBV-λµ
is presented. In that paper, full abstraction is proved, butfor natural deduction rather

than for the sequent calculus as treated in this paper. In order to achieve the full abstrac-
tion result, the authors have to introduce a notion of typed equivalence of Call-by-Value
λµ. By contrast, we have tried to give a simple, intuitive compositional encoding ofLK

in π and we leave for future work to consider a restriction ofπ in order to make our
result stronger.X is a calculus without application and substitution that is much easier
to interpret inπ; notice that we needed no continuation-style encoding to achieve our
results.

In [10] an intuive relation between fragments of linear logic andπ-calculus was
studied; the results there do not compare with ours. The notion of correctness presented
in that paper is not between the logical rules andπ, but betweenπ and the ‘cut algebra’
which is essentially a dialect ofπ. Note also that they encode the linear logic as opposed
to the implicative fragment of Classical Logic. In other work [3], the relationship with
linear logic and game semantics is studied. Both linear logic and game semantics are
outside the scope of this paper, yet we leave for future work the study of the relation of
linearX (with explicit weakening and contraction) [36], and relatethat with both game
semantics andπ without replication.

One of the main goals we aimed for with our interpretation was: if α does not oc-
cur free in P, and x does not occur free inQ, then both Pα̂ † x̂Q π →π P π and
Pα̂ † x̂Q π →π Q π. However, we have not achieved this; we can at most show that
Pα̂ † x̂Q π reduces to a process that containsP π | Q π. It is as yet not clear what this
say about eitherX , or LK , or π, or simply about the encoding. The problem is linked
to the fact thatπ does not have an automaticcancellation: since communication is
based on the exchange of channel names, processes that do notcommunicate with each
other just ‘sit next to each other’. InX , a process that wants to be ‘heard’, but is not
‘listened’ to, disappears; this corresponds to a proof contracting to a proof, not to two
non-connected proofs for the same sequent. But, when movingto linear X , or ∗X ,
studied in [36], this all changes. Since there reduction cangenerate non-connected nets,
it seems promising to explore an encoding of∗X in π.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions.JFP, 1(4), 1991.
2. M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. In4th

CCCS, ACM Press, 1997.
3. S. Abramsky. Computational interpretations of linear logic. TCS, 111(1&2), 1993.
4. S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative linear logic.

JSL, 59(2), 1994.
5. S. Abramsky. Proofs as processes.TCS, 135(1), 1994.
6. Z. M. Ariola and H. Herbelin. Minimal classical logic and control operators. InICALP’03,

LNCS2719, 2003.
7. S. van Bakel, S. Lengrand, and P. Lescanne. The languageX : circuits, computations and

classical logic. InICTCS’05, LNCS3701, 2005.
8. S. van Bakel and P. Lescanne. Computation with classical sequents.MSCS, 2008.
9. H. Barendregt.The Lambda Calculus: its Syntax and Semantics. North-Holland, Amster-

dam, revised edition, 1984.
10. G. Bellin and P. J. Scott.On the pi-Calculus and Linear Logic. TCS, 135(1), 11–65, 1994.
11. T. Coquand and G. Huet. The Calculus of Constructions.IAC, 76(2,3), 1988.

12. P.-L. Curien and H. Herbelin. The Duality of Computation. In ICFP’00, ACM, 2000.
13. H.B. Curry and R. Feys.Combinatory Logic, volume 1. North-Holland, Amsterdam, 1958.
14. N. G. de Bruijn. A namefree lambda calculus with facilities for internal definition of expres-

sions and segments. TH-Report 78-WSK-03, University of Eindhoven, 1978.
15. G. Gentzen. Untersuchungen über das Logische Schliessen. Math. Zeitschrift, 39, 1935.
16. J.-Y. Girard. Linear logic.Theoretical Computer Science, 50:1–102, 1987.
17. J.Y. Girard. The System F of Variable Types, Fifteen years later.TCS, 45, 1986.
18. J.-Y. Girard. A new constrcutive logic: classical logic. Mathematical Structures in Computer

Science, 1(3):255–296, 1991.
19. T. Griffin. A formulae-as-types notion of control. InPOPL’90, ACM, 1990.
20. H. Herbelin. Séquents qu’on calcule : de l’interprétation du calcul des séquents comme

calcul deλ-termes et comme calcul de stratégies gagnantes. Thèse d’université, Paris 7,
1995.

21. H. Herbelin. C’est maintenant qu’on calcule: au cœur de la dualité. Mémoire de habilitation,
Université Paris 11, Décembre 2005.

22. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In
ECOOP’91, LNCS 512, 133–147, 1991.

23. K. Honda and N. Yoshida. On the Reduction-based Process Semantics.TCS, 151:437–486,
1995.

24. K. Honda, N. Yoshida, and M. Berger. Control in theπ-calculus. InCW’04, 2004.
25. J.W. Klop. Term Rewriting Systems. InHandbook of Logic in Computer Science, volume 2,

chapter 1, pages 1–116. Clarendon Press, 1992.
26. R. Milner. Function as processes. InMSCS, 2(2), 1992.
27. R. Milner. Communicating and Mobile Systems: theπ-calculus. Cambridge University

Press, 1999.
28. M. Parigot. An algorithmic interpretation of classicalnatural deduction. InLPAR’92, LNCS

624, 1992.
29. D. Sangiorgi and D. Walker.The Pi-Calculus. Cambridge University Press, 2003.
30. A.J. Summers. Extending lambda-mu with first class continuations. Manuscript, 2007.
31. H. Thielecke.Categorical Structure of Continuation Passing Style. PhD thesis, University

of Edinburgh, 1997.
32. C. Urban.Classical Logic and Computation. PhD thesis, University of Cambridge, 2000.
33. C Urban. Strong Normalisation for a Gentzen-like Cut-Elimination Procedure’. InTLCA’01,

LNCS2044, 2001.
34. C. Urban and G. M. Bierman. Strong normalisation of cut-elimination in classical logic.FI,

45(1,2), 2001.
35. P. Wadler. Call-by-Value is Dual to Call-by-Name. InICFP’03, ACM, 2003.
36. D.Žunić. Computing with Sequents and Diagrams in Classical Logic - Calculi∗X , dX , and

c©X . PhD thesis, ENS Lyon, 2007.

