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ABSTRACT effectively and energy efficiently [2]. Higher performance

This paper demonstrates a novel optimisation methodol-and energy efficiency can be achieved by developing recon-
ogy to adjust stencil based numerical procedures from thefigurable versions of an application [3]. In addition, dyram
algorithm level, so as to reduce not only the amount of hard- ically reconfigurable EFD implementations on FPGAs can
ware resource consumption per kernel but also the amountave a factor of 4.7 performance improvement over a design
of computation required to achieve desired result accyracy using a static configuration [4].
when mapping the algorithm to reconfigurable hardware us- ~ This work extends our previous work [4] by making use
ing dynamic constant reconfiguration. As a result, less areaof carefully chosen coefficients for constant multipliess,
is needed to support run-time reconfiguration, and less com-as to reduce the amount of required hardware resources per
putational steps are required in the numerical procedure tokernel, and reduce the amount of computation required with
obtain a result with given error tolerance. We analyse onegiven result accuracy requirement. We discuss the applica-

thousand fixed point implementations on a Virtex-6 XC6V- tion of our work to the financial EFD method, though it is
LX760 FPGA for randomly generated option pricing prob- applicable to any stencil computation with constant coeffi-
lems, which are representative of industrial computation. cients. The main contributions of our paper are:

When comparing optimised implementations to the unopti-
mised ones, the reconfiguration area upper bound is reduced
by 22%; the average number of computational steps is re-
duced by 23%; and the area-computation-time product is re-
duced by 40%; while the numerical errors of the results are
kept below the error tolerant level used in industry.

1. INTRODUCTION

Ever since the financial crisis in 2008, the financial industr
has been demanding higher computational power to under-
stand its risk position in the market. The computationally
complex models the industry is using can benefit from cus-
tomised hardware accelerators for high computationaliine
put tailored to a particular requirement. Options are pop-
ular in the financial industry and pricing options usually
involves solving partial differential equations (PDEsh |
many cases a closed form solution cannot be found for a
PDE and numerical methods such as the Explicit Finite Dif-
ference (EFD) method must be used [1]. Although the EFD
method is widely used since it is relatively easy to appdy, it
computational complexity grows quadratically with incsea
ing accuracy.

e A novel methodology based on normalising option
parameters and matching statistical moments, which
optimises the coefficient values in EFD solvers in or-
der to reduce hardware resource consumption and num-
ber of computational steps in reconfigurable computa-
tion, while preserving result accuracy (Section 3).

A workflow realising the methodology with two ap-
proaches: one minimises hardware resource utilisa-
tion, while the other minimises the amount of compu-
tation required in the algorithm (Section 4).

An experimental evaluation of our methodology and
workflow based on the amount of hardware resource
consumed, the amount of computation required and
error analysis in a financial option pricing application,
showing that the area-time product can be reduced by
up to 40% for given accuracy (Section 5).

2. THE FINITE DIFFERENCE MODEL

The finite difference model solves the Black Scholes PDE
by discretising both time and the underlying asset pricd, an

The EFD method is often used in financial institutions mapping both onto a two-dimensional grid. There are three

to evaluate large portfolios involving multiple asset skes

main kinds of finite difference methods in common use: im-

and even running on a large corporate computational grid,plicit, explicit and Crank-Nicolson. We consider the ex-
the process can take several hours. Reconfigurable hardplicit mechanism as it is the most intrinsically parallati$e
ware such as FPGAs can be used to accelerate this procesaethod amongst all three.
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Fig. 1. A5 x 6 finite difference grid, the grey elements  Fig. 2. Dynamic EFD kernel for American option pricing.
show f; ; and the three values it depends on in time step

i+ 1. Note that(z)™ = max(z, 0)

The Black Scholes PDE with one variable (asset) fol- jAS is the early exercise price of the American option.
lowing geometric Brownian motion has the following form:

ij = afit1,j-1+ Bfit1,; + v ir1,41 3)
af Saf 1 25«282f _ 1 AM __ K iAS EU 4
E-FT %-F 57 @—Tf 1) Jij = max(K —j 7fi,j) (4)
wheref(S,t) denotes the price of the optiofi,denotes the _ .
value of the underlying assetjenotes a particular time,is Figure 1 shows how the EFD method updates nodes in a

the risk-free interest rate,is the volatility of the underlying 5 > 6 grid. As an initial condition, the values for nodes in
asset. For convenience we define the option describer  the rightmost column is calculated byax(K — Sy 1,5, 0)

(S,K,r t,0), whereK is the strike price of the option. and the algorithm runs from right to left.
Suppose the time to maturity for the option7is We . _
discretiseT” by dividing it into N equally spaced intervals: The convergence of the EFD method is defined as the

At = T/N. We then determine an asset pricgs., and rate at which the error decreases with the number of com-
Swin for the option and discretise the asset price space beputational steps [6]. Equations 5 illustrates the relatiop
tWeenSmax and Sy, into M equally spaced intervaldS. between the number of time stepsrequired to achieve a
Smax and Spin represents the maximum and minimum as- given accuracy, the number of computational steps in the
set prices under consideration in the EFD grid. We gall  9rid and two main sources of errors. The discretisation er-
the number of time steps and the number of asset price ror is caused by transforming the model from a continuous
steps,V and M together define a particular grid setting for mathematical space to a discretised computational space;
the EFD model. In addition, we define the number of com- and finite precision error is caused by using number rep-
putational steps (problem size) to b& x N. resgntations of insufficient accuracy. For convenience we

An efficient approach to compute within a finite differ- define an elastic factor = AZ/At. If the number of time
ence grid can be obtained by a change of variable tech-StePS/ is given, the convergence of the EFD method can
nique [5]. By discretising ovef = In S instead ofS, Equa- only increase by decre_asmg(lncreasmg the number of as-
tions 2 can be obtained, where stencil coefficients and ~ SEtprice stepa/) and vise versa.

~ are constants throughout one grid. Num. Comp. Steps o< N2/

1 At 9 At Discretisation Error < N*, z = f(At,\) <= —1

0= ———(—75(r—0"/2)+ —07)
L+rAt: 2AZ 2AZ Finite Precision Error o< sqrt(N) (5)
1 At
= 1— 2

=1om Az

1 At 2 At In previous work we have described a parallel hardware
TTIE rAt(2AZ (r—o%/2) + YN ) @) architecture which makes use of dynamic constant reconfig-

uration [4]. The work demonstrates the effectiveness of dy-
The payoff functionf; ; can have different forms, for namic constant reconfiguration by studying the use of fixed
example, Equation 3 and Equation 4 are the payoff functionspoint constant multipliers in a parallel option pricing lairc
for European and American options respectively, whi€re tecture, as shown in Figure 2.



3. OPTIMISING DYNAMIC CONSTANT The first step makes use of fixed point number represen-
RECONFIGURATION tation, by making sure that the finite precision error dods no
effect the quality of the result. Our previous work claims
We propose that three key steps should be followed in op-that fixed point numbers should not be used for option pric-
timising high performance designs in reconfigurable hard- ing, because the range of the inputs is not predictable, and
ware from software implementations: unlike Monte Carlo simulations, finite precision error ac-
) cumulates in the EFD scheme [2]. A normalisation proce-
e use custom data formats to reduce area while preserv-re can be used to overcome this. Equation 3 and Equa-
ing sufficient result accuracy; tion 4 have type: — R, wherex = (S, K, r, t, o) describes
an option. Although it is possible to define a range for all
five inputs, the intermediate variabl¢s;; ;—1, fi+1,; and
fix1,541 can range from zero to strike pri¢e for an Amer-
e use carefully selected constants to reduce the upper€an put option. Sinc® < K < oo, we need to reserve
bound of reconfigurable area. enough bits for the integer part of the fixed point represen-
tation to avoid integer overflow id. The normalisation
Each step yields higher performance than the previous stefprocedure is shown in Equations 6 to narrow down the nu-
mainly due to higher level of parallelism achievable given merical range of the intermediate variables. The optiocepri
a fixed amount of hardware resource. Recent work focusess then calculated by = f’ x K, wheref’ is the result from
on applying the first step and trying to reduce the floating the normalised space.
point data-width aggressively, in order to trade the amount
of computation for hardware resource consumption. Forex- g _ v _ ¢ g/ _ 5 M =rxt o =axvVi (6)
ample, using a low precision data path, higher performance ’ K’ ’
can be achieved by increasing sampling points in a numer-
ical integration routine [7]. The second step has been ad-
dressed by [4] and [3].
To the best of our knowledge, the third step has not been
published in public domain. This paper discusses following
and going beyond the third step to optimise the EFD op-

tion pricing model. One of the main concepts to optimise which yields small fixed point constant multipliers (mea-

the dynamic constant reconfiguration is to minimise the up- .
per bound hardware resource consumption of the reconfig-Sured n numl:')er. of.consumed LUTs, compared fo the largest
urable area (the gray area in Figure 2), so that higher Ioaral_(:onstantmultl_pll_er in the same number format). To make the
lelism can be achieved by placing more dynamic kernels in constant multipliers used in the EFD kernel_ consume Iegs
an FPGA. LUT resource, to one extreme, we woulbg like the stencil

The idea of our optimisation process is balancing the fol- cpefﬂmentSa, B a?dlto be in the folrrn% (£ € 7) n |
lowing two goals: (a) to reduce hardware resource consump—bmary' As a resu t, the corjstgnt mu t}p 1ers can _be imple-
tion by carefully setting the EFD grid, so that the constant mented by shift operators in f'Xe.d point arithmetic, which
multipliers used in each dynamic kernel consume minimal consumes less LUTS than those implemented by adders.
amount of hardware resource; (b) to reduce the number of
computational steps required in the EFD grid, so that the
result meets the precision requirement without wasting un-
necessary computation.

There are three key steps in the process:

e use constant specialisation and reconfiguration to fur-
ther reduce area and energy consumption;

As a result, the previously unbounded varialflés now
bounded from zero to one, allowing the use of fixed point
numbers in our design.

As the second step, we try to identify nicer constants

Although we would like to make the constant multipliers
consume as less LUTs as possible, the stencil coefficients
must satisfy Equations 7, which are the first two require-
ments to guarantee the result convergence [5].

1. normalising the option coefficients so that fixed point
datapaths, which consume less hardware resources, atf+y=1a>0 >0 v>0. @)

are used instead of floating point datapaths; In addition, all lattice based numerical procedures mustima

2. identifying the nice constants in fixed point number Statistical moments of the underlying asset process. For
representation which yield constant multipliers that Stock option pricing, the Black Scholes PDE is constructed
consume less hardware resource than the biggest conby creating a delta-hedged riskless portfolio, based oga lo
stant multiplier of the same number format; and adjust normal process which describes the underlying asset price

the EFD algorithm to make use of the nice constants; movement, as shown in Equation 8, whei€ is a Wiener
process.

3. ensuring the number of computational steps required )
in the optimised EFD scheme is not larger than the dinS = dZ = (r — U—)dt L odW. ®)
original scheme. 27 '



Such process has the following mean and variance over a St jor
discretised time periodt [1]:

1 AN >

w=(r— 502)At, Var = o2 At 9) &

[%2]

5

The EFD procedure must match meamand variancel/ar AZ >

to ensure result convergence [1]. The speed of convergence
is determined by how well the procedures matches higher
moments such as skewness and kurtosis, the higher the con- Adjustable
vergence speed, the less number of computational steps is
need(_eld to Obta'ﬂ aresult ofr(]je3|rr]ed accurarc]:y. The tr'n?;malFig. 3. Relationship between the stencil parametersand
stencil used in the E.FD method has enough degrees Ol T4 ndAZ. Note that user can vaxt and AZ to obtain dif-
dom to match one higher moment (skewness or kurtosis) [8]’ferent stencil parameters
although as long as the first two moments match and Equa- P '
tions 7 are satisfied, the stencil coefficientss and~ can
vary while the EFD result is guaranteed to converge to the
true result.

Figure 3 illustrates the relationship betwe®t AZ and
the stencil coefficients in an EFD grid. To ensure that the

relative error

0.003
0.0025

statistical moments described in the stencil match the the- 0.003 0002
oretical moments described in Equations 9, the following oo 00015
equality must hold: oous 05
0.001
w=y', Var = Var', (10) oooes ’
W =axdZ —vyxdZ, (11)
Var' = a x (dZ — p/)? + B x (1')? +v x (dZ + u')*. o
(12)

Variablesy and Var are defined in Equations 9. Solving
Equations 7 for the stencil coefficients g and~y gives us
the coefficients in the form dfAt, AZ, k) — R, similar to Fig. 4. Relative error against dt and where\ = AZ/At.
those in Equation 2. This relationship can be used to ex-
plore the stencil coefficients space and find smaller cohstan
multipliers to be used in the dynamic EFD kernel. Figure 5 However, with given error tolerance, the tree-equivaldfiDE
shows one example of the change in the values of the co-grid might not be the optimal setting.
efficientsa, 3 and~ against\ = AZ/At, while At stays Figure 4 shows a typical graph of relative error between
constant. It can be seen that these coefficients are alhconti the Black Scholes formula result and the EFD result for the
uous convex functions againstwhich increase or decrease same at-the-money European option as in Figure 5 using
monotonically within range [0,1]. The relative error, defin ~ double precision arithmetic. It can been seen that, the-abso
as the absolute difference between the EFD result and thdute error decreases monotonicallyasandAZ = At x A
Black Scholes formula result using double precision arith- becomes smaller. This means, as long as the result accuracy
metic (r.e. = |resultgrp — resultps|), is also shown in  meets the accuracy requirement, it is possible to reduce the
Figure 5 for eachh\. It can be observed that the relative error number of computational steps by increasing bathand
increases with the asset price st&@, with exceptions at  A. In addition, since it has been shown that the continuous
the left boundary when one of the coefficient becomes very (At, ) space has an analytical mapping to the stencil co-
close to zero and conditions specified in Equations 7 are noefficients space in Figure 5, we have defined a valid search
longer valid. space for step two without affecting result accuracy. It is
As the third step, we discuss the number of computa- worth mentioning that, similar to Figure 5, the boundary er-
tional steps required in the EFD algorithm. The EFD method ror becomes significant wheAZ becomes small enough
requires the smallest number of computational steps to conand Equations 7 no longer hold.
verge to the true result, when both the model skewness and
kurtosis are close to their theoretical values, one common

practice is to set the EFD grid equivalent to a trinomial {ige 4. OPTIMISATION APPROACHES

1Any mathematical tool with a symbolic solver, such as Matheraatic 1N this section we _diS(_:USS two approaches f(?r step; two and
can be used for this purpose three of our optimisation process described in Section 3.
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Algorithm 1 Simple Target Function
e X Input: At = size of time stepAZ = size of asset price step
Trinomial Tree Setting ..".- . - 0.0025 Constant r ando-
Output: « = utility value for the optimisation routine
1: Calculate(a, 8,7): use Equation 2
2: Obtain the numerical differences,, ¢z ande, from
ideal constantsc(,, cg, ¢y): €a/8/y = @ — Ca/B/~
3: Accumulate penalty;: to minimises,, €3 ande,

- 0.002

- 0.0015

Coefficients Values
Relative Error

100 4: Accumulate penalty,: to ensure the constraints (Equa-
tions 7) are met
1 00005 5. Calculate utility valueu: uw = p; + p2

40

A

Fig. 5. The relationship between values of the coefficients ., ,_ o x (dZ — w’+ B8 x (—=w)” + 7 x (dZ + p)°

{a, 8,7} and X (left y-axis), whereh = AZ/At; and the Var'3/4

corresponding relative error between the EFD result and the (13)
Black Scholes formula result (right y-axis). Note that irsth ax (A7 — )+ B x (—w)* +~ x (dZ + )
case the European option has the following paramefees: Kurt' = ( W+ B Vér,g )y x( 2
70, K = 70,t = 3.0,r = 0.05,0 = 0.9, At = 0.01. (14)

Algorithm 2 Moment Matching Target Function
Input: At = size of time stepAZ = size of asset price step
The first approach tries to map directly from hardware to Constant: » ando
the EFD algorithm. Knowing a set of constants (cs, c-) Output: v = utility value for the optimisation routine

urich ieldsmal consant muplers e PIORCIE. . Calcuat . Var, Sk, Kurl):_obtain mean, varr-
pprop ance, skewness and Kkurtosis using the moment-

cients as close to these constants as possible, so as tereduc . . L
hardware resource usage by a dynamic kernel. A multidi- generatmg function of a standar_d normal distribu-
mensional minimisation problem can be formed, where vari- 1" [9], e.9.  and Var as in Equations 95kew = 0
ablesAt andAZ are the search space andndo are prob- andKurt = 3 ) i

2: Calculate(, 3,7): by solving Equation 10

lem dependent variables. The target function of the min- )
3: CalculateSkew’, Kurt’: the skewness and kurtosis of

imisation problem is shown in Algorithm 1 which returns ORel =
a utility valuew; we minimiseu to find appropriate stencil the stencil using the standard statistical approach based
ondata point§fi1 1, fi+1,5, fi+1,5+1) and their cor-

coefficients for the EFD grid. This algorithm implicitly as- : -1 '
sumes that the amount of hardware resource consumed by ~responding probabilitiegy, 3, v), an example is shown
shown in Equation 13 and Equation 14

the constant multiplier is closely correlated to the hangnin
weight of the constant. In addition, Algorithm 1 requires al ~ 4: Calculate the difference between theoretical and stencil
the three coefficients to be close to a ‘nicer’ set of constant third and fourth order momentSsiew , € Kurt: €Skew =
which is not always possible since coefficients3 and~ |Skew — Skew'|, € gyre = |Kurt — Kurt'|
are not free variables; in fact, according to Figure 5 theghr 5. Calculateu: based o siew, € kure @Nda, 3,7
coefficients has a one-to-one mapping to each other. There-
fore the valid search space is limited. Moreover, since the
user has no control ovekz or AZ in this case, a valid set  fast convergence of the final result, since the setting makes
of coefficients might result in extremely smalk andAZ,  the grid equivalent to a trinomial tree. However, the algo-
which may increase the problem size significantly and offset rithm fails to address the hardware resource consumption of
any benefit gain by this optimisation routine. the constant multipliers. To overcome this limitation, we
define a resource estimation functioes(R) — N, which,

The second approach is designed to reduce the numbegiven a constant coefficient, returns a positive integer rep
of computational steps needed with given accuracy require-resenting the amount of hardware resource used by the cor-
ment. Algorithm 2 shows a target function of a multidimen- responding constant multiplier. Since edckt, AZ) com-
sional minimisation process to match the EFD stencil stenci bination can be mapped to the stencil coefficients analyti-
skewness and kurtosis to the theoretical values. cally, it is possible to search in a limitgd\t, AZ) space

The EFD grid setting found by Algorithm 2 guarantees



for nicer constants such thdt € [At — 1, At] anddZ € Algorithm 3 Improved Algorithm

[AZ — 2, AZ], wheree; ande, are small constants such [nput: At = size of time stepAZ = size of asset price step
that both the number of time stepsand the number of asset  Congtant: r, o, £; ande,

price steps)/ in the EFD grid stays the same as the original Qutput: «, 3, = the coefficients that yield smallest con-

tree-equivalent grid setting. o stant multipliers, without affecting the number of computa
We now analyse the statistical possibility of a smaller {jqnq steps required for a given accuracy

dynamic kernel by searching in the limitéd¢, AZ) space.

To begin with, we assume that, due to complex optimisation
techniques applied, the outpuv{y 1) of the resource es-
timation function of constant multipliers is a uniformlysdi
tributed random variable with possible outcomes, whefe ;
depends on (a) the number of adders used to implement the ~ 'acy requirement _
constant multiplier which is directly related to the number ~3: Set minimal hardware resource consumptios oo
of bits in the chosen number representing format (b) the im- 4: for dt=At to At — e, do

1: CalculateAt, AZ: using Algorithm 2 to obtairA¢t and
AZ which yield a tree equivalent EFD scheme

2: Increasing boti\t and A Z to find an EDF grid setting
with less computational steps that meets the given accu-

plementation detail of the constant multiplier library iseu 5. fordZ=AZt0AZ —eydo
For simplicity it is assumed tha¥, ;7 € {1...L}, therefore 6: Calculate locak’, 5',~": usingdt anddz _
the probability of getting a particular reconfigurable isgft 7: Calculate local hardware resource consumption

] ) o Nl u =res(a’) +res(B') + res(y’
in a kernel withN,,,,; multipliers isC(Nryr) = [[ P(4), (o) (&) ™)

Ea 8: if u' < wuthen
wherei € {1...N;,,} is the index of a multiplier, and® (i) 9: a=d,f=p7=9
is the probability of the compiler generating a multiplier ~ 10: end if
which consumesVy ;7 resource. Sinc&z 7 is uniformly 11:  end for

distributed,P (i) = 1/L. As a result, the possibility to get  12: end for
a dynamic kernel with three coefficients each consuming
Nrur or less hardware resource (i5/L)3. Therefore, if

At andAZ are free variables, on average we can find a set res(f1) + res(v1). We have now obtained indicators

of constants which halves the hardware resource consump- c1, e; andry for the first approach.

tion (with probability(1,/2)?) by trying eight different com-

binations. Although in our cas@t andAZ have a limited (4) Repeatthe first three steps but label the base case with
range, a local optimal can still be found. We therefore pro- index 0 and use Algorithm 2, to obtain indicatets

pose an improved version of the second approach, as shown eg andrq for the tree-equivalent EFD grid, add index

in Algorithm 3. Otosif eg < e.

To make the best use of the two approaches, we propose o _ _ S
a workflow to find small constant multipliers for EFD dy-  (5) Similarly, use index 2 and Algorithm 3 to obtain indi-

namic kernels, while reducing the number of computational catorscs, e; andr for the second approach, then add
steps required with given accuracy requirement. We assume index 2 tos if ez < e.

that an option pricing problem € &, the true value of the ) -

optionv € R, an error tolerance level € R, and asetof ~ (6) Obtain area-computation-time produt = ¢; x
stencil coefficients € (R?) that yields small constant mul- ri, i € s, choose approacdtwith d; = min(d;|j € s).

tipliers are known before hand. The workflow comprises the

following steps: It is worth considering the validity condition for apply-

ing the optimising approaches, given that the optimised so-
(1) Label the first approach with index 1. Based®n lution should not be slower than the original one. The execu-
andc, use Algorithm 1 to findAZ; and Aty; then tion time T of the original dynamic design can be calculated
derive the stencil coefficients, 51,71 ), the number  as:
of time stepsVy, and the number of asset steys for
the EFD grid. Calculate the number of computational Ty =
stepse; = M, x Nj in the grid. Pd
wherec, is the number of computational stepg,s the cy-
cle time,p, is the number of processing elements (kernels)
in the dynamic design, and ; is the reconfiguration time.
Similarly, the execution timé&,,, of the corresponding op-
timised design can be calculated as:

cqg X tg

+ tnd (15)

(2) Based on results from (1), calculate the EFD option
price v1, and find the erroe; = v — vy. If e; < e,
add index 1 to a set which stores indices of valid
approaches.

(3) If e; < e, use the stencil coefficients from (1) and .
the resource estimation function, to estimate the re- Topt = Copt X Lopt + tropt + tecarch (16)
source consumption per EFD kerngl= res(a;) + Popt



WheIE copr, oty Popt ANdopr dENOIe the SaMe parame: | e o G st s 400 | 13665 |
ters as above for the optimised design, and,. denotes Original 23bit Dynamid 1.52E-4| 732 | 365 | 420 | 1.36E5
the time it takes to search for the better constants. For sim-| = “rirst approach | 1.2E-7 | 881 | 1146|1818| 2.08E6
plicity we assume the optimisation process has negligible | second Approach | 1.41E-4| 603 | 365 | 324 | 1.05E5
impact on cycle time, hendg = t,,+ = tq. TO achieve a
performance benefit, the following condition is required:

Table 1. Comparison between the two approaches discussed

Topt <Tq in Section 4. The target European option has the following
Copt X te cq X te k: (70,70,0.05,1.0,0.3).
“opt 7 clk + tr,opt + 7fsearch < “4 ek + tr,d
Popt Pd
tecarch < Lol (Cd _ Copf) F(trg —tropt) (A7) We first give an example for choosing between the two
DPda  Popt approaches in our workflow shown in Section 4, in terms

of relative error, hardware resource consumption and num-
ber of computational steps. We assume that the number of
timesteps V) is provided by the user and therefafe is
fixed. The results and a static double precision EFD ker-
nel implementation reference are presented in Table 1. The

relative error is obtained by comparing the reduced preci-
> + (tr.d — tropt) (18) sion results from the four designs to the double precision

result from the Black Scholes formula. It can be seen that
If ¢4 > Coptr Pd < Popt @NAt,q > by op, the validity of although the first approach has the smallest relative dtror,
the optimisation process is guaranteed. In our experiment, requires over 10 times more computational steps compared
depends oV and M, andp andt, depends on the recon- to the second approach, since the first approach requires a
figurable area. Therefore, if the optimisation process andtwo dimensional search spa¢at, AZ), we have no con-
reduce both the reconfigurable area avicand M, it will trol over the total number of grid points or result precision
benefit the overall execution time. The LUTSs result in Table 1 shows the place and route re-
sult of the kernels under consideration; it is clear that the
hamming weight is not directly correlated to the amount of
LUT resource per dynamic kernel, since the number of LUT
consumed by the kernel generated using the first approach
is larger than the original kernel. On the other hand, the sec
ond approach can reduce the amount of hardware resource
consumption as well as the number of computational steps,
compared to the original EFD kernel; it also provides the
same level of accuracy compared to the original scheme.
Therefore the dynamic kernel generated by our second ap-
proach is chosen for our workflow.

We now analyse the upper bound of reconfigurable area
of the dynamic EFD kernels found by our workflow, and
try to prove that it can reduce the required amount of pre-
served reconfiguration area, as well as reduce the number
of computational steps. One thousand American options
are randomly generated with different parameters covering
the types of parameters observed in the market; and each is
solved by an EFD grid withV = 365, which is a com-

In this experiment the search timg,,..;, is negligible since

it is possible to search for the better constants beforefaand
each option and use table lookup to load designs at runtime
just like the original dynamic design. We therefore have:

C C
0 < ter (d — ot
Pd Popt

5. RESULTS

In this section we examine the effectiveness of our work-
flow discussed in Section 4. We use the Nelder-Mead multi-
variable minimisation routine in GNU scientific library to
implement our algorithms. The fixed point error analysis is
based on the MPFR library [10]. The result is produced ac-
cording to the error tolerant level used in industryvhich
requires the difference between the reduced precisioitresu
and the double precision result to be smaller tbah— 4;
however, the workflow can be tuned to accommodate arbi-
trary error tolerant level by adjusting the number format.
The 23 bit fixed point number format with 1 bit for inte-
ger and 22 bit for fraction is used in our implementations,
as it has been used in our previous work [4] and the finite
precision error in the result is always bel@# — 4 com-
pared to double precision floating point result for the EFD
computation. The FloPoCo library [11] is used to gener- : : . o .
ate dynamic kernel descriptions with different stencilfeoe mon 'ndUStrg s%ttl_rrg fg ' optlt(_)ns with time-to-maturity of
ficients in VHDL. The FloPoCo library is also used as the one year un. (_ar alyo serva on. ) i )
resource estimation function in our workflow. All VHDL In the original tree-equivalent EFD grid setting the opti-
kernel descriptions are placed and routed on a Xilinx Virtex Mal M is a constant equal t20; and in our workflow/

6 XC6VLX760 FPGA using ISE 13.2 implementation tools. S determined by the error tolerance. .AII EFD results are
All dynamic designs found by our workflow are compared compared to the standard double precision EFD result with

to the 23 bit fixed point version of the unoptimised dynamic v = 2000, which we consider to be the true result, to make
designs presented in [4]. sure the error tolerance is not exceeded. To minimise the

noise from discretisation error, we assume that all options
2private correspondence with J.P. Morgan Chase are at the money so that the strike price lies exactly on the
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