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Abstract—This paper explores the reconfiguration of slowly
changing constants in an explicit finite difference solver for
option pricing. Numerical methods for option pricing, such as
finite difference, are computationally very complex and can be
aided by hardware acceleration. Such hardware implementa-
tions can be further improved by specialising the circuit for
constants, and reconfiguring the circuit when the constants
change. In this paper we demonstrate how this concept can be
applied to the pricing of European and American options. We
present an analytical optimisation approach that explores the
benefit of specialised designs over a static one. The key to this
approach is the performance and area estimation of kernels
that is based on the parameters of arithmetic operators inside
the kernel. This allows us to quickly explore several design
options without building full designs. Our experimental results
on a Xilinx XC6VLX760 FPGA show that with a partially
reconfigurable design performance can be improved by a factor
of 4.7 over a design without reconfiguration.

I. INTRODUCTION

Financial applications such as option pricing often require

computationally complex models that could benefit from

customised hardware accelerators. Option pricing usually

requires solving partial differential equations (PDEs) and in

most cases these equations cannot be solved analytically [1].

The Explicit Finite Difference Method (EFD) is a procedure

to approximate the solution of such equations numerically.

EFD relies on discretising function values on a grid, and

it approximates derivatives by finite differences between

points on the grid. The computational complexity of EFD

grows quadratically with increasing accuracy if only one

underlying random variable is used. For multiple random

variables, the complexity also grows quadratically.

Financial institutions often use EFD to evaluate large

portfolios with multiple underlying assets and this process

can take several hours even on a large computational grid.

Reconfigurable hardware such as FPGAs can be used to

accelerate this computation effectively while being more

energy efficient than other accelerators such as GPUs [2].

FPGAs can also be used to develop customised recon-

figurable versions of an application. Reconfiguration can

improve both performance [3] and energy efficiency [4]. Our
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goal in this paper is to explore reconfiguration of constants

in a finite difference solver in order to improve performance;

the treatment covers both full and partial reconfiguration.

The main contributions of this paper are:

• An optimisation approach for Explicit Finite Difference

(EFD) models exploiting run-time reconfiguration of

constants.

• Case Studies for European and American Option pric-

ing applications, demonstrating the proposed approach

with various operators.

• Experimental results and analysis, showing the trade-

off for specific reconfigurable devices.

II. BACKGROUND

An option is a financial instrument that conveys the right,

but not the obligation, to engage in a future transaction. A

simple example is a European put option that provides the

option owner with the right to sell an asset (e.g. a stock or

a bond) for a pre-arranged strike price K at a specific time

T in the future. If the underlying asset price S at time T
is lower than the strike price K then the owner can make a

profit of K − S by exercising the option. If the asset price

is higher than the strike price, the option would generally

not be used and is hence worthless. Another very common

type of option are American options, where the option is not

limited to one particular exercise time T . Instead, it can be

exercised at any time up to T .

The price of an option can be determined with a partial

differential equation called the Black-Scholes equation [5].

However, the equation cannot be directly applied to Amer-

ican options and numerical methods have to be used. Nu-

merical techniques include Monte-Carlo simulation [6], [7],

[8], quadrature methods [9], tree-based methods [10], and

finite difference methods [2].

Multinomial tree based methods can efficiently price

American options that cannot be handled easily by Monte

Carlo methods due to features such as path dependence,

while quadrature methods can provide more accurate results

than tree based methods in certain cases. However, the above

methods cannot effectively address issues such as the effects

of asset price on option price over time. The finite difference

method, on the other hand, is mathematically easier to apply
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Figure 1. Calculations of values in a finite difference grid.

and can generate a grid of option prices over time, based on

a range of underlying asset price variations.

Finite difference methods can also be used to solve

differential equations in other areas such as solving the heat

equation in thermodynamics [11] or Maxwell’s equations in

electromagnetism [12].

One well known approach to improve performance and

reduce size of hardware designs is constant specialisation,

also known as partial evaluation [13]. A slowly changing

input to the design is assumed to be constant and the

hardware design is optimised for this particular constant,

often resulting in a faster and smaller circuit. When the

input changes, the circuit is reconfigured. This approach

is used in various applications such as encryption [14]

or FIR filtering [15]. However, the reconfiguration time

itself imposes an overhead on performance and needs to

be balanced against the speed-up obtained through constant

specialisation. We shall address this issue in section IV.

III. HARDWARE ARCHITECTURE FOR EXPLICIT FINITE

DIFFERENCE

In the case of a single variable, the EFD procedure

approximates the solution of the Black-Scholes PDE by

creating a discrete, two-dimensional grid of asset prices S
over time t as illustrated in figure 1. The Black-Scholes

equation with an asset following a geometric Brownian

motion is given as:

∂f

∂t
+ (r − q)S

∂f

∂S
+

1

2
σ2 ∂

2f

∂S2
= rf (1)

where f(S, t) denotes the price of the option, S denotes

the value of the underlying asset, t denotes time, r denotes

the risk-free interest rate, σ denotes the volatility of the

underlying asset, and q denotes the dividend yield paid by

the underlying asset. The EDF procedure approximates the

equation within the boundaries of [0, T ] where T is the

time to maturity, and within [0, Smax] where Smax for a put

option is determined such that f(S, T ) = 0 plus a buffering

margin at the user’s choice. Within these boundaries a grid

is created by dividing time into N equally spaced intervals
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Figure 2. Parallel hardware architecture for calculating the EFD model.

Δt = T/N and dividing asset price into M equally spaced

intervals ΔS = Smax/M . This grid has (N +1)× (M +1)
values. An effective approximation can be obtained with the

following equations and with Z = lnS:

fi,j = α · fi+1,j+1 + β · fi+1,j + γ · fi+1,j−1 (2)

α =
1

1 + rΔt

(
− Δt

2ΔZ

(
r − q − σ2

2

)
+

Δt

2ΔZ2
σ2

)

β =
1

1 + rΔt

(
1− Δt

ΔZ2
σ2

)

γ =
1

1 + rΔt

(
Δt

2ΔZ

(
r − q − σ2

2

)
+

Δt

2ΔZ2
σ2

)

The algorithm runs leftwards through the grid and the val-

ues for the rightmost column (inital values) are calculated as

max(K − SN+1,j , 0). In order to organise the computation

efficiently we note the following:

• The coefficients α, β and γ are constant throughout the

computation of one option.

• We can develop a specialised circuit where these coef-

ficients are hard-coded, resulting in higher performance

and lower area requirements.

In previous work we have developed a parallel hardware

architecture that does not make use of constant reconfig-

uration [2]. This hardware architecture can harness two

types of parallelism in the EFD procedure: First, coarse-

grain parallelism, which refers to the concurrent pricing

of multiple options. Second, fine-grain parallelism, which

refers to the simultaneous calculation of values on the grid

for one option. The hardware architecture is illustrated in

figure 2. The Main Controller performs overall control and

facilitates communication with a host software application.

The Coarse Core is the main processor for pricing one

option, and there can be several of these cores to price

multiple options simultaneously. Each Coarse Core consists

of one or more Fine Cores. Fine Cores are fully pipelined

and calculate the value of the present node based on three

previously calculated options values as illustrated in figure 1.

Since many of these calculations can be performed in
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Figure 3. Hardware architecture of the block Fine Core in Fig. 2 for
pricing European Options. The coefficients α, β and γ are constant for a
particular option to be priced. Solid black boxes denote registers.

parallel, we can assemble multiple Fine Cores into a more

powerful Coarse Core. The overall number of deployed cores

depends on the available hardware resources on the target

device. The Memory Controller provides access to double-

buffered memory in order to fully utilise the pipeline in the

Fine Cores. The Initialiser initialises the memory module by

setting up the initial option prices, and the Finaliser provides

the results to the software host application.

Figure 3 illustrates the structure of a Fine Core for

calculating European options according to equation 2. For

each fi,j evaluation, it calculates one grid value based on

three previous grid values and the three coefficients. Note

that the coefficients remain the same throughout the option

valuation process. Switch inputs s1 and s2 in Figure 3 are

used to control their corresponding multiplexers to read the

overlapping data elements from neighbouring Fine Cores.

The design can be extended easily to support American

options. Unlike European options, American options can

be exercised at any point up to T . This can be modelled

by calculating the maximum of the value according to

equation 2 and the value if exercised early. This early

exercise value is simply the initial value fN+1,j . Hence,

we can extend our core for American options by adding a

comparator to the pipeline as shown in figure 4.

IV. OPTIMISATION APPROACH

The key concept of our optimisation approach is to

specialise the circuit for the coefficients α, β and γ. In

our previous work [2] these coefficients were loaded into

registers as illustrated in figure 3. We can exploit the fact

that these coefficients are constant throughout the pricing of

one option and create a specialised version of the design that

uses fixed-coefficient multipliers for these constants. Such

fixed-coefficient multipliers can provide higher performance

while requiring less area and power. When the pricing of
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Figure 4. Hardware architecture for pricing American Options.

one option is finished, the circuit is reconfigured with a

specialised version for the next option.

Specialising a multiplier for a constant input can lead

to high performance because the critical path is shortened.

Likewise, area is reduced because redundant logic can be

removed. In parallel applications such as ours we can turn

the area reduction into an additional performance increase:

• Smaller cores mean that more of them can be included

on the same device.

• More cores result in higher overall processing rates.

We could explore the benefit of constant reconfiguration

by implementing a range of designs and measuring their

performance. However, in many cases it is desirable to make

performance predictions without completing the lengthy

implementation process for the entire design. In order to

compare the performance of static and reconfigurable de-

signs, we propose a simple analytical approach. We begin

by calculating the execution time Ts for pricing one option

in a static design as:

Ts =
ns · ts
ps

(3)

where ns is the number of data elements to be processed,

ts is the cycle time, and ps is the number of processing

elements in the static design. Equation 3 does not consider

the delay through pipeline stages; however, this effect can

be neglected if ns is significantly larger than the number

of pipeline stages. Likewise, we can calculate the execution

time Td for the dynamic reconfigurable design:

Td =
nd · td
pd

+ tr (4)

where nd, td and pd denote the same parameters as above

for the dynamic design, and tr denotes the reconfiguration

time. For our application it is the case that the number of

data elements to be processed is the same for static and

dynamic designs; hence ns = nd = n. In order to achieve
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an overall performance benefit, the execution time of the

dynamic design must be lower than the static design:

Td < Ts

n · td
pd

+ tr <
n · ts
ps

tr < n ·
(
ts
ps
− td

pd

)
(5)

Equation 5 shows that the decision of whether to adopt

the dynamic design hinges on the reconfiguration time, tr.
There are two choices for the dynamic design with different

trade-offs:

• Full reconfiguration, involving reconfiguration of the

entire device. This is relatively simple to implement

since successive configurations can be completely in-

dependent of each other. However, the reconfiguration

time can be long for large devices since the complete

chip is reconfigured.

• Partial reconfiguration, involving reconfiguration of

only the parts that need to be changed. The reconfigura-

tion time is proportional to the amount of FPGA area

that would be changed. However, the design is more

complex since the FPGA has to be specially partitioned

and floorplanned for reconfigurable areas.

In both cases above, since specialised operators are

smaller and faster than the corresponding general-purpose

ones, the dynamic design is faster overall because it has a

shorter cycle time and can support more processing elements

than the static design. Given the area Adesign that is available

for the design under optimisation (i.e. the full device for full

reconfiguration or a partially reconfigurable area for partial

reconfiguration), the reconfiguration time is given by:

tr = φ · θ ·Adesign (6)

where φ is the throughput of the configuration interface and

θ is the configuration size per unit of area. Both values can

be obtained from the device data sheet.

The number of processing cores p that can be imple-

mented in the static and dynamic design versions are:

ps = �Adesign/As�
pd = �Adesign/Ad�

where As and Ad are the area requirements of a static and

a dynamic core respectively. With equations 5 and 6 we

obtain:

1 <
n

tr
·
(

ts
�Adesign/As� −

td
�Adesign/Ad�

)
(7)

If the condition in the above equation is true, then the

dynamic design is faster than the static one. The following

section explains how these parameters can be derived for

European and American option pricing applications.

V. OPTIMISATION FOR OPTION PRICING APPLICATIONS

To estimate the performance and area of a static or

reconfigurable design, we adopt the following model given

that the arithmetic operators within a core dominate the cycle

time and the area. We estimate the cycle time t and area A
in the following way:

• The core cycle time is the maximum of the cycle

times of all n arithmetic operators in the core, i.e.

t = max(top,1, . . . top,n)
• The core area is the sum of the area of all n arithmetic

operators in the core, i.e. A =
∑n

i=1 Aop,i

In the case of a European option pricing core as illustrated

in figure 3 there are three multiplications and two additions.

The cycle time and area for the static version can be

estimated as follows:

ts = max(tmult,s, tadd,s)

As = 3 ·Amult,s + 2 ·Aadd,s

To estimate the performance and area of the dynamic

version, we first build specialised versions for all operators

that have constant inputs. In this case, only the multipliers

can be specialised. Hence, the cycle time and area are:

td = max(tmult,d, tadd,s)

Ad = 3 ·Amult,d + 2 ·Aadd,s

We can perform the same optimisations for our American

option pricing core (figure 4):

ts = max(tmult,s, tadd,s, tmax,s)

As = 3 ·Amult,s + 2 ·Aadd,s +Amax,s

td = max(tmult,d, tadd,s, tmax,s)

Ad = 3 ·Amult,d + 2 ·Aadd,s +Amax,s

To evaluate a design according to equation 7, the follow-

ing steps need to be carried out:

1) Build static versions of all arithmetic operators found

in the core, estimate ts and As.

2) Build dynamic versions of operators with fixed inputs,

estimate td and Ad.

3) Determine n from application specification.

4) Determine available design area Adesign . For full

reconfiguration, Adesign is the area of the entire device

minus the area required by other control logic. For

partial reconfiguration, Adesign is simply the area of a

reconfigurable region that is created by the designer.

5) Determine reconfiguration time tr for the entire device

(full reconfiguration), or for a reconfigurable area

(partial reconfiguration). Reconfiguration time can be

measured or calculated according to equation 6.

6) Evaluate design according to equation 7. If the condi-

tion is true, reconfiguration is beneficial.
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operator Mult Add Max Mult

type static dynamic

t [ns] 3.11 2.16 2.17 2.49

A [LUT/FF] 5829 54 81 1015

Table I
CYCLE TIME AND AREA OF ARITHMETIC OPERATORS. AREA IS

MEASURED IN LUT/FLIP-FLOP PAIRS.

static dynamic
est. real est. real

t [ns] 3.11 4.76 2.49 4.31

A [LUT/FF] 17676 13759 3234 2977

p 26 34 146 159

Table II
CYCLE TIME, AREA AND NUMBER OF PROCESSING ELEMENTS FOR THE

STATIC AND DYNAMIC CORE. SHOWN ARE THE ESTIMATED VALUES

FROM OUR MODEL (EST.) AND VALUES FOR A REAL DESIGN.

If the above procedure indicates that the dynamic design

is beneficial, then we can specialise the Fine Core with

the given coefficient and implement a Coarse Core with pd
Fine Cores. Based on this Coarse Core we can implement

the entire design with all the necessary infrastructure as

illustrated in figure 2.

VI. EXPERIMENTAL RESULTS

Our FPGA implementation is based on a double-precision

floating-point arithmetic software implementation. The de-

sign is implemented on the FPGA using the FloPoCo gener-

ator [16]. FloPoCo is an open-source generator for floating-

point and fixed-point arithmetic cores. After analysing nu-

merical precision and range, we develop a fixed-point ver-

sion of the algorithm on the FPGA, with customised fixed-

point number formats that provide equal precision. The

fixed-point version is then specialised for dynamic constant

reconfiguration as described in section III. All designs are

implemented on a Xilinx Virtex-6 XC6VLX760 FPGA using

ISE 13.2 implementation tools.

We now estimate the performance and area of static

and dynamic designs based on the optimisation procedure

that is outlined in section V. As step 1 and 2 we build

the required arithmetic operators and measure their cycle

time t and area A. The post place-and-route results for the

three static operators as well as one specialised, dynamic

multiplier are shown in table I. We use these operators to

estimate the performance and area of static and dynamic

versions of an American option pricing core as shown in

figure 4. Table II lists the estimated cycle time and area.

For illustrative purposes, the numbers are compared against

values that are obtained from a real implementations of the

option pricing core.

As step 3 we determine the number of data items n that

need to be processed. Our option pricing application is based

full reconfiguration partial reconfiguration
1 Coarse Core 8 Coarse Cores

configuration SW host fast fast internal [17]
mechanism application external

tr [ms] 1600 115 9

speed-up 0.01 0.18 5.4

Table III
ESTIMATED SPEED-UP OF THE DYNAMIC DESIGN. THE ESTIMATES ARE

BASED ON VARIOUS CONFIGURATION TIMES tr .

on a 3k x 60k grid which means that a total of 1.8 · 106
computations need to be performed.

To calculate the available design area Adesign (step 4) we

first consider full reconfiguration where the entire device

contains only one Coarse Core that is composed of as many

Fine Cores as possible. We obtain the total number of logic

resources from the device data sheet and subtract the logic

resources for control that are shown in figure 2. With Adesign

we can calculate p, the number of Fine Cores that the device

can support (table II).

When reconfiguring our system from a software host

application we measure a reconfiguration time tr of 1.6 s

(step 5) and with this we can evaluate equation 7 (step 6).

For the given parameters, equation 7 is not true which

indicates that reconfiguration will not be beneficial. Table III

lists the estimated speed-up of the dynamic design over

the static one. It can be seen that the dynamic design

is clearly hampered by the long reconfiguration time. We

also estimate the speed-up for the case when the device is

reconfigured with the maximum external configuration speed

of 200MB/s. This results in a configuration time of 115ms;

however, this is still slower than the static design.

To improve reconfiguration speed we now explore several

design options using partial reconfiguration. As explained in

section III, we can scale our design by implementing more

Coarse Cores, while reducing the number of Fine Cores in

each Coarse Core. This reduces the size of each Coarse

Core while the overall design size remains constant. Coarse

Cores can be placed in partially reconfigurable areas which

can be reconfigured independently. Hence, an increase in

the number of Coarse Cores leads to smaller reconfigurable

areas and faster reconfiguration. Table III also shows a

design with 8 Coarse Cores that can be partially and inde-

pendently reconfigured. A reconfiguration time of 9ms can

be obtained with a fast, internal reconfiguration mechanism

that provides a configuration speed of 300MB/s [17]. With

the significantly reduced reconfiguration time, our estimation

indicates that an overall speed-up can be achieved.

Figure 5 shows performance estimates for designs with

the number of partially reconfigurable Coarse Cores ranging

from 1 to 16. The estimates that are based on single operators

(table I) are compared to results from a fully implemented

option pricing core. We can observe that for a larger number
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Figure 5. Estimated and real performance of the static and reconfigurable
American option pricing design for various numbers of coarse cores.

of Coarse Cores, the dynamic designs can significantly

reduce execution times. In the case of 16 Coarse Cores,

the execution time for pricing one option is reduced from

26.8ms to 5.7ms which represents a speed-up by a factor

of 4.7. Our estimation technique that is based on single

operators rather than full core implementations can deliver

these estimates quickly and with sufficient accuracy, as

shown in figure 5.

VII. CONCLUSIONS AND FUTURE WORK

This paper describes a novel approach involving dynamic

reconfiguration of constants for optimising explicit finite dif-

ference option pricing. The approach supports both full and

partial run-time reconfiguration, and our analytical treatment

allows designers to quickly evaluate the conditions for which

the proposed approach would be beneficial.

In a case study on a Virtex-6 XC6VLX760 device,

we show that using area and cycle time parameters from

arithmetic operators is a viable technique for estimating

design performance. A design using full reconfiguration is

not beneficial due to the long reconfiguration time. With

partial reconfiguration, however, we can achieve a 4.7 times

speed-up over a static design.

Our approach is general and can benefit designs with

slow-changing variable data. Current and future work in-

cludes extending the approach to other option pricing ap-

plications as well as PDE solvers in other areas. Another

promising application of dynamic constant reconfiguration

is the recalibration of multi-dimensional grids used in cross-

asset pricing models. Automating our approach would en-

able its adoption as a rapid exploration and implementation

tool for various devices.
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