From X to r
Representing the Classical Sequent Calculus in the-calculus

Extended Abstract

Steffen van Baké| Luca Cardelfi, and Maria Grazia Vigliotti

1: Department of Computing, Imperial College, 180 Queen’seGaondon SW7 2BZ, UK
2: Microsoft Research Cambridge, 7 J J Thomson Avenue, CagriCB3 0FB, UK
svb@loc. i c. ac. uk, | uca@ri crosoft.com nmgv98@loc. i c. ac. uk

Abstract. We study therr-calculus, enriched with pairing and non-blocking in-
put, and define a notion of type assignment that uses the tystractor—. We
encode the circuits of the calculug into this variant ofrr, and show that all
reduction (cut-elimination) and assignable types areguovesl. SinceY’ enjoys
the Curry-Howard isomorphism for Gentzen'’s calculus this implies that all
proofs inLK have a representation in.

Introduction

In this paper we present an encoding of proofs of Gentzempli¢ative)Lk [15] into
the rr-calculus [26] that respectaut-elimination, and define a new notion of type as-
signment forrr so that processes will become witnesses for the provabieulae. The
encoding of classical logic inta-calculus is attained by using the intuition of the cal-
culus X, which gives a computational meaningite (a first version of this calculus
was proposed in [32, 34, 33]; the implicative fragmenftbfvas studied in [8]).

X enjoys the Curry-Howard property fek; it achieves the isomorphism by con-
structing witnesses, calletkts for derivable sequents. Nets.iti have multiple named
inputs and multiple named outputs, that are collectivelledaonnectorsReduction in
X is expressed via a set of rewrite rules that represetelimination, eventually lead-
ing to renaming of connectors. It is well known tlati-elimination inLk is not conflu-
ent, and, sinc&’ is Curry-Howard fork , neither is reduction itk’. These two features
—non-confluence and reduction as connection of nets viaxttleaege of names— lead
us to consider ther-calculus as an alternative computational modectfgrelimination
and proofs in.K.

The relation between process calculi and classical loganisteresting and very
promising area of research (similar attempts we made inghtegt of natural deduction
[24] and linear logic [10]). Our aim is to widen further thetlp&o practical application
of classical logic in computation by providing an intertéin of classical logic into
process algebra, that fully exploits the non-deterministvoth Lk andr.

The aim of this paper is to linkk andst via X'; the main achievements are:

— an encoding ofY into 7t is defined, that preserves the operational semantics — to
achieve this result, reduction inis generalised;

— we define a non-standard notion of type assignmentifdtypes do not contain
channel information) that encompasses implication;

— the encoding preserves assignable types, effectivelyisigaivat all proofs inLk
have a representation in— to representk, 7t is enriched with pairing [2].

Classical sequentsX’, and 7

Thesequent calculusk, introduced by Gentzenin [15], is a logical system in whioh t
rules only introduce connectives (but on either side of aieat), in contrast toatural
deduction(also introduced in [15]) which uses rules that introducelaninate con-
nectives in the logical formulae. Natural deduction notyndérives statements with a
single conclusion, whereas allows for multiple conclusions, deriving sequents of the
formAy,..., A, - By,..., By, whereAy, ..., A, isto be understood as; A ... AA;,
andBy, ..., By, is to be understood &, V . .. VBy,. The versionGs of Implicative LK
has four rulesaxiom left introductionof the arrowyright introduction andcut

A (o1); [FA8 LBFS
X) : :
LLAFAA T,A=BtFA

T AFB,A THFAA T,AFA
(=R): :

i dt N (1Y)
I'HA=B,A TEA

SinceLK has only introduction rules, the only way to eliminate a cattive is to
eliminate the whole formula in which it appears via an amglan of the(cut)-rule.
Gentzen defined a procedure that eliminates all applicatidrihe (cut)-rule from a
proof of a sequent, generating a proofrinormal formof the same sequent, that is,
without a cut. This procedure is defined via local reductiohthe proof-tree, which
has —with some discrepancies— the flavour of term rewritk pr the evaluation of
explicit substitutions [14, 1].

The calculusY achieves a Curry-Howard isomorphism, first discovered fome&
binatory Logic [13], for the proofs ink by constructingwvitnessegcalled netg for
derivable sequents, without any notion of application.dtablishing the isomorphism
for X, similar to calculi likeAu [28] andAuji [12], Roman names are attached to for-
mulae in the left context, and Greek names for those on thé agd syntactic structure
is associated to the rules. These corresponéitiablesandco-variablesrespectively,
in [35], or, alternatively, to Parigot’d- andu-variables [28] (see also [12]).

Gentzen'’s proof reductions by cut-elimination become timelmental principle of
computation inY’. Cuts in proofs are witnessed B 1 XQ (called thecutof P andQ
via « andx), and the reduction rules specify how to remove them. Stn¢elimination
in LK is not confluent, neither is reduction it; for example, wherP does not contain
« andQ does not contain, reducingPa t XQ can lead to bottP and Q. Reduction
in & boils down torenaming during reduction nets are re-organised, creating nets tha
are similar, but with different connector names inside.

X'’s notion of multiple inputs and outputs is also foundrinand was the original
inspiration for our research. The aim of this work is to findrafge and intuitive en-
coding ofLK-proofs insr, and to devise a notion of type assignmentfoso that the
types inX’ are preserved imr. In this precise sense we view processes ias giving

an alternative computational meaning to proofs in classicac. Clearly this implies
that we had to define a notion of type assignment that usegpleeconstructor— for
7T; we managed this without having to linearise the calculudoa in [24], and this is
one of the contributions of this paper.

Although the calculiX’ and s are, of course, essentially different, the similarities
go beyond the correspondence of inputs and output betweeinnE and processes in
mt. Like X, 7t is application free, and substitution only takes placeclbannel names
similar to the renaming feature &f, socut-elimination is similar to synchronisation.

Related work

In the past, say before Herbelin’s PhD [20] and Urban’s PhI), [Bie study of the rela-
tion between computation, programming languages and lwgaconcentrated mainly
on natural deduction systen{ef course, exceptions exist [16, 18]). In fact, these carry
the predicateniatural deservedly; in comparison with, for exampequent style sys-
tems natural deduction systems are easy to understand anchrabsat. This holds
most strongly in the context afon-classicalogics; for example, the Curry-Howard re-
lation betweenntuitionistic Logicand theLambda Calculugwith types) is well stud-
ied and understood, and has resulted in a vast and welltigaésd area of research,
resulting in, amongst others, functional programming laages and much further to
systemF [17] and the Calculus of Constructions [11]. Abramsky [3n&} studied cor-
respondence between multiplicative linear logic and psees, and later moved to the
context of game semantics [4]. In fact, all the calculi applicativein that abstrac-
tion and application (corresponding to arrow introductimal elimination) are the main
constructors in the syntax. The link between Classical t@gid continuations and
control was first established for thg--Calculus [19] (wher& stands for Felleisen€
operator).

The introduction-elimination approach is easy to undestnd convenient to use,
but is also rather restrictive: for example, the handlingedation is not as nicely bal-
anced, as is the treatment of contradiction (hormally regmeed by the type ; for a
detailed discussion, see [30]). This imbalance can be wedén Parigot's\i-calculus
[28], an approach for representing classical proofs viatarahdeduction system in
which there is one main conclusion that is being manipulatedipossibly several al-
ternative ones. Adding. as pseudo-type (only negation,A¢ |, is expressed},. — A
is not a type), thél u-calculus corresponds tainimal classical logi¢6].

Herbelin has studied the calculdgji as a non-applicative extension df, which
gives a fine-grained account of manipulation of sequentsli2®1]. The relation be-
tween call-by-name and call-by-value in the fragmenttofvith negation and conjunc-
tion is studied in the Dual Calculus [35]; as in calculi likg and Apji, that calculus
considers a logic witlactiveformulae, so these calculi do not achieve a direct Curry-
Howard isomorphism withKk . The relation betwee” andAuji has been investigated
in [7, 8]; there it was shown that it is straightforward to mégji-terms intoX” whilst
preserving reduction, but that it is not possible to do theveose.

Therr-calculus is equipped with a rich type theory [29]: from theesiz type system
for counting the arity of channels to sophisticated linggues in [24], which studies
a relation between Call-by-Valuku and a linearr-calculus. Linearisation is used to

be able to achieve processes that are functions, by allowitygut over one channel
name only. Moreover, the encoding presented in [24] is tygeeddent, in that, for
each term, there are differentprocesses assigned, depending on the original type; this
makes the encoding quite cumbersome. By contrast, our angadvery simple and
intuitive by interpreting the cut operationally as a comigation. The idea of giving

a computational interpretation of the cut as a communiogiiamitive is also used by

[5] and [10]. In both papers, only a small fragment of Lineagic was considered, and
the encoding between proofs anecalculus was left rather implicit.

The type system presented in this paper differs quite aadtifrom the standard
type system presented in [29]: here input and output charessientially have the type
of the data they are sending or receiving, and are sepanatbé bype system by putting
all inputs with their types on the left of the sequent, andahgputs on the right. In our
paper, types give a logical view to thecalculus rather than an abstract specification
on how channels should behave.

1 The calculusX

In this section we will give the definition of th&'-calculus which has been proven
to be a fine-grained implementation model for various weltwkn calculi [7], like the
A-calculus [9],Au [28] and Aujfi [21]. As discussed in the introduction, the calculus
X is inspired by the sequent calculus; the system we will @®rsn this section has
only implication, no structural rules and a changed axidinfeatures two separate
categories of ‘connectorsphlugsandsocketsthat act as input and output channels, and
is defined without any notion of substitution or application

Definition 1 (Syntax). The nets of theY'-calculus are defined by the following syntax,
wherex, y range over the infinite set abcketsx, 5 over the infinite set oplugs

P,Q == (xa) | yPp-a | PB[y]3Q | Pat%Q
capsule export import cut

The* symbolises that the socket or plug underneath is bound ing¢helhe notion of
bound and free connector (free sockis(d”), and free plugdp(P), respectively, and
fc(P) = fs(P) U fp(P)) is defined as usual, and we will identify nets that only diffe
the names of bound connectors, as usual. We accept Baréadmyention on names,
which states that no name can occur both fited bound in a contextg-conversion is
supposed to take place silently, whenever necessary.

The calculus, defined by the reduction rules below, explaimetail how cuts are
propagated through nets to be eventually evaluated at ek dé capsules, where the
renaming takes place. Reduction is defined by specifyink that interaction between
well-connected basic syntactic structures, and how to déhl propagating active
nodes to points in the net where they can interact.

It is important to know when a connector is introduced, iseconnectable, i.e. is
exposed and unique; this will play an important role in thadution rules. Informally,
a netP introduces a socket if P is constructed from sub-nets which do not contain
as free socket, soonly occurs at the “top level.” This means ttats either an import

with a middle connectojx] or a capsule with left part. Similarly, a net introduces a
plugu if it is an export that “createst or a capsule with right part.

Definition 2. (P introduces) : Either P = QP [x] R with x ¢fs(Q,R), or P =
(x-a). R
(P introducesy) : EitherP = xQpB-a anda ¢ fp(Q), or P = (x-«).

The principal reduction rules are:

Definition 3 (Logical rules). Leta andx be introduced in, respectively, the left- and
right-hand side of the main cuts below.

(cap) : (y)@ 1 E(x-B) —x (v-p)
(exp: (FPB-w)RtR(xa) —x GPFy
(mp): (ya)atR(QB[]ZR) —x QBlyZR
o Q7 1 7(PB12R)
(exp-imp) : (7PB-)a T £(QF [x] 2R) { AANRSEI

The first three logical rules above specify a renaming promedvhereas the last
rule specifies the basic computational step: it links theoebqif a function, available on
the pluge, to an adjacent import via the socketT he effect of the reduction will be that
the exported function is placed in-between the two sub-4esfithe import, acting as
interface. Notice that two cuts are created in the resudt,¢hn be grouped in two ways;
these alternatives do not necessarily share all normalf@reduction is non-confluent,
so normal forms are not unique).

In X there are in fact two kinds of reduction, the one above, ardotie which
defines how to reduce a cut when one of its sub-nets does motlirte a connector
mentioned in the cut. This will involve moving the cut inwardowards a position
where the connectds introduced. In case both connectors are not introducesd, thi
search can start in either direction, indicated by thentiliof the dagger.

Definition 4 (Active cuts). The syntax is extended with twitaggedor activecuts:
Pu=... ‘ Pﬂx\/(J/C\Pz | P152\5C\P2
We define two cut-activation rules.

(a/): PatxXQ —y Px /XQ if P does notintroduce
(xa): PatxQ —y PaXxQ if Q does notintroduce

The next rules define how to move an activated dagger inwards.

Definition 5 (Propagation rules). Left propagation:

(d/): (y-a)& #XP —y (y-a)& T XP
(cap/) : (y-p)ya/xP —x (y-p) ~ p#u
(exp-outs’) : (ﬁQE-a)&/‘J?P —y (g(Qa/J?P)A “Y)¥ TXP +fresh
(exp-ing’) : (yQB-7)a /XP —x y(Qa /XP)p-y v #
(imp/) : (QB[Z]FR)& #XP —w (Q %P)B [2] 7(Ra / &P)
(cutf): (QPTyR)a fXP —x (Qu/XP)BTy(Ra /XP)

Right propagation:

(\d) : PRX R(x-B) —x PR E(xp)
(\cap) : Pax x(y-p) —x (V) ~ y#x
(\exp) : PAXX(YQP-y) —x Y(PAXNXQ)B-y

(Ximp-outg : Pa X X(Qp [x] yR) —x

P& 1 Z((Pa X\ Q)B [z] J(PR X\ XR)), z fresh
(Ximp-in : PRX X(QB[z]R) —x (PRXTQ)PB [z] F(PAX XR) z # x
(\eut) : PAXX(QBTYR) —x (PAXNXQ)BTY(PAXXR)

We write —y for the (reflexive, transitive, compatible) reduction ti&la generated
by the logical, propagation and activation rules.

The reduction—y is not confluent; confluent sub-systems are defined in [8].

Summarisingreduction brings all cuts down to logical cuts where bothrertors sin-
gle and introduced, or elimination cuts that are cuttingamg a capsule that does not
contain the relevant connector. Cuts towards connectangrong in capsules lead to
renaming Pa X x(x-B) —y P[B/«] and (z-a)a / XP —y P[z/x]), and towards non-
occurring connectors leads to eliminatidt(\ x(z-B) —y (z-B) and(z-B)a /' XP —y

(z-B))-

2 Typing for X: from LK to X

X offers a natural presentation of the classical proposaficalculus with implication,
and can be seen as a variant of syst&m
We first define types and contexts.

Definition 6 (Types and Contexts). 1. The set of types is defined by the grammar:
A,B ::= ¢ | A—B, whereg is a basic type of which there are infinitely many.
2. A context of socketE is a finite set ofstatements:: A, such that thesubjectof
the statementsx] are distinct. We writd';, I, to mean the union of; andT’,,
providedl'; andI'; are compatible (if’y containsy:A; andI', containsy: A, then
A1 = Ap), and writel', x:A for T, {x:A}.
3. Contexts oplugsA are defined in a similar way.

The notion of type assignment oli that we present in this section is the basic
implicative system for Classical Logic (Gentzen’s systaq) as described above. The
Curry-Howard property is easily achieved by erasing athtémformation. When build-
ing witnesses for proofs, propositions receive nameskgttiwat appear in the left part of
a sequent receive names likgy, z, etc, and those that appear in the right part of a se-
quent receive names like 3, v, etc. When in applying a rule a formula disappears from
the sequent, the corresponding connector will get bounddeémet that is constructed,
and when a formula gets created, a new connector will be ededdo it.

Definition 7 (Typing for X). 1. Type judgementwre expressed via aternary relation
P :- Ty A, wherel is a context obocketaandA is a context oplugs andP is a
net. We say thaP is thewitnessof this judgement.

2. Type assignment fot’ is defined by the following rules:

(cap) (imp) P ThyaAA Q: T, x:BkyA
cap) : . . . mp) :
P (ya) o TyA by aca,n UMP Pafy]xQ :- T,y:A—Bky A

P:-T,x:Aby a:B, A P:ThyawAA Q:-T,x:AbyA
(exp : (cut) : —
XP&-p ;- T by p:A—B,A PRtXQ - Thy A

Notice thatl’ andA carry the types of the free connectorsiinas unordered sets.
There is no notion of type foP itself, instead the derivable statement shows libis
connectable.

Example 8 (A proof of Peirce’s Law)The following is a proof for Peirce’s Law inK :

(A%)

A A,B

———— (=R —— (A¥

- A=B,A AR A
(=L)

(A=B)=AFA R
F((A=B)=A)=A (=R

Inhabiting this proof int’ gives the derivation:

(cap)
(y-6) .- y:A by 5:A,n:B

y(y-0)ij-a ;- Fy a:A—B,5:A (exp) (w-6) ;- w:Aky 8:A (.cap)

(Y(y-0)7-a)@ [2] zﬁ(w{) - z:(A—=B)—Aky 6:A

Z((y(y-0)7-a) [z] @(w-0))0-y i+ Fx 7:((A—B)—A)—A

The following soundness result is proven in [8]:

Theorem 9 (Witness reduction). If P ;- Ty A, andP —y Q, thenQ :- T Fy A.

3 The asynchronousrr-calculus with pairing and nesting

The notion of asynchronous-calculus that we consider in this paper is different from
other systems studied in the literature [22]. One reasothierchange lies directly in
the calculus that is going to be interpreteéd, since we are going to model sending
and receiving pairs of names as interfaces for functionsaea pairing, inspired by
[2]. The other reason is that we want to achieve a preservafifull cut-elimination;

to this aim, we need to us®n-blockingnputs, by adding the reduction ru{eesting
(see Definition 12). Without this last addition, we cannotdlofull cut-elimination;
this was, for example, also the case with the interpretataefined by Milner [26],
Sangiorgi [29], Hondat al [24], and Thielecke [31], where reduction in the original
calculus had to be restricted in order to get a completeressstr Notice that this last
extension ofr only relates to cut-elimination: that all proofsiik are representable in
7t is not affected by this, nor is the preservation of types.

To ease the definition of the interpretation function of gite in X’ to processes
in the rt-calculus, we deviate slightly from the normal practiced amite either Greek
characters, 5, v, ... or Roman characters y, z, . . . for channel names; we usefor
either a Greek or a Roman name, antfor the generic variable. We also introduce
a structure over names, such that not only names but alse glaitames can be sent
(but not a pair of pairs). In this way a channel may pass aldthgea name or a pair
of names. We also introduce the let-construct to deal wipluis of pairs of names that
get distributed over the continuation.

Definition 10. Channel names and data are defined by:
a,b,c,d := x|« names p == al,b) data
Notice that pairing i;motrecursive. Processes are defined by:

P,Q =0 Nil
| P|Q Composition
| 1P Replication
| (va) P Restriction

| a(x).P Input
| a(p) (Asynchronous) Output
| let(x,y)=z in P Letconstruct

We abbreviate(x). let(y, z) = x in P by a((y, z)). P, and(vm) (vn) P by (vm, n) P.
A (process) context is simply a term with a hglp

Definition 11 (Congruence). The structural congruence is the smallest equivalence
relation closed under contexts defined by the followingsule

Plo=P (vim) (vn) P = (vn) (vm) P
P|Q =QJP (vn) (P|Q) = P[(vn)Q ifngn(P)
(PIQ)|R = P[(QIR) 'p=P|!P
(vn)0 =0 let(x,yy=<a,byinR = Rla/x,b/y]

Definition 12. 1. Thereduction relationover the processes of the-calculus is de-
fined by following (elementary) rules:

(synchronisation: a(b).Pla(x).Q —x P|Q[b/x]
(binding) : P—,P = (vn)P —x (vn)P’
(composition : P—,P = P|lQ—zP|Q
(nesting : P—,Q = n(x).P—,n(x).Q

(congruence: P=Q & Q—,Q & Q' =P = P— P

2. We write— for the reflexive and transitive closure ef .
3. WewriteP | nif P = (vby...by) (7(p) | Q) for someQ, wheren # by ...by.
4. We writeQ | n if there existsP such tha) —% P andP | n.

Notice that we no longer consider inputinto beblocking we are aware that this is a
considerable breach with normal practice, but this is gfipneeded in our complete-
ness result (Theorem 20); without it, we can at most show tgpegsult.

Moreover, notice that

alb, o) [a(x,).Q —7% Q[b/x,c/y]

Definition 13 ([23]). Barbed contextual simulatida the largest relatior ; such that
P < Qimplies:

— for each namae, if P | n thenQ | n;
— for any contexC, if C[P] —, P’, then for som&)’, C[Q] —% Q" andP’ <, Q.

4 Type assignment

In this section, we introduce a notion of type assignmenfpfocesses int that de-
scribes theihput-output interfaceof a process. This notion is novel in that it assigns
to channels the type of the input or output that is sent owvecttannel; in that it differs
from normal notions, that would state:

a(b) .- T,b:AF a:ch(A), A

In order to be able to encode, types in our system will not be decorated with channel
information.

As for the notion of type assignment oli terms, in the typing judgements we
always write channels used for input on the left and chanmsdsl for output on the
right; this implies that, if a channel is both used to sendtarréceive, it will appear on
both sides.

Definition 14 (Type assignment). The types and contexts we consider for theal-
culus are defined like those of Definition 6, generalised toem Type assignment for
rt-calculus is defined by the following sequent system:

S P T, x:Abx:AA

(0)'0:-Fl—nA (in) : T

a(x).P .- T,a:Ab A

o P. . ThkA

(t): IP:-Th A (oup) : ab) - T,b:A b a:Ab:A A
P: - T,a:Abra:A A .)

(v): (va)P - Thx A (pair-ouj : a{(b,cy) .- T,b:A b a:A—B,c:B, A
P ThA Qi ThHA (le) : P T,y:Bh x:A A

(D P|Q: ThkA 'Iet(x,y):zinP:-F,Z:A—>B|—7TA

Notice that it is possible to derivBa) ;- b a:A, although sending a channel name
over that channel itself is never produced by our encodiog,hy the reduction of
processes created by the encoding.

Example 15.We can derive
P T,y Bh x:A A

lettx,yy=zinP ;- T,z2zA—B 5 A
a(z).let(x,yy==zinP :-T,a:A—B A

so the following rule is derivable:

P:- T,y Bk x:A A
a((x,y)).P .- T,a:A—-Bh A

(pair-in) :

Notice that the rulépair-ou) does not directly correspond to the logical r(#eR),
as that(pair-in) does not directly correspondte>L); this is natural, however, seen that
the encoding does not map rules to rules, but proofs to typeadi®ns. This apparent
discrepancy is solved by Theorem 21.

In fact, this notion of type assignment does not (directbfate back ta.k. For
example, ruleg|) and(!) do not change the contexts, so do not correspond to any rule
in the logic, not even to ayu-style activation step.

Notice that the caseB ;- ' i x:A,AandP :- T, x:A I A can be generalised by
weakening to fit the lemma.

We now come to the main soundness result for our notion ofégggnment forr.

Theorem 16 (Witness reduction). If P ;- Tl AandP —, Q, thenQ :- T 5 A.

5 Interpreting X into 7T

In this section, we define an encoding from netstironto processes irm.

The encoding defined below is based on the intuition as faatedlin [8]: the cut
Pa 1 XQ expresses the intention to connectsadlin P andxs in Q, and reduction will
realise this by either connecting al$ to all xs, or allxs to allas. Translated intar,
this results in seein@ as trying to send at least as many times avas Q is willing
to receive over, andQ trying to receive at least as many times oveasP is ready to
send oven.

As discussed above, when creating a witnesg foR) (the netxPa -, called an
expor), the exported interface dt is the functionality of ‘receiving onr, sending on
«’, which is made available of.. When encoding this behaviourin we are faced with
a problem. It is clearly not sufficient to limit communicatito the exchange of single
names, since then we would have to separately seadd «, breaking perhaps the
exported functionality, and certainly disabling the pb#iy of assigning arrow types.
We overcome this problem by sending out a pair of names, agané)). Similarly,
when interpreting a witness f¢=-L) (the netPa [x] §Q, called animport), the circuit
that is to be connected tois ideally a function whose input will be connectedatp
and its output tay. This means that we need to receive a pair of namesovas in
x((v,d)). P.

AcutPa T XQin X expresses two nets that need to be connected aiadx. If we
modelP andQ in 7r, then we obtain one process sendingrpand one receiving om,
and we need to link these vig-).%(-). Since each output anin P takes place only
once, and) might want to receive in more than omewe need to replicate the sending;
likewise, since each input in Q takes place only once, afimight have more than
one send operation an Q needs to be replicated.

We added pairing to the-calculus in order to be able to deal with arrow types. No-
tice that using the polyadie-calculus would not be sufficient: since we would like the
interpretation to respect reduction, in particular we nteelde able to reduce the inter-
pretation of(XPx-8) B T z(z-y) to that ofxPx -y (whenp not free inP). So, choosing
to encode the export of anda over B as B(x,a) would force the interpretation of
(z-7v) to receive a pair of names. But requiring for a capsule to ydweieal with pairs
of names is too restrictive, it is desirable to allow capstitedeal with single names as
well. So, rather than moving towards the polyadicalculus, we opt for letting com-
munication send a single item, which is either a name or agfaames. This implies
that a process sending a pair can also successfully comatanigth a process not
explicitly demanding to receive a pair.

Definition 17 (Notation). In the definition below, we use’ for the generic variable,
to separate plugs and sockets (and their interpretation) the ‘internal’ variables of
7t. Also, although the departure point is to view Greek name®fitputs and Roman
names forinputs, by the very nature of thecalculus (it is only possible to commu-
nicate using theamechannel for in and output), in the implementation we areddrc
to use Greek names also for inputs, and Roman names for suipdiact, we need to
explicitly convert an output sent o is to be received as input orl via ‘a(0)x (o)’
(soa is now also an input, and also an output channel), which for convenience is
abbreviated intae=x.

Definition 18. The interpretation of circuits is defined by:
x-a)l = x(0).®(o)

908 aly = (vy,B) (O | F{ty, B3)
Pa [x] Q) = x((v,d)). %wx) ﬁ! Pl | ta=0) | (vy) (td=y|!TQ})
PatzQl = 'Pa #xQl, ='Pax #Ql = (va, x) (1P | ta=x|1TQl)

Notice that the interpretation of the inactive cut is the sa® that of activated cuts.
This implies that we are, in fact, also interpreting a var@nt’ withoutactivated cuts,
allowing arbitrary movement of cuts over cuts, but with theng set of rewrite rules.
This is very different from Gentzen'’s original definition € In fact does not define a
cut-over-cut step, and uses innermost reduction foHaigptsatzesult — and different
from Urban’s definition — allowing onhactivatedcuts to propagate is crucial for his
Strong Normalisation result. Also, one could argue thahttiee reduction rules no
longer present a system ciit-elimination since now rulgx cut) reads:

Pa 1 X(QBTYR) —x (PaixQ)pty(PatXR)
in which it is doubtful that a cut has been eliminated; it iscabasy to show that this
creates loops in the reduction system. However, this ringris still sound with respect
to typeability. Here we can abstract from these aspectsesire only aim to prove a
simulationresult, for which the encoding above will be shown adequate.

Example 19.The encoding of the witness of Peirce’s law becomes:
B(y-0)7-) [2) @(w-8))8- =

(vz,0) (z((,). (va) L ((vy, 17) (y(0). 6(0) [&{ty, 1)) | a=0) |

That this process is a withess dfA—B)—A)— A is a straightforward application of
Theorem 21 below.

The correctness result for the encoding essentially stat#éshe image of the en-
coding in7t contains some extra behaviour that can be disregarded.

Theorem 20. If P —y P’, then for some), 'Pl; —% Q and'P’l; <. Q.

This result might appear weak at first glance, but it would Ineistake to dismiss
the encoding on such an observation.

Our result states that the encodingAfinto 7r contains more behaviour than the
original term. In part, the extra behaviour is due to regédaprocesses, which can be
easily discharged; but, more importanttyhas no notion oérasureof processes: the
cut P& 1 £Q, with a not in P andx notin Q, in X erases eitheP or Q, but' P& 1 *Q';
then runs tdP; | Q.. The result presented in [24] is stronger, but only achideed
Call-by-ValueAy, and at the price of a very intricate translation that depenttypes.
Also 'Pl; essentially contains all normal forms Bfin parallel; sincely is confluent,
there is only one normal form, so the problem disappearsebiar, restricting to either
(confluent) call-by-name or call-by-value restrictionspethen the problem disappears.

The following theorem states one of the main results of thjsap: it shows that the
encoding preserves types.

Theorem 21.1f P ;- Ty A, then Pl ;- T A.

Notice that this theorem links proofs i to type derivations it

6 The Lambda Calculus

We assume the reader to be familiar with thealculus; we just repeat the definition
of (simple) type assignment.

Definition 22 (Type assignment for theA-calculus).

ILx:A-yM:B
(AX): ————————— (=)
Ix:AFyx: A 'y Ax.M: A—B
FI—AMA—>B rl—/\NA
(—E):
'y MN:B

The following was already defined in [8]:

Definition 23 (Interpretation of the A-calculus in X).

Txd = (xa)
Tax.Ml} = 2TM 3B« B fresh
TMNIZ = TMU25 + 2(TNDAB [¥] §(y-a)) 7, B, %,y fresh

Observe that every sub-net HSMJJ,Q has exactly one free plug, and that this is precisely
«. Moreover, notice that, in th&-calculus, the output (i.e. result) is anonymous; where
an operand ‘moves’ to carries a hame via a variable, but wih@@mes from is not
mentioned, since it is implicit. Since iA’, a net is allowed to return a result in more
than one way, in order to be able to connect outputs to inpethave to name the
outputs; this forces a name on the output of an interprétéerm M as well, carried
in the sub-script oﬂTMJJQ; this namex is also the name of the current continuation,
i.e. the name of the hole in the context in whighoccurs.

Combining the interpretation dfinto X andX into 7, we get yet another encoding
of the A-calculus intorr [27, 26], one that preserves assignable simple types; ad,usu
the interpretation is parametric over a name.

Definition 24 (Interpretation of the A-calculus in7t via X). The mapping]-| ™ :
A—is defined by M| 7 = Tm M,

Since in [8] it is shown that the interpretaticlifnJJ,A preserves both reduction and
types, the following result is immediate:

Corollary 25 (Simulation of the Lambda Calculus).

1. If M —4 N then[[M] 7= [N]].
2. fTH, M: A, then[M|] :- T b a:A.

Conclusion

We studied how to give the computational meaning to clakgioafs via therr-calculus.
Our results have been achieved in two steps: (1) we have edcddnto 7t enriched
with pairing and non-blocking input, and showed that theoglittg preserves interest-
ing semantic properties; (2) we have defined a novel and walug/pe system forr
and proved that types are preserved by the encoding.

The caveat of the paper was to find the right intuition to réflke computational
meaning ofcut-elimination in 7t. Essentially we have interpreted the inputsinas
‘witness’ for the formulae on the left-hand side of the tayiesin Lk, and outputs as
‘witnesses’ for the right-hand side. Arrow-rightiix corresponds to an output channel
that sends a pair of names, while arrow-left correspondsctaanel that inputs a pair
of names (via the let constructor). Thet-elimination procedure is then interpreted as
a forwarder that connects an input and an output via privaaeels that have the same
type. Essentially, if we take the view that input are witresstor fomulae on the left-
hand side of the turnstyle irk and output are witnesses for fomulae on the right-hand
side of the turnstye ink then the cut eliminates the same formulue on the right and
on the left of the turnstyle. Thus the representation of arcat has to guarantee that
the input’s and the output’s witness of formulae on the rigghd left-hand side of the
turnstyle can communicate. This is achieved by using theeoinof forwarder, that
connects two processes with different inputs and outputs.

The work that naturally compares with ours is [24], wheregheoding ofcBV-Apu
is presented. In that paper, full abstraction is proved fowuhatural deduction rather

than for the sequent calculus as treated in this paper. kr tocichieve the full abstrac-
tion result, the authors have to introduce a notion of typpdvalence of Call-by-Value
Au. By contrast, we have tried to give a simple, intuitive cosiponal encoding ofK

in 7t and we leave for future work to consider a restrictiorvioin order to make our
result strongerX’ is a calculus without application and substitution that ischneasier
to interpret in7r; notice that we needed no continuation-style encoding lieae our
results.

In [10] an intuive relation between fragments of linear gnd r-calculus was
studied; the results there do not compare with ours. Thenafi correctness presented
in that paper is not between the logical rules andut betweent and the tut algebra
which is essentially a dialect of. Note also that they encode the linear logic as opposed
to the implicative fragment of Classical Logic. In other W8], the relationship with
linear logic and game semantics is studied. Both linearclagid game semantics are
outside the scope of this paper, yet we leave for future welstudy of the relation of
linear X’ (with explicit weakening and contraction) [36], and relttat with both game
semantics and without replication.

One of the main goals we aimed for with our interpretation:vifas does not oc-
cur free inP, andx does not occur free i), then bothFPaJ[J?QlT — . Pl and
rP&J[J?Qlf — o VQW,T. However, we have not achieved this; we can at most show that
P& 1 %Ql; reduces to a process that contdifk | QY. It is as yet not clear what this
say about eithe®’, or LK, or 7r, or simply about the encoding. The problem is linked
to the fact thatt does not have an automati@ancellation since communication is
based on the exchange of channel names, processes thatabemotnicate with each
other just ‘sit next to each other’. I&’, a process that wants to be ‘heard’, but is not
‘listened’ to, disappears; this corresponds to a proofremting to a proof, not to two
non-connected proofs for the same sequent. But, when mawitigear X, or %X,
studied in [36], this all changes. Since there reductiongearerate non-connected nets,
it seems promising to explore an encodingdf in 7.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Exj substitutions.JFP, 1(4), 1991.
2. M. Abadi and A. Gordon. A Calculus for Cryptographic Paifs: The Spi Calculus. l4th
CCCS ACM Press, 1997.
3. S. Abramsky. Computational interpretations of lineg@idoTCS 111(1&2), 1993.
4. S. Abramsky and R. Jagadeesan. Games and full complstenesultiplicative linear logic.
JSL, 59(2), 1994.
5. S. Abramsky. Proofs as process€€S 135(1), 1994.
6. Z. M. Ariola and H. Herbelin. Minimal classical logic andrdrol operators. INCALP’03,
LNCS2719, 2003.
7. S. van Bakel, S. Lengrand, and P. Lescanne. The langlfagércuits, computations and
classical logic. INCTCS’'05 LNCS3701, 2005.
8. S.van Bakel and P. Lescanne. Computation with classcplients MSCS 2008.
9. H. Barendregt.The Lambda Calculus: its Syntax and Semantidsrth-Holland, Amster-
dam, revised edition, 1984.
10. G. Bellinand P. J. ScotOn the pi-Calculus and Linear LogidCS 135(1), 11-65, 1994.
11. T. Coquand and G. Huet. The Calculus of Constructiths, 76(2,3), 1988.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.
25.

26.
27.

28.
29.
30.
31

32.
33.

34.

35.
36.

P.-L. Curien and H. Herbelin. The Duality of ComputatiémICFP’00, ACM, 2000.

H.B. Curry and R. FeysCombinatory Logicvolume 1. North-Holland, Amsterdam, 1958.
N. G. de Bruijn. A namefree lambda calculus with fa@ktfor internal definition of expres-
sions and segments. TH-Report 78-WSK-03, University ofieaven, 1978.

G. Gentzen. Untersuchungen uber das Logische Saidgath. Zeitschrift 39, 1935.
J.-Y. Girard. Linear logicTheoretical Computer Sciencg0:1-102, 1987.

J.Y. Girard. The System F of Variable Types, Fifteen géater. TCS 45, 1986.

J.-Y. Girard. A new constrcutive logic: classical lagitathematical Structures in Computer
Science1(3):255-296, 1991.

T. Griffin. A formulae-as-types notion of control. ROPL'90, ACM, 1990.

H. Herbelin. Séquents qu'on calcule : de l'interptieta du calcul des séquents comme
calcul deA-termes et comme calcul de stratégies gagnantes. Theswetsite, Paris 7,
1995.

H. Herbelin. C’est maintenant qu’on calcule: au cceundhiblite. Mémoire de habilitation,
Université Paris 11, Décembre 2005.

K. Honda and M. Tokoro. An object calculus for asynchimaommunication. In
ECOOP’91 LNCS 512, 133-147, 1991.

K. Honda and N. Yoshida. On the Reduction-based Proassigics. TCS 151:437-486,
1995.

K. Honda, N. Yoshida, and M. Berger. Control in thecalculus. INCW’'04, 2004.

J.W. Klop. Term Rewriting Systems. Handbook of Logic in Computer Sciene®lume 2,
chapter 1, pages 1-116. Clarendon Press, 1992.

R. Milner. Function as processes.Mi$CS 2(2), 1992.

R. Milner. Communicating and Mobile Systems: thecalculus Cambridge University
Press, 1999.

M. Parigot. An algorithmic interpretation of classioaltural deduction. ILPAR'92 LNCS
624, 1992.

D. Sangiorgi and D. Walkel he Pi-Calculus Cambridge University Press, 2003.

A.J. Summers. Extending lambda-mu with first class oomtions. Manuscript, 2007.

H. Thielecke.Categorical Structure of Continuation Passing StyRhD thesis, University
of Edinburgh, 1997.

C. UrbancClassical Logic and ComputatioPhD thesis, University of Cambridge, 2000.
C Urban. Strong Normalisation for a Gentzen-like Cuitrifiation Procedure’. ITLCA'01,
LNCS2044, 2001.

C. Urban and G. M. Bierman. Strong normalisation of dimieation in classical logicFI,
45(1,2), 2001.

P. Wadler. Call-by-Value is Dual to Call-by-Name.|@FP’03, ACM, 2003.

D.Zunic. Computing with Sequents and Diagrams in Classiogid.- Calculi*.X', 2X’, and
©x. PhD thesis, ENS Lyon, 2007.

