
FIELD PROGRAMMABLE LOGIC AND APPLICATIONS

Modular dynamic reconfiguration in Virtex FPGAs

P. Sedcole, B. Blodget, T. Becker, J. Anderson and P. Lysaght

Abstract: Modular systems implemented on field-programmable gate arrays (FPGAs) can benefit
from being able to load and unload modules at run-time, a concept that is of much interest in the
research community. Although dynamic partial reconfiguration is possible in Virtex and Spartan
series FPGAs, the configuration architecture of these devices is not amenable to modular reconfi-
guration, a limitation which has relegated research to theoretical or compromised resource allo-
cation models. Two methods for implementing modular reconfiguration in Virtex FPGAs are
compared and contrasted. The first method offers simplicity and fast reconfiguration times, but
limits the geometry and connectivity of the system. The second method, developed recently,
enables modules to be allocated arbitrary areas of the FPGA, bridging the gap between theory
and reality and unlocking the latent potential of dynamic reconfiguration. The cost of this advance-
ment is increased reconfiguration time. The second method has been demonstrated in three appli-
cations, including the first reported implementation of modular reconfiguration in a Virtex-4
device.

1 Introduction

The transistor density of field-programmable gate arrays
(FPGAs) has reached a level where an entire system may
be implemented within a single device. A complex system
is generally composed from many functionally discrete
modules that are connected to form a coherent whole. In
some cases, where the requirements on the system are time-
variant, not all modules need to operate concurrently. An
unused module resident in the FPGA will waste power,
area and cost, and therefore it would be advantageous if
modules are able to be loaded only when an application is
invoked and removed again once the application has
terminated.

There has been a large amount of research in the area of
dynamic modular systems in FPGAs [1–5]. These are pre-
dicated on the property of dynamic reconfiguration, where
parts of the user logic inside the FPGA are replaced while
other active circuits operate uninterrupted. This technique
becomes more useful as transistor densities increase such
that complete systems are implemented within a single
FPGA. Without dynamic reconfiguration, the entire
system would need to be disrupted every time a change is
needed. Moreover, with configuration bitstreams for the
largest devices now exceeding 45 Mbits [6] (Fig. 1), there

is increasing impetus for composing systems as needed
from a few small partial bitstreams rather than storing
many large complete bitstreams.

However, module-based reconfiguration, where the logic
undergoing replacement occupies an arbitrary region of the
FPGA, has not been intrinsically supported in FPGAs since
the demise of the Xilinx 6200 series. Although the Virtex
and Spartan series of FPGAs are dynamically reconfigur-
able, the essentially linear organisation of the configuration
memory is not amenable to the implementation of module-
based systems with 2D floor-plans. As a result, research has
tended to be either theoretical, or severely circumscribed,
typically by reducing the resource model to 1D.

In this paper, two methods for implementing modular
partial reconfiguration on Virtex FPGAs are compared. In
the first method, applicable to Virtex, Virtex-II and
Virtex-II Pro devices, modules must occupy the full
height of the device and the topology and connectivity are
limited to 1D. This we term ‘direct dynamic reconfigura-
tion’: it is fast and simple, and has been previously docu-
mented by Lim and Peattie [7]. The second method,
recently developed by the authors, demonstrates how 2D
modular systems can be made tractable through the use of
an innovative bitstream merging process and reserved
routing. This enables modules to be assigned arbitrary rec-
tangular regions of the FPGA and relocated at run-time,
bridging the gap between theory and reality. Moreover, it
is possible to achieve much greater flexibility in the connec-
tivity of the system. The costs of these advancements are
increased complexity and reconfiguration time.

The novel second method, termed ‘merge dynamic
reconfiguration’, has similarities to the PARBIT tool and
design methodology developed by Horta et al. [8] for the
FPX platform. PARBIT operates on bitstreams, inserting
modules into a target area of a device, and even re-targeting
the bitstream for a different sized device [9]. The work pre-
sented in this paper differs most significantly in the follow-
ing ways: (1) static routing is possible in reconfigurable

The Institution of Engineering and Technology 2006

IEE Proceedings online no. 20050176

doi:10.1049/ip-cdt:20050176

Paper first received 1st November 2005 and in revised form 22nd February 2006

P. Sedcole is with the Department of Electrical and Electronic Engineering,
Imperial College London, SW7 2AZ, UK

B. Blodget, J. Anderson and P. Lysaght are with the Xilinx Research Labs,
Xilinx Inc., 2100 Logic Drive, San Jose, CA 95124, USA

T. Becker is with the Department of Computing, Imperial College London,
SW7 2AZ, UK

E-mail: pete.sedcole@imperial.ac.uk

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006 157

regions, (2) bitstreams are integrated at run-time, (3) the
target bitstream is read from configuration memory before
the integration operation, which enables (4) more sophisti-
cated integration operations to be used.

Another tool widely used in dynamic reconfiguration
research is JBits [10]. As with merge reconfiguration,
JBits uses bitstream information read from the device at
run-time, and has been used for logic relocation [11].
Significantly, the JBits interface is low-level and
architecture-dependent, and it does not integrate easily
with high-level design flows. This makes JBits more suit-
able for fine bitstream manipulations than module-level
reconfiguration and relocation. Addressing this problem
by combining JBits with a high-level HDL is the subject
of recent unfinished research [12].

The work reported here was originally published in the
work of Sedcole et al. [13]. This expanded paper provides
further details, and describes the application of the merge
dynamic reconfiguration method to the latest generation
of Xilinx FPGAs, the Virtex-4.

2 Virtex configuration architecture

The configuration architecture of the Virtex family of
FPGAs is described in a Xilinx Application Note [14],
and is essentially the same for Virtex-II [15] and Virtex-II
Pro [16] devices. The configuration is stored in SRAM
memory that can be read from or written to without
halting the device. The smallest unit of configuration
memory that can be read or written is a ‘frame’, which
spans the entire height of the device (including I/O
blocks) and a fraction of one column (Fig. 2).

It should be noted that Virtex-II/Pro FPGAs have the
characteristic of ‘glitchless dynamic reconfiguration’: if a
configuration bit holds the same value before and after con-
figuration, the resource controlled by that bit will not
experience any discontinuity in operation [17], with the
exception of LUT RAM and SRL16 primitives. It is there-
fore possible for a reconfigurable module to occupy an arbi-
trary area, provided that (1) the areas above and below the
module area do not contain LUT RAM or SRL16 logic and
(2) the configuration data written to these areas when the
module is replaced overwrites the existing configuration
with exactly the same values. Similarly, static, system-level
routing may pass through a reconfigurable region if its con-
figuration data are persistent when the module is
reconfigured.

The latest generation of Virtex FPGAs, the Virtex-4
family, marks a significant change in layout over previous
devices. As shown in Fig. 3, the configuration architecture
is still frame-based, but a frame spans 16 rows of configur-
able logic blocks (CLBs) rather than the full device height
[6]. Clock distribution regions are also aligned in blocks
of 16 CLB rows, unlike earlier Virtex devices, where
clock regions were defined to be quadrants. Note that I/O
blocks are arranged in columns (like all other resources)
rather than a ring. The Virtex-4 shares the glitchless
dynamic reconfiguration property of earlier devices, but
this now applies to all primitives including LUT RAM
and SRL16 logic.

3 Direct dynamic reconfiguration

In the direct dynamic reconfiguration process, reconfigur-
able modules are composed from complete frames of con-
figuration memory. This implies that a module occupies
the full height of the device, including the I/O at the top
and bottom of the reconfiguration region (Fig. 4). The
module may be a variable number of CLB columns in
width, and all logic and routing within the reconfiguration
region are dedicated to the module. Using this scheme, a
module may be replaced very simply by writing over the

Fig. 3 Virtex-4 configuration architecture

Fig. 1 Bitstream sizes for Virtex FPGAs Fig. 2 Virtex-II configuration architecture

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006158

existing configuration for the frames that coincide with the
module area, using a partial bitstream. ‘Bus macros’ are
predefined units of logic and wiring that ensure the locations
at which signals pass between the module and the rest of the
system are preserved from module to module. More infor-
mation on this method can be found in the work of Lim
and Peattie [7].

There are a number of limitations with this approach. The
design flow, which creates the bitstreams for the static
portion of the design and the modules, leverages the
Xilinx’s Modular DesignTM methodology, which restricts
the position of the modules in the logical hierarchy of the
design to the top level. Driver contentions can occur if
one module configuration is written over immediately
with another, which must be avoided by replacing the
module with the default empty configuration before
loading in the next module. For large devices, a full
height module is not the most efficient use of resources,
and timing closure can become problematic for modules
with large aspect ratios. Finally, although it is possible to
pass signals across the reconfigurable area via bus macros
on either side, it is highly probable that the signal path
will be re-routed during reconfiguration, making the
signal non-valid at this time. This means that while a
module is undergoing reconfiguration, the parts of the
system on either side of the module are isolated from
each other.

Although a port has not yet been performed, there is no
practical obstacle to the use of direct reconfiguration on
Virtex-4 devices. The reduced configuration frame size in
the Virtex-4 should ameliorate a few of the issues described
earlier, as modules would be 16 CLB rows in height (or a
multiple of 16) rather than the full device size. This
means resources can be allocated more effectively, and
static areas are not necessarily isolated from each other.

4 Merge dynamic reconfiguration

The merge dynamic reconfiguration method was created in
order to circumvent the limitations of direct reconfiguration,
and exploits the glitchless reconfiguration property of
Virtex FPGAs. As noted in Section 2, a statically routed
signal can pass through a reconfigured region unperturbed
provided the configuration bits associated with the route
persist in the new configuration. However, as the module
designs are placed and routed independently from the
static part of the design, the resources allocated to a static

route could also be used in one or more module
implementations. This is avoided through the use of
reserved routing: within a module region, certain routing
resources are always reserved for static routing and
modules must avoid using any of these resources, even if
unused by the static design. For example, in the Virtex
routing architecture, each horizontal and vertical channel
has 24 long lines and 120 hex lines as well as other more
local routing resources. Routing within a module uses
short wires, whereas static signals that pass through the
module are best routed on long wires. Therefore we chose
to allocate 100% of the long lines and 20% of the hex
lines within module regions to statically routed signals.
This choice is arbitrary and could be adjusted from appli-
cation to application.

Reserving routing provides a high degree of separability
between static and module designs; re-implementing place-
ment and routing for the static design does not mean module
designs must also be re-implemented. The cost incurred is a
reduction in the freedom of the router, and therefore poten-
tially lower quality routing. As yet, this has not been
quantified.

The production router in the ISE par tool has the ability
to follow very specific constraints, but unfortunately there is
no way to provide par with these constraints in the current
tool flow. Therefore a post-par re-routing step is performed
on both the static and module designs. It is possible but
laborious to do this by hand. This step was automated
with the use of a custom tool that can generate routing con-
straints on a tile-by-tile basis and give this information to
the production router.

Statically routed signals in module regions are important
in Virtex-II/Pro devices to avoid the isolation of static
regions. In the Virtex-4, isolation can be avoided by
routing static signals around module regions; nevertheless,
the reserved static routing technique is still useful.
Routing congestion and delay are reduced by routing
through module regions, and module regions can be
contiguous.

The second major innovation in merge reconfiguration is
in the way the partial bitstream is loaded. Rather than
writing the bitstream directly to the configuration
memory, the current configuration is read back from the
device and modified with information from the partial bit-
stream before being written back. This is performed on a
frame-by-frame basis, which minimises the amount of
memory required to store the bitstreams. A module may
occupy less than the full height of a frame, by only modify-
ing tiles which fall within a given boundary region. As a
result, it is possible to have two or more module regions ver-
tically aligned within the same frame-space. Clearly, this is
of particular use in Virtex-II/Pro devices. However, in all
devices in the Virtex family, this technique allows module
regions to be shaped and positioned arbitrarily.

Within the module region, static routing is preserved by
using an exclusive OR (XOR) operator to merge the
partial bitstream with the current configuration. The XOR
merge technique has a number of advantages, applicable
in all Virtex devices:

† Although it is still necessary to remove the module before
loading a new one, the same operation and bitstream can be
used for loading and unloading, as repeating the XOR oper-
ation returns the value to the original state (a � b � b ¼ a).
This reduces the amount of storage required, as a default
empty bitstream is no longer needed.
† As the module includes no information on static routing, it
is position-independent. This is significant, because it means

Fig. 4 Direct reconfiguration

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006 159

modules can be relocatable. To verify this, relocation has
been demonstrated in an example application (Section 5.2).
† A module can be loaded in several stages by separating
information into several bitstreams that are then effectively
overlayed on one another. An example where this ability is
useful is given in Section 5.3.

As Fig. 5 shows, the static and module bitstreams are
created in separate parallel design flows. Some information,
such as clock trees and bus macros, is common between
module designs and the static design. Within the bitstreams,
common information can be easily identified as a data bit
that is set to one in both the module and static bitstreams.
If information is present in both the original configuration
and the partial bitstream, it will be removed by the XOR
operation (as 1 � 1 ¼ 0). In order to prevent this,
redundancies are removed from the module bitstream in a
simple post-processing step: for each frame in the module
bitstream, a bitwise AND NOT operation is performed
on the module configuration data, using data from the
corresponding frame in the static bitstream. This
processing is computationally simple and has been fully
automated.

5 Experiments and applications

The novel merge reconfiguration method has been applied
in three applications, one of which (Sonic-on-a-Chip [18])
has been implemented on both Virtex-II Pro and Virtex-4
platforms. The applications are described in this section.
All scenarios employ the self-reconfiguring platform
reported by Blodget et al. [19] (Fig. 6). It should be noted
that although this was a convenient framework for develop-
ment, particularly as bitstream manipulation functions can
be easily added by extension of the existing driver, self-
reconfiguration is not a necessity and the functionality
could be provided by an external embedded processor or
even by a PC.

5.1 Software defined radio

In a collaboration between Xilinx, Inc. and ISR
Technologies, a demonstrator of a software defined radio

(SDR) has been developed. Although part of the radio is
software-based, the modulation and demodulation is per-
formed by hardware modules (peripherals on the processor
bus) that are loaded using dynamic reconfiguration.

Intended as a proof-of-concept, the demonstrator was
developed with a predecessor of the merge reconfiguration
method which allows for a single module design only per
reconfiguration region. In addition, static configuration
information is incorporated into the module bitstreams at
design-time, rather than at run-time. Nevertheless, the
SDR demonstrates the advantages obtained by exploiting
the property of glitchless reconfiguration: the modules are
less than the full height of the device (Fig. 7) and there
are hundreds of statically routed signals that pass through
the reconfigurable regions. Note that slice-based macros
(similar to those in the work of Huebner et al. [20]) were
developed to enable greater signal densities at module inter-
face points.

Fig. 5 Design flow for merge dynamic reconfiguration

Fig. 6 Self-reconfiguring platform

Fig. 7 Floorplan for the SDR demonstrator and the new com-
munication macros

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006160

5.2 Microprocessor peripheral

The second experiment was a test framework created
to assist the development of the merge dynamic reconfi-
guration method, and was used in particular to demonstrate
the re-targeting of a module bitstream. The test setup used
the Xilinx ML300 development board based on a
XC2VP7 part. The FPGA has 34 CLB columns, with one
PowerPC processor embedded towards the right-hand-side
of the device in columns 20–27. Owing to the layout of
the board, the external DDR-RAM memory is connected
to I/O blocks on the left-hand-side of the FPGA. Space
was allocated in columns 3–10 for two reconfigurable
modules placed one above the other. The signals from the
processor subsystem to the DDR-RAM are necessarily
routed through the area for the reconfigurable modules,
and must persist during reconfiguration, as the program
code and module partial bitstreams are stored in the external
memory. Two very simple bus peripheral modules (a single
register, and a one’s complimenting register) were
designed, which attached directly to the on-chip processor
local bus (PLB). The slice-based bus macros from the
SDR demonstrator were reused for this design.

Following the procedure for merge dynamic reconfigura-
tion, bitstreams for the static microprocessor subsystem and
the two modules were created in three separate implemen-
tation phases. The two module designs targeted the lower
of the two reconfiguration regions. The modules were suc-
cessfully loaded into and unloaded from the lower target
location.

As an extension to this application, module bitstreams
were re-targeted to the top location at run-time, as illus-
trated in Fig. 8. This was achieved by shifting all the
frame bits of the module partial bitstreams by 16 CLB
rows (corresponding to 1280 bits or 160 bytes).
Relocation is possible because the bus macro placements
are identical between the upper and lower target locations,
and the arrangement of resources in the new location is
identical to the original target area. In general, it may be
noted that the reconfigurable fabric in Virtex devices is
translationally symmetric; the fabric is formed by a repeated
periodic spatial pattern. In the vertical direction, the period-
icity of this pattern is one row for CLB resources and four
rows for Block RAM and embedded multiplier or digital
signal processing (DSP) blocks. Therefore using a vertical
shift to re-targeted modules requires the modules to be
aligned on four-row boundaries.

The exception to the translational symmetry is found in
the clock tree; configuration bits controlling clock-tree
branching are not associated with logic tiles but grouped
at the ends of each frame. Therefore these bits are treated
specially; they are excluded from the shift process, and
within each frame, all branches of a clock tree are
enabled if one branch has a bit set.

5.3 Sonic-on-a-Chip

In the previous two examples, modules are connected
directly to the PLB bus; this is not the only, nor necessarily
the most effective, connectivity model. The final study
involved the application of merge reconfiguration to two
Sonic-on-a-Chip prototypes. Sonic-on-a-Chip, an architec-
ture for reconfigurable video image processing systems,
uses a custom bus structure and protocol, which are
designed to be an effective and efficient solution specifically
for dataflow applications. The first of the prototypes was
implemented on a Virtex-II Pro part, using the ML300
development board, whereas the second has been developed
for the Virtex-4-based ML401 board.

The Virtex-II Pro implementation used specially
designed tristate buffer macros to lock bus routing to
specific wires. Newer FPGAs, such as the Virtex-4, do not
incorporate tristate buffers, therefore a logic-OR bus struc-
ture was developed to replace the tristate buffers. In both
cases, it was required that the bus operation continue unin-
terrupted during reconfiguration, implying the tristate
buffers (or equivalent) be disabled. This created an interest-
ing problem, as signals sourced from inside the module are
indeterminate during reconfiguration, including the disable
signals.

The chosen solution to this involved a multiple-phase
module reconfiguration process. The static and module
designs were implemented as per Fig. 5. For each module
implementation, a second design was created by copying
the original implementation and isolating the module from
the bus wires by disconnecting the bus drivers. Two
partial bitstreams were generated, the first containing the
configuration for the disconnected module, and the second
comprising the difference between the two designs. By
removing all redundancies from the second bitstream, it
carries just the information required to connect the
module to the bus lines. The module could thus be loaded
with two successive merge operations, as depicted in
Fig. 9. Removing the module is done by repeating these
operations in reverse.

Note that a reset signal is generated locally to hold the
module in a known state once the reconfiguration is com-
plete. A third phase dynamic reconfiguration step was

Fig. 8 Illustration of modules loaded in default and re-targeted
positions

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006 161

used to deassert the reset signal when the module state has
stabilised, although this is not shown in the figure.

Fig. 10 illustrates the placed and routed static design in
the Virtex-4 XC4VLX25 device. Two module regions are
defined, which are aligned with the clock regions in order
to use the regional clock buffers [21] for locally generated

clocks. As the figure shows, some bus macros used in this
implementation are located at the module boundaries.
However, using reserved routing enables bus macros to be
embedded within the module region. This is achieved by
designating all routing as static in the CLB tile, where
static signals connect to the macro, as shown in Fig. 11.
Embedded macros increase connectivity and floorplanning
choices.

5.4 Configuration overhead

The use of a read–modify–write operation to configure
partial bitstream comes at a cost of increased configuration
time. In the applications examined, the operational time of
an instantiated module is in the order of seconds to minutes
or even hours; thus the reconfiguration time overhead in
both direct and merge configurations is orders of magnitude

Fig. 9 Module loaded in multiple phases

Fig. 10 Sonic-on-a-Chip in an Virtex-4 Fig. 11 Embedded bus macros

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006162

smaller than the operational time. Nevertheless, the respon-
siveness of the application to a user-initiated request is
directly related to the absolute reconfiguration time, and is
therefore of interest.

Measurements ascertained that the configuration time for
a direct reconfiguration operation can be approximated by

Td ’ fd �
1

t
þ

1

wd

� �

where fd is the equivalent number of frames in the bitstream
(including pad frames and other information), t is the rate at
which a frame is transferred from memory to the on-chip
peripheral bus (OPB) peripheral and wd is the rate at
which a frame is written into the internal configuration
access port (ICAP). Note that fd is found by dividing the
total partial bitstream length by the frame size.

Using the read–modify–write operation requires the
partial bitstream to be processed in software to identify
which frames need to be read from the device; the frames
must be read, parts of the frame be modified and the frames
written back. The configuration time is approximately

Tm ’ fm �
1

p
þ

1

r
þ

c

m
þ

1

wm

� �

where fm is the number of actual configuration frames to
merge (which excludes pad frames and other information),
p is the rate at which the bitstream is processed, r is the
rate at which frames are read from the device, m is the modi-
fication rate per row of CLBs, c is the number of CLB rows
the module occupies and wm is the rate at which frames are
written back to the ICAP. It should be noted that when
reading configuration information, the data are prepended
by a ‘pad’ frame. Similarly, when writing a configuration,
an extra pad frame is required after the final frame of real
data. This means operating on a single frame at a time is
much slower than operating on several contiguous frames
in one go, and is one reason wm� wd.

In an earlier work, we calculated estimates of the
parameters based on non-optimised driver code, which
had significant inefficiencies in data movement [13].
Improvements to the software have since been made by
removing unnecessary, extraneous code, function calls
and memory synchronisations. Using the Virtex-4-based
Sonic-on-a-Chip platform (MicroBlaze processor, system
CPU/bus clock speed 100 MHz, 8 kB instruction cache),
we obtained the following values for the parameters (all
in frames/ms unless noted): t ¼ 52.6, wd ¼ 580, p ¼ 333,
r ¼ 27.2, m ¼ 147 CLB rows/ms, wm ¼ 11.4. From these
values it can be calculated that the time for the read–
modify–write configuration in this case is between 6.2�
and 11.4� slower than that for the write-only configuration,
depending on the height of the module. For example, the
modules in the Virtex-4 Sonic-on-a-Chip implementation
are 36 columns wide and 16 CLB rows high; the partial bit-
stream has 795 equivalent frames (fd) or 790 real frames
(fm). The reconfiguration times are Td ¼ 17 ms for the
direct case, and Tm ¼ 187 ms for the merge method. It
may be observed that although improvements have been
made in the driver, in both reconfiguration techniques
configuration times are still limited by data movement
and software complexities.

6 Conclusion and future work

This paper presented two dynamic reconfiguration methods
for modular systems in Virtex FPGAs. The first method uses
partial bitstreams directly to reconfigure the FPGA.

However, owing to the organisation of the configuration
memory, in Virtex-II/Pro devices, modules exclusively
occupy complete vertical sections of the device, severely
restricting resource allocation and connectivity. The pro-
blems would be diminished but not eliminated if the
method were applied to the Virtex-4. These restrictions
are avoided with the second, novel, merge dynamic recon-
figuration method. In this method, information in the
partial bitstream is merged with the current configuration
as read back from the device. By using an exclusive-OR
function to combine the two bitstreams, existing configur-
ation information is preserved and the module can be
removed by repeating the XOR operation. Modules can be
allocated any rectangular region in the device, and static
routes can pass through reconfiguration regions. To avoid
conflicts, some of the routing resources are reserved for
the static routes.

The merge dynamic reconfiguration method has been
employed in three applications that have successfully
demonstrated run-time re-targeting of module bitstreams
and multi-phase reconfiguration. Unsurprisingly, merge
reconfiguration was found to be slower than the direct
method. Measurements made on a self-reconfiguring plat-
form quantified the reconfiguration time increase to
between 6.2� and 11.4�. The majority of this increase is
not caused by the additional time required to read the con-
figuration, as may be expected intuitively, but is due to soft-
ware and data movement overheads.

The degradation in reconfiguration speed using the merge
technique suggests this is an area that should be addressed
in future work. Improvements could be made in the data
transfer rate across the peripheral bus, and some driver
functionality could be migrated to the peripheral hardware.
Further investigation is also required into the allocation of
reserved routing resources, which was based on an educated
guess in this paper and would benefit from an empirical
examination. Moreover, the new Virtex-4 devices deserve
more study to determine what opportunities are presented
by the latest modifications to the configuration architecture.
In particular, work is ongoing in the development of module
relocation for Virtex-4 devices.

7 Acknowledgments

The authors wish to thank Jean Belzile, Normand Leclerc,
Pierre-André Meunier and David Roberge from ISR
Technologies for their invaluable contributions, and
also Peter Cheung of Imperial College London for his
particularly insightful suggestions. The first author
gratefully acknowledges the financial support given by
the Commonwealth Scholarship Commission and the New
Zealand Vice-Chancellors’ Committee.

8 References

1 Brebner, G., and Diessel, O.: ‘Chip-based reconfigurable task
management’. Field-programmable logic and application, August
2001, (Springer-Verlag), pp. 182–191

2 Burns, J., Donlin, A., Hogg, J., Singh, S., and de Wit, M.: ‘A dynamic
reconfiguration run-time system’. IEEE Symp. on FPGAs for Custom
Computing Machines, April 1997, (IEEE Computer Society),
pp. 66–75

3 Mignolet, J-Y., Nollet, V., Coene, P., Verkest, D., Vernalde, S., and
Lauwereins, R.: ‘Infrastructure for design and management of
relocatable tasks in a heterogeneous reconfigurable System-on-
Chip’. Design, Automation and Test in Europe, March 2003, (IEEE
Computer Society), pp. 986–991

4 Steiger, C., Walder, H., and Platzner, M.: ‘Heuristics for online
scheduling real-time tasks to partially reconfigurable devices’.
Field-Programmable Logic and Applications, September 2003,
(Springer-Verlag), pp. 575–584

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006 163

5 Wigley, G.B., Kearny, D.A., and Warren, D.: ‘Introducing
ReConfigMe: An operating system for reconfigurable computing’.
Field-Programmable Logic and Applications, September 2002,
(Springer-Verlag), pp. 687–697

6 Xilinx Inc. ‘Virtex-4 configuration guide’, UG 071, v1.1, 2004
7 Lim, D., and Peattie, M.: ‘Two flows for partial reconfiguration: module

based or small bit manipulation’, Application Note 290, Xilinx, 2002
8 Horta, E.L., Lockwood, J.W., and Kofuji, S.: ‘Using PARBIT to

implement partial run-time reconfigurable systems’. Field-
Programmable Logic and Applications, September 2002, (Springer-
Verlag), pp. 182–191

9 Horta, E.L., and Lockwood, J.W.: ‘Automated method to generate
bitstream intellectual property cores for Virtex FPGAs’. Field-
Programmable Logic and Applications, August 2004,
(Springer-Verlag), pp. 975–979

10 Guccione, S., Levi, D., and Sundararajan, P.: ‘JBits: Java based interface
for reconfigurable computing’. Military and Aerospace Applications of
Programmable Devices and Technologies Int. Conf., 1999

11 Gericota, M.G., Alves, G.R., Silva, M.L., and Ferreira, J.M.:
‘Run-time management of logic resources on reconfigurable
systems’. Design, Automation and Test in Europe, March 2003,
(IEEE Computer Society), pp. 974–979

12 Poetter, A., Hunter, J., Patterson, C., Athanas, P., Nelson, B., and Steiner,
N.: ‘JHDLBits: The merging of two worlds’. Field-Programmable Logic
and Applications, August 2004, (Springer-Verlag), pp. 414–423

13 Sedcole, P., Blodget, B., Becker, T., Anderson, J., and Lysaght, P.:
‘Modular reconfiguration in Virtex FPGAs’. Field-Programmable
Logic and Applications, August 2005, (IEEE), pp. 211–216

14 Xilinx Inc. ‘Virtex series configuration architecture user guide’,
Application Note 151, 2004

15 Xilinx Inc. ‘Virtex II platform FPGA handbook’, UG 002, v1.0, 2000
16 Xilinx Inc. ‘Virtex II ProTM platform FPGA user guide’, UG 012,

v2.0., 2002
17 Blodget, B., Bobda, C., Huebner, M., and Niyonkuru, A.: ‘Partial and

dynamically reconfiguration of Xilinx Virtex-II FPGAs’. Field-
Programmable Logic and Applications, August 2004,
(Springer-Verlag), pp. 801–810

18 Sedcole, N.P., Cheung, P.Y.K., Constantinides, G.A., and Luk, W.: ‘A
reconfigurable platform for real-time embedded video image
processing’. Field-Programmable Logic and Applications,
September 2003, (Springer-Verlag), pp. 606–615

19 Blodget, B., James-Roxby, P., Keller, E., McMillan, S., and
Sundararajan, P.: ‘A self-reconfiguring platform’. Field-
Programmable Logic and Applications, September 2003, (Springer-
Verlag), pp. 565–574

20 Huebner, M., Becker, T., and Becker, J.: ‘Real-time LUT-based
network topologies for dynamic and partial FPGA
self-reconfiguration’. Symp. on Integrated Circuits and Systems
Design, 2004, (ACM), pp. 28–32

21 Xilinx Inc. ‘Virtex-4 user guide’, UG 070, v1.2, 2005

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006164

