
Databases	on	Multicores



The	Past

2processor	stalled	>50%	of	the	time



Moore’s	Law
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doubling	of	transistor	counts	continues
clock	speeds	and	power	hit	the	wall



Processor	Trends
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Vertical	Dimension:	Cores	&	Caches
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at	peak	throughput	on	Shore-MT,	Intel	Xeon	X5660
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Horizontal	Dimension:	Cores	&	Sockets
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Workload	Scalability	on	Multicores
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Stalls	in	Cloud	Workloads
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Sources	of	Memory	Stalls
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100GB	data	on	Shore-MT,	Intel	Xeon	E5-2660
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For	Data	Intensive	Applications	…
• 50%-80%	of	cycles	are	stalls

–Problem:
instruction	fetch	&	long-latency	data	misses

– Instructions need	more	capacity
–Data	misses are	compulsory

• Focus	on	maximizing:
– L1-I	locality	&	cache	line	utilization	for	data
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Minimizing	Memory	Stalls
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being	cache	conscious
code	optimizations
alternative	data	structures/layout
vectorized execution

exploiting	common	instructions
computation	spreading

prefetching
light
temporal	stream
software-guided



Prefetching	– Lite
• next-line:	miss	A	à fetch	A+1
• stream:	miss	A,	A+1	à fetch	A+2,	A+3

üfavors	sequential	access	&	spatial	locality
ûinstructions:	branches,	function	calls
• branch	prediction

ûdata:	pointer	chasing
• stride:	miss	A,	A+20	à fetch	A+40,	A+60

14but	memory	stalls	are	still	too	high
preferred	on	real	hardware	due	to	simplicity



Temporal	Streaming
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Software-guided	Prefetching

16

traverse

lookup

data instructions

fetch

fetch



Minimizing	Memory	Stalls
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Code	Optimizations
• simplified	code

– in-memory	databases	have	smaller	instruction	footprint

• better	code	layout
– minimize	jumps	à exploit	next	line	prefetcher
– profile-guided	optimizations	(static)
– just-in-time	(dynamic)

• query	compilation	into	machine/naïve	code
– e.g.,	HyPer,	Hekaton,	MemSQL
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Cache	Conscious	Data	Layouts
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16	bytes	columns

cache	lines	(64bytes)

goal:
maximize	cache	line	utilization	&
exploit	next-line	prefetcher

row	stores:	good	for	OLTP
accessing	many	columns
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accessing	a	few	columns
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Cache	Conscious	Data	Structures
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in	memoryindex	tree

exploit	next-line	prefetcher	in	tree	probe
goal:	maximize	cache	line	utilization	&

lookup-heavy	workload
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+	align	nodes	to	cache	lines



Volcano	Iterator	Model
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Vectorized Execution
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Minimizing	Memory	Stalls
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Instruction	&	Data	Overlap
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Computation	Spreading
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Summary
• DBMSs	underutilize	a	core’s	resources
• Problem	1:	L1-I	misses

–due	to	capacity
–minimized	footprint	&
illusion	of	a	larger	cache	by	maximizing	re-use

• Problem	2:	LLC	data	misses
– compulsory
–maximize	cache-line	utilization	through
cache-conscious	algorithms	and	layout
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Modern	Parallelism
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Challenges	when	Scaling	Up
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Critical	Path	of	Transaction	Execution
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Data	Access	Pattern
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Critical	Sections
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Updating	1	row

many	critical	sections	even	for	simplest	transaction



unbounded	à fixed	/	cooperative

Critical	Section	Types
unbounded

32

fixed cooperative

locking,	latching transaction	manager logging



Scaling	up	OLTP
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unscalable components
locking
latching
logging synchronization
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hardware	Islands
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Hot	Shared	Locks	Cause	Contention

lock	manager

trx1 trx2 trx3

agent	thread	execution

hot	lock
cold	lock

release	and	request	the	same	locks	repeatedly
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Speculative	Lock	Inheritance

lock	manager

trx1 trx2 trx3

agent	thread	execution

hot	lock
cold	lock

commit	without	
releasing	hot	locks

seed	lock	list	
of	next	trx

significantly	reduces	lock	contention
co-locate	atomic	counters	with	data



Data-Oriented	Transaction	Execution

36convert	centralized	locking	to	thread-local

Upd(WH) Upd(DI) Upd(CU)

Ins(HI)

Phase	1

Phase	2

TPC-C	Payment

Completed

Input

Local	Lock	Table
Pref LM Own Wait

AAB

A{1,0} EX A

{1,3} EX B

A

Routing	fields:	{WH_ID,	D_ID}

Range Executor

A-H 1

I-N 2



Thread-to-transaction	- Access	Pattern
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Thread-to-data	– Access	Pattern

38

0

20

40

60

80

100

0.2 0.4 0.6 0.8

DI
ST
RI
CT

	re
co
rd
s

time	(secs)

predictable	data	accesses



In-memory	Databases
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Traditional	disk-based	OLTP
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No	buffer	manager	(35%)

No	use	of	disk

Lighter	concurrency	control
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utilization

In-memory	OLTP



Scaling	up	OLTP
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Data	Access	in	Centralized	B-tree
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heap

index

conflicts	on	both	index	and	heap	pages



range worker

A – M	

N	– Z	

Physiological	Partitioning	(PLP)
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R1 R2

logical
physical
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multi-rooted	B-tree



Scaling	up	OLTP
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A	Day	in	the	Life	of	a	Serial	Log

xct 1

xct 2

commitWAL

working

lock	Mgr.

log	Mgr.

I/O	Wait

serializeWAL

A

A serialize	at	the	log	head

B

B I/O	delay	to	harden	the	commit	record

C

C serialize	on	incompatible	lock

END



Aether Holistic	Logging

• early	lock	release
– can	be	improved	further	with	control	lock	violation

• flush	pipelining
– reduces	context	switches

• consolidation	array
– minimize	log	contention
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Scaling	up	OLTP
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Multisocket Multicores
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OLTP	on	Hardware	Islands

Challenges:
– optimal	configuration	depends	on	workload	and	hardware
– expensive	repartitioning	due	to	physical	data	movement

50

shared-everything shared-nothingIsland	shared-nothing

ü stable
û not	optimal

ü fast
û sensitive	to	workload

ü robust	middle	ground



Adaptive	Transaction	Processing
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Scaling	up	OLTP
• identify	bottlenecks	in	existing	systems

– eliminate	bottlenecks	systematically	and	holistically

• design	new	system	from	the	ground	up
– without	creating	new	bottlenecks

• do	not	assume	uniformity	in	communication
• choose	the	right	synchronization	mechanism
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