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ABSTRACT
This paper demonstrates a novel optimisation methodol-

ogy to adjust stencil based numerical procedures from the
algorithm level, so as to reduce not only the amount of hard-
ware resource consumption per kernel but also the amount
of computation required to achieve desired result accuracy,
when mapping the algorithm to reconfigurable hardware us-
ing dynamic constant reconfiguration. As a result, less area
is needed to support run-time reconfiguration, and less com-
putational steps are required in the numerical procedure to
obtain a result with given error tolerance. We analyse one
thousand fixed point implementations on a Virtex-6 XC6V-
LX760 FPGA for randomly generated option pricing prob-
lems, which are representative of industrial computation.
When comparing optimised implementations to the unopti-
mised ones, the reconfiguration area upper bound is reduced
by 22%; the average number of computational steps is re-
duced by 23%; and the area-computation-time product is re-
duced by 40%; while the numerical errors of the results are
kept below the error tolerant level used in industry.

1. INTRODUCTION

Ever since the financial crisis in 2008, the financial industry
has been demanding higher computational power to under-
stand its risk position in the market. The computationally
complex models the industry is using can benefit from cus-
tomised hardware accelerators for high computational through-
put tailored to a particular requirement. Options are pop-
ular in the financial industry and pricing options usually
involves solving partial differential equations (PDEs). In
many cases a closed form solution cannot be found for a
PDE and numerical methods such as the Explicit Finite Dif-
ference (EFD) method must be used [1]. Although the EFD
method is widely used since it is relatively easy to apply, its
computational complexity grows quadratically with increas-
ing accuracy.

The EFD method is often used in financial institutions
to evaluate large portfolios involving multiple asset classes,
and even running on a large corporate computational grid,
the process can take several hours. Reconfigurable hard-
ware such as FPGAs can be used to accelerate this process

effectively and energy efficiently [2]. Higher performance
and energy efficiency can be achieved by developing recon-
figurable versions of an application [3]. In addition, dynam-
ically reconfigurable EFD implementations on FPGAs can
have a factor of 4.7 performance improvement over a design
using a static configuration [4].

This work extends our previous work [4] by making use
of carefully chosen coefficients for constant multipliers,so
as to reduce the amount of required hardware resources per
kernel, and reduce the amount of computation required with
given result accuracy requirement. We discuss the applica-
tion of our work to the financial EFD method, though it is
applicable to any stencil computation with constant coeffi-
cients. The main contributions of our paper are:

• A novel methodology based on normalising option
parameters and matching statistical moments, which
optimises the coefficient values in EFD solvers in or-
der to reduce hardware resource consumption and num-
ber of computational steps in reconfigurable computa-
tion, while preserving result accuracy (Section 3).

• A workflow realising the methodology with two ap-
proaches: one minimises hardware resource utilisa-
tion, while the other minimises the amount of compu-
tation required in the algorithm (Section 4).

• An experimental evaluation of our methodology and
workflow based on the amount of hardware resource
consumed, the amount of computation required and
error analysis in a financial option pricing application,
showing that the area-time product can be reduced by
up to 40% for given accuracy (Section 5).

2. THE FINITE DIFFERENCE MODEL

The finite difference model solves the Black Scholes PDE
by discretising both time and the underlying asset price, and
mapping both onto a two-dimensional grid. There are three
main kinds of finite difference methods in common use: im-
plicit, explicit and Crank-Nicolson. We consider the ex-
plicit mechanism as it is the most intrinsically parallelisable
method amongst all three.
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Fig. 1. A 5 × 6 finite difference grid, the grey elements
show fi,j and the three values it depends on in time step
i+ 1. Note that(x)+ ≡ max(x, 0)

The Black Scholes PDE with one variable (asset) fol-
lowing geometric Brownian motion has the following form:
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wheref(S, t) denotes the price of the option,S denotes the
value of the underlying asset,t denotes a particular time,r is
the risk-free interest rate,σ is the volatility of the underlying
asset. For convenience we define the option describerκ ≡
(S,K, r, t, σ), whereK is the strike price of the option.

Suppose the time to maturity for the option isT . We
discretiseT by dividing it intoN equally spaced intervals:
∆t = T/N . We then determine an asset pricesSmax and
Smin for the option and discretise the asset price space be-
tweenSmax andSmin into M equally spaced intervals∆S.
Smax andSmin represents the maximum and minimum as-
set prices under consideration in the EFD grid. We callN
the number of time steps andM the number of asset price
steps,N andM together define a particular grid setting for
the EFD model. In addition, we define the number of com-
putational steps (problem size) to beM ×N .

An efficient approach to compute within a finite differ-
ence grid can be obtained by a change of variable tech-
nique [5]. By discretising overZ = lnS instead ofS, Equa-
tions 2 can be obtained, where stencil coefficientsα, β and
γ are constants throughout one grid.
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The payoff functionfi,j can have different forms, for
example, Equation 3 and Equation 4 are the payoff functions
for European and American options respectively, whereK−
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Fig. 2. Dynamic EFD kernel for American option pricing.

j∆S is the early exercise price of the American option.

fEU
i,j = αfi+1,j−1 + βfi+1,j + γfi+1,j+1 (3)

fAM
i,j = max(K − j∆S, fEU

i,j ) (4)

Figure 1 shows how the EFD method updates nodes in a
5 × 6 grid. As an initial condition, the values for nodes in
the rightmost column is calculated bymax(K − SN+1,j , 0)
and the algorithm runs from right to left.

The convergence of the EFD method is defined as the
rate at which the error decreases with the number of com-
putational steps [6]. Equations 5 illustrates the relationship
between the number of time stepsN required to achieve a
given accuracy, the number of computational steps in the
grid and two main sources of errors. The discretisation er-
ror is caused by transforming the model from a continuous
mathematical space to a discretised computational space;
and finite precision error is caused by using number rep-
resentations of insufficient accuracy. For convenience we
define an elastic factorλ = ∆Z/∆t. If the number of time
stepsN is given, the convergence of the EFD method can
only increase by decreasingλ (increasing the number of as-
set price stepsM ) and vise versa.

Num. Comp. Steps ∝ N2/λ

Discretisation Error ∝ Nz, z = f(∆t, λ) <= −1

Finite Precision Error ∝ sqrt(N) (5)

In previous work we have described a parallel hardware
architecture which makes use of dynamic constant reconfig-
uration [4]. The work demonstrates the effectiveness of dy-
namic constant reconfiguration by studying the use of fixed
point constant multipliers in a parallel option pricing archi-
tecture, as shown in Figure 2.



3. OPTIMISING DYNAMIC CONSTANT
RECONFIGURATION

We propose that three key steps should be followed in op-
timising high performance designs in reconfigurable hard-
ware from software implementations:

• use custom data formats to reduce area while preserv-
ing sufficient result accuracy;

• use constant specialisation and reconfiguration to fur-
ther reduce area and energy consumption;

• use carefully selected constants to reduce the upper
bound of reconfigurable area.

Each step yields higher performance than the previous step
mainly due to higher level of parallelism achievable given
a fixed amount of hardware resource. Recent work focuses
on applying the first step and trying to reduce the floating
point data-width aggressively, in order to trade the amount
of computation for hardware resource consumption. For ex-
ample, using a low precision data path, higher performance
can be achieved by increasing sampling points in a numer-
ical integration routine [7]. The second step has been ad-
dressed by [4] and [3].

To the best of our knowledge, the third step has not been
published in public domain. This paper discusses following
and going beyond the third step to optimise the EFD op-
tion pricing model. One of the main concepts to optimise
the dynamic constant reconfiguration is to minimise the up-
per bound hardware resource consumption of the reconfig-
urable area (the gray area in Figure 2), so that higher paral-
lelism can be achieved by placing more dynamic kernels in
an FPGA.

The idea of our optimisation process is balancing the fol-
lowing two goals: (a) to reduce hardware resource consump-
tion by carefully setting the EFD grid, so that the constant
multipliers used in each dynamic kernel consume minimal
amount of hardware resource; (b) to reduce the number of
computational steps required in the EFD grid, so that the
result meets the precision requirement without wasting un-
necessary computation.

There are three key steps in the process:

1. normalising the option coefficients so that fixed point
datapaths, which consume less hardware resources,
are used instead of floating point datapaths;

2. identifying the nice constants in fixed point number
representation which yield constant multipliers that
consume less hardware resource than the biggest con-
stant multiplier of the same number format; and adjust
the EFD algorithm to make use of the nice constants;

3. ensuring the number of computational steps required
in the optimised EFD scheme is not larger than the
original scheme.

The first step makes use of fixed point number represen-
tation, by making sure that the finite precision error does not
effect the quality of the result. Our previous work claims
that fixed point numbers should not be used for option pric-
ing, because the range of the inputs is not predictable, and
unlike Monte Carlo simulations, finite precision error ac-
cumulates in the EFD scheme [2]. A normalisation proce-
dure can be used to overcome this. Equation 3 and Equa-
tion 4 have typeκ → R, whereκ ≡ (S,K, r, t, σ) describes
an option. Although it is possible to define a range for all
five inputs, the intermediate variablesfi+1,j−1, fi+1,j and
fi+1,j+1 can range from zero to strike priceK for an Amer-
ican put option. Since0 < K < ∞, we need to reserve
enough bits for the integer part of the fixed point represen-
tation to avoid integer overflow inK. The normalisation
procedure is shown in Equations 6 to narrow down the nu-
merical range of the intermediate variables. The option price
is then calculated byf = f ′×K, wheref ′ is the result from
the normalised space.

K ′ = t′ = 1, S′ =
S

K
, r′ = r × t, σ′ = σ ×

√
t (6)

As a result, the previously unbounded variablef is now
bounded from zero to one, allowing the use of fixed point
numbers in our design.

As the second step, we try to identify nicer constants
which yields small fixed point constant multipliers (mea-
sured in number of consumed LUTs, compared to the largest
constant multiplier in the same number format). To make the
constant multipliers used in the EFD kernel consume less
LUT resource, to one extreme, we would like the stencil
coefficientsα, β andγ to be in the form2E (E ∈ Z) in
binary. As a result, the constant multipliers can be imple-
mented by shift operators in fixed point arithmetic, which
consumes less LUTs than those implemented by adders.

Although we would like to make the constant multipliers
consume as less LUTs as possible, the stencil coefficients
must satisfy Equations 7, which are the first two require-
ments to guarantee the result convergence [5].

α+ β + γ = 1, α > 0, β > 0, γ > 0. (7)

In addition, all lattice based numerical procedures must match
statistical moments of the underlying asset process. For
stock option pricing, the Black Scholes PDE is constructed
by creating a delta-hedged riskless portfolio, based on a log-
normal process which describes the underlying asset price
movement, as shown in Equation 8, wheredW is a Wiener
process.

d lnS = dZ = (r − σ2

2
)dt+ σdW. (8)



Such process has the following mean and variance over a
discretised time period∆t [1]:

µ = (r − 1

2
σ2)∆t, Var = σ2∆t (9)

The EFD procedure must match meanµ and varianceVar
to ensure result convergence [1]. The speed of convergence
is determined by how well the procedures matches higher
moments such as skewness and kurtosis, the higher the con-
vergence speed, the less number of computational steps is
needed to obtain a result of desired accuracy. The trinomial
stencil used in the EFD method has enough degrees of free-
dom to match one higher moment (skewness or kurtosis) [8],
although as long as the first two moments match and Equa-
tions 7 are satisfied, the stencil coefficientsα, β andγ can
vary while the EFD result is guaranteed to converge to the
true result.

Figure 3 illustrates the relationship between∆t,∆Z and
the stencil coefficients in an EFD grid. To ensure that the
statistical moments described in the stencil match the the-
oretical moments described in Equations 9, the following
equality must hold:

µ = µ′, Var = Var ′, (10)

µ′ = α× dZ − γ × dZ, (11)

Var ′ = α× (dZ − µ′)2 + β × (µ′)2 + γ × (dZ + µ′)2.
(12)

Variablesµ andVar are defined in Equations 9. Solving
Equations 7 for the stencil coefficientsα, β andγ gives us
the coefficients in the form of(∆t,∆Z, κ) → R, similar to
those in Equation 21. This relationship can be used to ex-
plore the stencil coefficients space and find smaller constant
multipliers to be used in the dynamic EFD kernel. Figure 5
shows one example of the change in the values of the co-
efficientsα, β andγ againstλ = ∆Z/∆t, while ∆t stays
constant. It can be seen that these coefficients are all contin-
uous convex functions againstλ which increase or decrease
monotonically within range [0,1]. The relative error, defined
as the absolute difference between the EFD result and the
Black Scholes formula result using double precision arith-
metic (r .e. = |resultEFD − resultBS |), is also shown in
Figure 5 for eachλ. It can be observed that the relative error
increases with the asset price step∆Z, with exceptions at
the left boundary when one of the coefficient becomes very
close to zero and conditions specified in Equations 7 are no
longer valid.

As the third step, we discuss the number of computa-
tional steps required in the EFD algorithm. The EFD method
requires the smallest number of computational steps to con-
verge to the true result, when both the model skewness and
kurtosis are close to their theoretical values, one common
practice is to set the EFD grid equivalent to a trinomial tree[1].

1Any mathematical tool with a symbolic solver, such as Mathematica,
can be used for this purpose
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However, with given error tolerance, the tree-equivalent EFD
grid might not be the optimal setting.

Figure 4 shows a typical graph of relative error between
the Black Scholes formula result and the EFD result for the
same at-the-money European option as in Figure 5 using
double precision arithmetic. It can been seen that, the abso-
lute error decreases monotonically as∆t and∆Z = ∆t×λ
becomes smaller. This means, as long as the result accuracy
meets the accuracy requirement, it is possible to reduce the
number of computational steps by increasing both∆t and
λ. In addition, since it has been shown that the continuous
(∆t, λ) space has an analytical mapping to the stencil co-
efficients space in Figure 5, we have defined a valid search
space for step two without affecting result accuracy. It is
worth mentioning that, similar to Figure 5, the boundary er-
ror becomes significant when∆Z becomes small enough
and Equations 7 no longer hold.

4. OPTIMISATION APPROACHES

In this section we discuss two approaches for steps two and
three of our optimisation process described in Section 3.
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The first approach tries to map directly from hardware to
the EFD algorithm. Knowing a set of constants (cα, cβ , cγ)
which yield small constant multipliers, this approach tries to
find appropriate∆t and∆Z which makes the stencil coeffi-
cients as close to these constants as possible, so as to reduce
hardware resource usage by a dynamic kernel. A multidi-
mensional minimisation problem can be formed, where vari-
ables∆t and∆Z are the search space andr andσ are prob-
lem dependent variables. The target function of the min-
imisation problem is shown in Algorithm 1 which returns
a utility valueu; we minimiseu to find appropriate stencil
coefficients for the EFD grid. This algorithm implicitly as-
sumes that the amount of hardware resource consumed by
the constant multiplier is closely correlated to the hamming
weight of the constant. In addition, Algorithm 1 requires all
the three coefficients to be close to a ‘nicer’ set of constants,
which is not always possible since coefficientsα, β andγ
are not free variables; in fact, according to Figure 5 the three
coefficients has a one-to-one mapping to each other. There-
fore the valid search space is limited. Moreover, since the
user has no control over∆t or ∆Z in this case, a valid set
of coefficients might result in extremely small∆t and∆Z,
which may increase the problem size significantly and offset
any benefit gain by this optimisation routine.

The second approach is designed to reduce the number
of computational steps needed with given accuracy require-
ment. Algorithm 2 shows a target function of a multidimen-
sional minimisation process to match the EFD stencil stencil
skewness and kurtosis to the theoretical values.

Algorithm 1 Simple Target Function
Input: ∆t = size of time step,∆Z = size of asset price step
Constant: r andσ
Output: u = utility value for the optimisation routine

1: Calculate(α, β, γ): use Equation 2
2: Obtain the numerical differencesεα, εβ and εγ from

ideal constants (cα, cβ , cγ): εα/β/γ = α− cα/β/γ
3: Accumulate penaltyp1: to minimiseεα, εβ andεγ
4: Accumulate penaltyp2: to ensure the constraints (Equa-

tions 7) are met
5: Calculate utility valueu: u = p1 + p2

Skew ′ =
α× (dZ − µ)

3
+ β × (−µ)

3
+ γ × (dZ + µ)

3

Var ′3/4

(13)

Kurt ′ =
α× (dZ − µ)

4
+ β × (−µ)

4
+ γ × (dZ + µ)

4

Var ′2

(14)

Algorithm 2 Moment Matching Target Function
Input: ∆t = size of time step,∆Z = size of asset price step
Constant: r andσ
Output: u = utility value for the optimisation routine

1: Calculate (µ,Var ,Skew ,Kurt): obtain mean, vari-
ance, skewness and kurtosis using the moment-
generating function of a standard normal distribu-
tion [9], e.g. µ andVar as in Equations 9,Skew = 0
andKurt = 3

2: Calculate(α, β, γ): by solving Equation 10
3: CalculateSkew ′,Kurt ′: the skewness and kurtosis of

the stencil using the standard statistical approach based
on data points(fi+1,j−1, fi+1,j , fi+1,j+1) and their cor-
responding probabilities(α, β, γ), an example is shown
shown in Equation 13 and Equation 14

4: Calculate the difference between theoretical and stencil
third and fourth order momentsεSkew , εKurt : εSkew =
|Skew − Skew ′|, εKurt = |Kurt −Kurt ′|

5: Calculateu: based onεSkew , εKurt andα, β, γ

The EFD grid setting found by Algorithm 2 guarantees
fast convergence of the final result, since the setting makes
the grid equivalent to a trinomial tree. However, the algo-
rithm fails to address the hardware resource consumption of
the constant multipliers. To overcome this limitation, we
define a resource estimation functionres(R) → N, which,
given a constant coefficient, returns a positive integer rep-
resenting the amount of hardware resource used by the cor-
responding constant multiplier. Since each(∆t,∆Z) com-
bination can be mapped to the stencil coefficients analyti-
cally, it is possible to search in a limited(∆t,∆Z) space



for nicer constants such thatdt ∈ [∆t − ε1,∆t] anddZ ∈
[∆Z − ε2,∆Z], whereε1 andε2 are small constants such
that both the number of time stepsN and the number of asset
price stepsM in the EFD grid stays the same as the original
tree-equivalent grid setting.

We now analyse the statistical possibility of a smaller
dynamic kernel by searching in the limited(∆t,∆Z) space.
To begin with, we assume that, due to complex optimisation
techniques applied, the output (NLUT ) of the resource es-
timation function of constant multipliers is a uniformly dis-
tributed random variable withL possible outcomes, whereL
depends on (a) the number of adders used to implement the
constant multiplier which is directly related to the number
of bits in the chosen number representing format (b) the im-
plementation detail of the constant multiplier library in use.
For simplicity it is assumed thatNLUT ∈ {1...L}, therefore
the probability of getting a particular reconfigurable setting

in a kernel withNmul multipliers isC(NLUT ) =
Nmul
∏

i=1

P (i),

wherei ∈ {1...Nmul} is the index of a multiplier, andP (i)
is the probability of the compiler generating a multiplieri
which consumesNLUT resource. SinceNLUT is uniformly
distributed,P (i) = 1/L. As a result, the possibility to get
a dynamic kernel with three coefficients each consuming
NLUT or less hardware resource is(1/L)3. Therefore, if
∆t and∆Z are free variables, on average we can find a set
of constants which halves the hardware resource consump-
tion (with probability(1/2)3) by trying eight different com-
binations. Although in our case∆t and∆Z have a limited
range, a local optimal can still be found. We therefore pro-
pose an improved version of the second approach, as shown
in Algorithm 3.

To make the best use of the two approaches, we propose
a workflow to find small constant multipliers for EFD dy-
namic kernels, while reducing the number of computational
steps required with given accuracy requirement. We assume
that an option pricing problemo ∈ κ, the true value of the
option v ∈ R, an error tolerance levele ∈ R, and a set of
stencil coefficientsc ∈ (R3) that yields small constant mul-
tipliers are known before hand. The workflow comprises the
following steps:

(1) Label the first approach with index 1. Based ono
and c, use Algorithm 1 to find∆Z1 and∆t1; then
derive the stencil coefficients(α1, β1, γ1), the number
of time stepsN1, and the number of asset stepsM1 for
the EFD grid. Calculate the number of computational
stepsc1 = M1 ×N1 in the grid.

(2) Based on results from (1), calculate the EFD option
pricev1, and find the errore1 = v − v1. If e1 < e,
add index 1 to a sets which stores indices of valid
approaches.

(3) If e1 < e, use the stencil coefficients from (1) and
the resource estimation function, to estimate the re-
source consumption per EFD kernelr1 = res(α1) +

Algorithm 3 Improved Algorithm
Input: ∆t = size of time step,∆Z = size of asset price step
Constant: r, σ, ε1 andε2
Output: α, β, γ = the coefficients that yield smallest con-
stant multipliers, without affecting the number of computa-
tional steps required for a given accuracy

1: Calculate∆t,∆Z: using Algorithm 2 to obtain∆t and
∆Z which yield a tree equivalent EFD scheme

2: Increasing both∆t and∆Z to find an EDF grid setting
with less computational steps that meets the given accu-
racy requirement

3: Set minimal hardware resource consumptionu = ∞
4: for dt=∆t to∆t− ε1 do
5: for dZ=∆Z to∆Z − ε2 do
6: Calculate localα′, β′, γ′: usingdt anddz
7: Calculate local hardware resource consumptionu′:

u′ = res(α′) + res(β′) + res(γ′)
8: if u′ < u then
9: α = α′, β = β′, γ = γ′

10: end if
11: end for
12: end for

res(β1) + res(γ1). We have now obtained indicators
c1, e1 andr1 for the first approach.

(4) Repeat the first three steps but label the base case with
index 0 and use Algorithm 2, to obtain indicatorsc0,
e0 andr0 for the tree-equivalent EFD grid, add index
0 tos if e0 < e.

(5) Similarly, use index 2 and Algorithm 3 to obtain indi-
catorsc2, e2 andr2 for the second approach, then add
index 2 tos if e2 < e.

(6) Obtain area-computation-time productdi = ci ×
ri, i ∈ s, choose approachiwith di = min(dj |j ∈ s).

It is worth considering the validity condition for apply-
ing the optimising approaches, given that the optimised so-
lution should not be slower than the original one. The execu-
tion timeTd of the original dynamic design can be calculated
as:

Td =
cd × td
pd

+ tr,d (15)

wherecd is the number of computational steps,td is the cy-
cle time,pd is the number of processing elements (kernels)
in the dynamic design, andtr,d is the reconfiguration time.
Similarly, the execution timeTopt of the corresponding op-
timised design can be calculated as:

Topt =
copt × topt

popt
+ tr,opt + tsearch (16)



wherecopt, topt, popt and tr,opt denote the same parame-
ters as above for the optimised design, andtsearch denotes
the time it takes to search for the better constants. For sim-
plicity we assume the optimisation process has negligible
impact on cycle time, hencetd = topt = tclk. To achieve a
performance benefit, the following condition is required:

Topt < Td

copt × tclk
popt

+ tr,opt + tsearch <
cd × tclk

pd
+ tr,d

tsearch < tclk

(

cd
pd

− copt
popt

)

+ (tr,d − tr,opt) (17)

In this experiment the search timetsearch is negligible since
it is possible to search for the better constants beforehandfor
each option and use table lookup to load designs at runtime,
just like the original dynamic design. We therefore have:

0 < tclk

(

cd
pd

− copt
popt

)

+ (tr,d − tr,opt) (18)

If cd > copt, pd < popt and tr,d > tr,opt, the validity of
the optimisation process is guaranteed. In our experiment,c
depends onN andM , andp andtr depends on the recon-
figurable area. Therefore, if the optimisation process and
reduce both the reconfigurable area andN andM , it will
benefit the overall execution time.

5. RESULTS

In this section we examine the effectiveness of our work-
flow discussed in Section 4. We use the Nelder-Mead multi-
variable minimisation routine in GNU scientific library to
implement our algorithms. The fixed point error analysis is
based on the MPFR library [10]. The result is produced ac-
cording to the error tolerant level used in industry2, which
requires the difference between the reduced precision result
and the double precision result to be smaller than2E − 4;
however, the workflow can be tuned to accommodate arbi-
trary error tolerant level by adjusting the number format.
The 23 bit fixed point number format with 1 bit for inte-
ger and 22 bit for fraction is used in our implementations,
as it has been used in our previous work [4] and the finite
precision error in the result is always below2E − 4 com-
pared to double precision floating point result for the EFD
computation. The FloPoCo library [11] is used to gener-
ate dynamic kernel descriptions with different stencil coef-
ficients in VHDL. The FloPoCo library is also used as the
resource estimation function in our workflow. All VHDL
kernel descriptions are placed and routed on a Xilinx Virtex-
6 XC6VLX760 FPGA using ISE 13.2 implementation tools.
All dynamic designs found by our workflow are compared
to the 23 bit fixed point version of the unoptimised dynamic
designs presented in [4].

2Private correspondence with J.P. Morgan Chase

Rel. Err. LUTs N M Comp. Steps
Double Static 1.55E-4 13759 365 420 1.36E5

Original 23bit Dynamic 1.52E-4 732 365 420 1.36E5
First Approach 1.2E-7 881 1146 1818 2.08E6

Second Approach 1.41E-4 603 365 324 1.05E5

Table 1. Comparison between the two approaches discussed
in Section 4. The target European option has the following
κ: (70, 70, 0.05, 1.0, 0.3).

We first give an example for choosing between the two
approaches in our workflow shown in Section 4, in terms
of relative error, hardware resource consumption and num-
ber of computational steps. We assume that the number of
timesteps (N ) is provided by the user and thereforedt is
fixed. The results and a static double precision EFD ker-
nel implementation reference are presented in Table 1. The
relative error is obtained by comparing the reduced preci-
sion results from the four designs to the double precision
result from the Black Scholes formula. It can be seen that
although the first approach has the smallest relative error,it
requires over 10 times more computational steps compared
to the second approach, since the first approach requires a
two dimensional search space(∆t,∆Z), we have no con-
trol over the total number of grid points or result precision.
The LUTs result in Table 1 shows the place and route re-
sult of the kernels under consideration; it is clear that the
hamming weight is not directly correlated to the amount of
LUT resource per dynamic kernel, since the number of LUT
consumed by the kernel generated using the first approach
is larger than the original kernel. On the other hand, the sec-
ond approach can reduce the amount of hardware resource
consumption as well as the number of computational steps,
compared to the original EFD kernel; it also provides the
same level of accuracy compared to the original scheme.
Therefore the dynamic kernel generated by our second ap-
proach is chosen for our workflow.

We now analyse the upper bound of reconfigurable area
of the dynamic EFD kernels found by our workflow, and
try to prove that it can reduce the required amount of pre-
served reconfiguration area, as well as reduce the number
of computational steps. One thousand American options
are randomly generated with different parameters covering
the types of parameters observed in the market; and each is
solved by an EFD grid withN = 365, which is a com-
mon industry setting for options with time-to-maturity of
one year under daily observation.

In the original tree-equivalent EFD grid setting the opti-
mal M is a constant equal to420; and in our workflowM
is determined by the error tolerance. All EFD results are
compared to the standard double precision EFD result with
N = 2000, which we consider to be the true result, to make
sure the error tolerance is not exceeded. To minimise the
noise from discretisation error, we assume that all options
are at the money so that the strike price lies exactly on the
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Fig. 6. Comparison of LUT usage per kernel between the
standard and optimised EFD kernel, based on place and
route result.

grid. Figure 6 shows the comparison of LUT usage per ker-
nel between the original and optimised dynamic kernels. It
can be seen that the optimises kernel always consume fewer
LUTs than the unoptimised original kernels. The maximum
LUT usage has been reduced from 906 to 710, indicating
a reduction of 22%. SinceN is fixed, the average number
of computational steps depends only onM . Our result in-
dicates that we have reduced the average ofM from 420
to 324, which is a 23% reduction. As a result, the area-
computation-time product is reduced by 40%.

6. CONCLUSION

This paper demonstrates a novel optimisation methodology
to adjust stencil based numerical procedures from the algo-
rithm level, so as to reduce both the hardware resource con-
sumption per kernel and the amount of computation needed
with given accuracy requirement, when mapping the algo-
rithm to reconfigurable hardware using dynamic constant
reconfiguration. As a result, less area is needed to support
run-time reconfiguration, and less computational steps are
required in the numerical procedure to obtain a result with
given error tolerance.

In a case study on a Virtex-6 XC6VLX760 FPGA, by
comparing one thousand randomly generated 23 bit fixed
point implementations after optimisation to those before op-
timisation, the upper bound of reconfiguration area is re-
duced by 22%; the average number of computational steps
is reduced by 23%; and the area-computation-time product
is reduced by 40%; while the numerical errors of the results
are kept below the error tolerant level used in industry.

Current and future work involves using more sophisti-
cated hardware estimation tools such as [12] and [13] to
improve the resource estimation function. Our long term
objective is to extend the proposed optimisations to address

trade-offs in speed, area, numerical accuracy, power and en-
ergy efficiency for a variety of applications and devices.
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