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ABSTRACT

Modular systems implemented on Field-Programmable
Gate Arrays can benefit from being able to load and unload
modules at run-time, a concept that is of much interest in the
research community. While dynamic partial reconfiguration
is possible in Virtex series and Spartan series FPGAs, the
configuration architecture of these devices is not amenable
to modular reconfiguration, a limitation which has relegated
research to theoretical or compromised resource allocation
models. In this paper two methods for implementing modu-
lar dynamic reconfiguration in Virtex FPGAs are compared
and contrasted. The first method offers simplicity and fast
reconfiguration times, but limits the geometry and connec-
tivity of the system. The second method, recently developed
by the authors, enables modules to be allocated arbitrary ar-
eas of the FPGA, bridging the gap between theory and re-
ality and unlocking the latent potential of partial reconfig-
uration. The later method has been demonstrated in three
applications.

1. INTRODUCTION

The transistor density of Field Programmable Gate Arrays
has reached a level where an entire system may be imple-
mented within a single device. A complex system is gen-
erally composed from many functionally discrete modules,
which are connected to form a coherent whole. In some
cases where the requirements on the system are time-variant,
not all modules need to operate concurrently. An unused
module resident in the FPGA will waste power, area and
cost, and therefore it would be advantageous if modules are
able to be loaded only when an application is invoked and
removed again once the application has terminated.

There has been a large amount of research in the area of
dynamic modular systems in FPGAs [1, 2, 3, 4, 5]. These
are predicated on the property of dynamic partial reconfigu-
ration, however module-based reconfiguration has not been
intrinsically supported in FPGAs since the demise of the
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Xilinx 6200 series. While the Virtex and Spartan series
of FPGAs are partially reconfigurable, the essentially linear
organisation of the configuration memory is not amenable
to the implementation of module-based systems with two-
dimensional floorplans. As a result research has tended to
be either theoretical, or severely circumscribed, typically by
reducing the resource model to one dimension.

In this paper two methods for implementing dynamic
partial reconfiguration on Virtex FPGAs are compared. In
the first method, modules must occupy the full height of the
device and the topology and connectivity are limited to 1-
D. This direct partial reconfiguration is fast and simple, and
has been previously documented [6]. The second method,
recently developed by the authors, demonstrates how 2-D
modular systems can be made tractable through the use of
an innovative bitstream merging process and reserved rout-
ing. This enables modules to be assigned arbitrary rectangu-
lar regions of the FPGA and relocated at run-time, bridging
the gap between theory and reality. Moreover, it is possi-
ble to achieve much greater flexibility in the connectivity of
the system. The costs of these advancements are increased
complexity and reconfiguration time.

The novel second method, termed merge partial recon-
figuration, has similarities to the PARBIT tool and design
methodology developed by Horta et al. for the FPX platform
[7]. PARBIT operates on bitstreams, inserting modules into
a target area of a device, and even re-targeting the bitstream
for a different sized device [8]. The work presented in this
paper differs most significantly in the following ways: (a)
static routing is possible in reconfigurable regions, (b) bit-
streams are integrated at run-time, (c) the target bitstream
is read from configuration memory before the integration
operation, which enables (d) more sophisticated integration
operations to be used.

2. VIRTEX CONFIGURATION ARCHITECTURE

The configuration architecture of the Virtex family of FP-
GAs is described in a Xilinx Application Note [9], and is
essentially the same for Virtex II / Pro devices. The config-
uration is stored in SRAM memory which can be read from
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Fig. 1. Virtex configuration architecture and the direct re-
configuration method.

or written to without halting the device. The smallest unit of
configuration memory that can be read or written is a frame,
which spans the entire height of the device (including I/O
blocks) and a fraction of one column (see Fig. 1(a)).

It should be noted that Virtex II / Pro FPGAs have the
characteristic of ‘glitchless partial reconfiguration’: if a con-
figuration bit holds the same value before and after config-
uration, the resource controlled by that bit will not experi-
ence any discontinuity in operation [10], with the exception
of LUT RAM and SRL16 primitives. It is therefore possi-
ble for a reconfigurable module to occupy an arbitrary area,
provided that (a) the areas above and below the module area
do not contain LUT RAM or SRL16 logic, and (b) the con-
figuration data written to these areas when the module is
replaced overwrites the existing configuration with exactly
the same values. Similarly, static, system-level routing may
pass through a reconfigurable region if its configuration data
are persistent when the module is reconfigured.
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3. DIRECT PARTIAL RECONFIGURATION

In the direct partial reconfiguration process, reconfigurable
modules are composed from complete frames of configura-
tion memory. This implies that a module occupies the full
height of the device, including the I/O at the top and bottom
of the reconfiguration region (see Fig. 1(b)). The module
may be a variable number of CLB columns in width, and all
logic and routing within the reconfiguration region are ded-
icated to the module. Using this scheme, a module may be
replaced very simply, by writing over the existing configura-
tion for the frames that coincide with the module area, using
a partial bitstream. Bus macros are predefined units of logic
and wiring that ensure the locations at which signals pass
between the module and the rest of the system are preserved
from module to module. More information on this method
can be found in [6].

There are a number of limitations with this approach.
The design flow for creating the bitstreams for the static
portion of the design and the modules leverages Xilinx’s
Modular Design™ methodology, which restricts the posi-
tion of modules in the logical hierarchy of the design to the
top level. Driver contentions can occur if one module con-
figuration is written over immediately with another, which
must be avoided by replacing the module with the default
empty configuration before loading in the next module. For
large devices a full height module is not the most efficient
use of resources, and timing closure can become problem-
atic for modules with large aspect ratios. Finally, while it
is possible to pass signals across the reconfigurable area via
bus macros on either side, it is highly probable that the sig-
nal path will be re-routed during reconfiguration, making the
signal non-valid at this time. This means that while a mod-
ule is undergoing reconfiguration the parts of the system on
either side of the module are isolated from each other.

4. MERGE PARTIAL RECONFIGURATION

The merge partial reconfiguration method was created in or-
der to circumvent the limitations of direct reconfiguration,
and exploits the glitchless reconfiguration property of Virtex
FPGAs. As noted in Section 2, a statically routed signal can
pass through a reconfigurated region unperturbed provided
the configuration bits associated with the route persist in the
new configuration. However, since the module designs are
placed and routed independently from the static part of the
design, the resources allocated to a static route could also
be used in one or more module implementations. This is
avoided through the use of reserved routing: within a mod-
ule region, certain routing resources are always reserved for
static routing, and modules must avoid using any of these re-
sources, even if unused by the static design. For example, in
the Virtex routing architecture each horizontal and vertical
channel has 24 long lines and 120 hex lines as well as other
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lighted.

more local routing resources; we chose to allocate 20% of
the hex lines and 100% of the long lines within module re-
gions to statically routed signals (see Fig. 2). The production
router in the ISE par tool has the ability to follow very spe-
cific constraints, but unfortunately there is no way to provide
par with these constraints in the current tool flow. There-
fore, a custom tool was used to generate the constraints and
perform rerouting in a post-par step.

The second major innovation in merge reconfiguration
is in the way the partial bitstream is loaded. Rather than
writing the bitstream directly to the configuration memory,
the current configuration is read back from the device and
modified with information from the partial bitstream before
being written back. This is performed on a frame-by-frame
basis, which minimises the amount of memory required to
store the bitstreams. As a result, it is possible to have two
or more module regions vertically aligned within the device,
by masking off parts of the configuration outside the region
of interest during the modify step.

Within the module region, static routing is preserved by
using an exclusive OR (XOR) operator to merge the partial
bitstream with the current configuration. If information is
present in both the original configuration and the partial bit-
stream it will be removed by the XOR operation; in order
to prevent this it is necessary to remove all redundant static
information from the partial bitstream, which can be done in
a straightforward post-processing step at design time. The
XOR merge technique has a number of advantages:

- While it is still necessary to remove the module before
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loading a new one, the same operation and bitstream
can be used for loading and unloading, since repeating
the XOR operation returns the value to the original
state (a ® b ® b = a). This reduces the amount of
storage required, as a default empty bitstream is no
longer needed.

- Since the module includes no information on static
routing, it is position-independent. This is significant,
since it means modules can be relocatable. This fea-
ture has been demonstrated (see Section 5.2).

- A module can be loaded in several stages, by sepa-
rating information into several bitstreams which are
then effectively overlayed on one another. An exam-
ple where this ability is useful given in Section 5.3.

As Fig. 3 shows, the static and module bitstreams are
created in separate parallel design flows, and a simple post-
processing step is performed on the module bitstreams to
remove redundancy.

5. EXPERIMENTS AND APPLICATIONS

The novel merge partial reconfiguration method has been
applied in three applications; these are described in this sec-
tion. All three scenarios employ the self-reconfiguring plat-
form reported by Blodget et al. [11]. It should be noted
that while this was a convenient framework for develop-
ment, particularly as bitstream manipulation functions can
be easily added by extension of the existing driver, self-
reconfiguration is not a necessity and the functionality could
be provided by an external embedded processor or even by
aPC.

5.1. Software Defined Radio

In a collaboration between Xilinx, Inc. and ISR Technolo-
gies, a demonstrator of a Software Defined Radio (SDR) has
been developed. While part of the radio is software-based,
the modulation and demodulation is performed by hardware
modules (PLB peripherals) which are loaded using partial
reconfiguration. Intended as a proof-of-concept, the demon-
strator was developed with a predecessor of the merge re-
configuration method which allows for a single module de-
sign only per reconfiguration region. In addition, static con-
figuration information is incorporated into the module bit-
streams at design-time, rather than at run-time. Neverthe-
less, the SDR demonstrates the advantages obtained by ex-
ploiting the property of glitchless reconfiguration: the mod-
ules are less than the full height of the device (see Fig. 4)
and there are hundreds of statically routed signals that pass
through the reconfigurable regions. Note also that new, slice-
based macros were developed to enable greater signal den-
sities at module interface points.
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Fig. 3. The design flow for merge partial reconfiguration.
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Fig. 4. The floorplan for the XC2VP40 used in the SDR
demonstrator, showing the locations of the two modem mod-
ules, and the new slice-based communication macros.

5.2. Microprocessor Peripheral

The second experiment was a test framework created to as-
sist the development of the merge partial reconfiguration
method, and was used in particular to demonstrate the re-
targeting of a module bitstream. The test setup used the Xil-
inx ML300 development board, based on a XC2VP7 part.
The FPGA has 34 CLB columns, with one PowerPC pro-
cessor embedded towards the right hand side of the device
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in columns 20 to 27. Due to the layout of the board the ex-
ternal DDR-RAM memory is connected to I/O blocks on the
left hand side of the FPGA. Space was allocated in columns
3 to 10 for two reconfigurable modules, placed one above
the other. The signals from the processor subsystem to the
DDR-RAM are necessarily routed through the area for the
reconfigurable modules, and must persist during reconfigu-
ration since the program code and module partial bitstreams
are stored in the external memory. Two very simple bus pe-
ripheral modules (a single register, and a one’s compliment-
ing register) were designed, which attached directly to the
on-chip Processor Local Bus. The slice based bus macros
from the SDR demonstrator were reused for this design.

Following the procedure for merge partial reconfigura-
tion, bitstreams for the static microprocessor subsystem and
the two modules were created in three separate implemen-
tation phases. The two module designs both targeted the
lower of the two reconfiguration regions. The modules were
successfully loaded into and unloaded from the lower target
location. In addition, by using a simple shift in the XOR
merge operation, the modules were re-targeted to the up-
per location at run-time. An illustration of this is shown in
Fig. 5.

5.3. Sonic-on-a-Chip

In the previous two examples modules are connected di-
rectly to the PLB bus; this is not the only, nor necessarily
the most effective, connectivity model. The final study in-
volved the application of merge reconfiguration to a Sonic-
on-a-Chip prototype [12], also using the ML300 develop-
ment board. Sonic-on-a-Chip, an architecture for video im-
age processing systems, uses a custom bus structure and pro-
tocol, designed to be a lightweight solution specifically for
dataflow applications. Bus routing in this case is locked to
specific routes using hard macros.

The module interfaces to the bus through tristate drivers,
which created an interesting problem. In order for the bus
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to continue uninterrupted during reconfiguration, the tristate
drivers need to be disabled. However, these drivers belong
to the module, and the disabling signal would need to be
routed from within the module — routing which would be in
flux during the reconfiguration process.

The chosen solution to this involved a two-phase module
reconfiguration process. The static and module designs were
implemented as per Fig. 3. For each module implementa-
tion, a second design was created by copying the original
implementation and disconnecting the tristate buffers from
the bus lines. Two partial bitstream were generated, the first
containing the configuration for the disconnected module,
and the second comprising the difference between the two
designs (generated using the bitgen —r option). By re-
moving all redundancy from the second bitstream, it carries
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just the information required to connect the module to the
bus lines. The module could thus be loaded with two suc-
cessive merge operations, as depicted in Fig. 6. Removing
the module is done by repeating these operations in reverse.

5.4. Configuration Overhead

The use of a read-modify-write operation to configure par-
tial bitstream comes at a cost of increased configuration time.
Using empirical measurements, it was ascertained that the
configuration time for a direct partial reconfiguration opera-
tion can be approximated by:

1 1
szfx<—+—>
t w1

Where f is the equivalent number of frames in the bitstream,
t is the rate at which a frame is transferred from memory to
the OPB peripheral, and w; is the rate at which a frame is
written into the ICAP.

Using the read-modify-write operation requires the par-
tial bitstream to be processed in software to identify which
frames need to be read from the device; the frames must be
read; parts of the frame modified; and the frames written



back. The configuration time is approximately:
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Where p is the rate at which the bitstream is processed, r is
the rate at which frames are read from the device, m is the
modification rate per row of CLBs, c is the number of CLB
rows the module occupies, and ws is the rate at which frames
are written back to the ICAP. It should be noted that when
reading configuration information, the data are prepended
by a ‘pad’ frame. Similarly, when writing a configuration,
an extra pad frame is required after the final frame of real
data. This means operating on a single frame at a time is
much slower than operating on several contiguous frames in
one go, and is one reason wy <K W1.

Using the Sonic-on-a-Chip platform (system CPU/bus
clock speed 100MHz, 16MB data cache + 16MB instruc-
tion cache), we obtained the following values for the param-
eters (all in frames/ms unless noted): ¢ = 7.86, wy = 117,
p = 4.15, r = 30.8, m = 185 CLB rows/ms, wy = 19.3.
From these values, it can be calculated that time for the
read-modify-write configuration in this case is between 2.4x
and 4.0x slower than that for the write-only configuration,
depending on the height of the module. For example, for
a module 21 CLB rows high and 15 CLB columns wide
T, =47.5ms, and T},, = 151.4ms.

However, in both situations a large percentage of the
configuration time is due to inefficiencies in the driver soft-
ware, particularly where data transfer is involved. Ignoring
these inefficiencies one can derive a lower bound to the in-
herent overhead. By measurement and inspection we esti-
mated the intrinsic values of » = 54.9, wy = 46.1, and
t = 60.9. Therefore, the relative increase in configuration
time of the merge method is at least:

1 1 1 1
(—+—>/<—+—> =1.58
T Wa t w1

6. CONCLUSION

1 1 c
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This paper presented two partial reconfiguration methods
for modular systems in Virtex FPGAs. The first method
uses partial bitstreams directly to reconfigure the FPGA.
However due to the organisation of the configuration mem-
ory in Virtex devices, modules exclusively occupy complete
vertical sections of the device, which severely restricts re-
source allocation and connectivity. These restrictions are
avoided with the second, novel, merge partial reconfigura-
tion method. In this method, information in the partial bit-
stream is merged with the current configuration as read back
from the device. By using an exclusive-OR function to com-
bine the two bitstreams, existing configuration information
is preserved, and the module can be removed by repeating
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the XOR operation. Modules can be allocated any rectangu-
lar region in the device, and static routes can pass through
reconfiguration regions. To avoid conflicts, some of the rout-
ing resources are reserved for the static routes.

The merge partial reconfiguration has been employed
in three applications, which have successfully demonstrated
run-time re-targeting of module bitstreams and multi-phase
reconfiguration. From one of these applications, speed mea-
surements have revealed an increase in configuration times
of between 2.4x to 4.0x, with a baseline overhead of at least
1.58x.
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