
Databases	on	Multicores

The	Past

2processor	stalled	>50%	of	the	time

Moore’s	Law

3

doubling	of	transistor	counts	continues
clock	speeds	and	power	hit	the	wall

Processor	Trends

4

core core core core

core core core corecore

pipelining
ILP

multithreading

multicores
(CMP)

2005

goal:	scalability

multisocket
multicores

core core core core

Core Core Core Core
core core core core

core Core Core Corecore core core core

core core core core

Vertical	Dimension:	Cores	&	Caches

5

core

pipelining
ILP

multithreading

implicit	parallelism	&	memory	matters

core

MAIN	MEMORY

L2

L3	/	LLC

L1-I L1-D

core

L2

L1-I L1-D

0

1

2

3

4

TPC-C TPC-E

In
st
ru
ct
io
ns
	p
er
	C
yc
le

Now:	Cores	&	Cache	Utilization

6

at	peak	throughput	on	Shore-MT,	Intel	Xeon	X5660

Maximum

Instructions	per	Cycle	<	1
70%	of	the	execution	time	goes	to	stalls

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

TPC-C TPC-E

Ex
ec
ut
io
n	
Cy
cl
es
	B
re
ak
do

w
n

Stalled Busy

Horizontal	Dimension:	Cores	&	Sockets

7exploit	abundant	parallelism

core core core

L1

L2

L1

L2

L1

L2

L3

core

L1

L2

memory	controller

inter-socket	links

core core core

L1

L2

L1

L2

L1

L2

L3

memory	controller

core

L1

L2

inter-socket	links

Workload	Scalability	on	Multicores

8

th
ro
ug
hp

ut

number	of	threads

OLTP OLAP

th
ro
ug
hp

ut
number	of	threads

access	latency memory	bandwidth

~4	cycles

~12	cycles

~30	cycles

~200	cycles

corecore

L1-I L1-D

MAIN	MEMORY

L2 L2

L3	/	LLC

L1-I L1-D

Today’s	Memory	Hierarchy

9

latency in	practice

no
penalty

possible
stalls

stalls	à wasted	power	&	money

Stalls	in	Cloud	Workloads

0

1

2

3

4

A
pp

lic
at

io
n

IP
C

Application IPC

0%

25%

50%

75%

100%

0

1

2

3

4

To
ta

l E
xe

cu
tio

n
C

yc
le

s

A
pp

lic
at

io
n

IP
C

Application IPC Memory Cycles

>	50%	of	the	time	goes	to	stalls	on	average
~1	instructions	per	cycle

In
st
ru
ct
io
ns
	p
er
	C
yc
le

Sources	of	Memory	Stalls

11

100GB	data	on	Shore-MT,	Intel	Xeon	E5-2660

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

TPC-C TPC-E

St
al
l	C
yc
le
s	B

re
ak
do

w
n

pe
r	1

00
0	
In
st
ru
ct
io
ns

L3D
L3I
L2D
L2I
L1D
L1I

L1-I	&	LLC	data	misses	dominate	the	stall	time

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

TPC-C TPC-E

Ex
ec
ut
io
n	
Cy
cl
es
	B
re
ak
do

w
n

Stalled Busy

For	Data	Intensive	Applications	…
• 50%-80%	of	cycles	are	stalls

–Problem:
instruction	fetch	&	long-latency	data	misses

– Instructions need	more	capacity
–Data	misses are	compulsory

• Focus	on	maximizing:
– L1-I	locality	&	cache	line	utilization	for	data

12

Minimizing	Memory	Stalls

13

being	cache	conscious
code	optimizations
alternative	data	structures/layout
vectorized execution

exploiting	common	instructions
computation	spreading

prefetching
light
temporal	stream
software-guided

Prefetching	– Lite
• next-line:	miss	A	à fetch	A+1
• stream:	miss	A,	A+1	à fetch	A+2,	A+3

üfavors	sequential	access	&	spatial	locality
ûinstructions:	branches,	function	calls
• branch	prediction

ûdata:	pointer	chasing
• stride:	miss	A,	A+20	à fetch	A+40,	A+60

14but	memory	stalls	are	still	too	high
preferred	on	real	hardware	due	to	simplicity

Temporal	Streaming

15

lookup()

traverse()

fn(

B
C

A

D Y
Z

X

cache
blocks

. . .cache
accesses

time
. . .X Y ZA C DC . . .X Y ZA C DC

“VLDB”“ICDE”

more	accurate	à higher	space	cost
exploits	recurring	control	flow

Software-guided	Prefetching

16

traverse

lookup

data instructions

fetch

fetch

Minimizing	Memory	Stalls

17

being	cache	conscious
code	optimizations
alternative	data	structures/layout
vectorized execution

exploiting	common	instructions
computation	spreading

prefetching
light
temporal	stream
software-guided

Code	Optimizations
• simplified	code

– in-memory	databases	have	smaller	instruction	footprint

• better	code	layout
– minimize	jumps	à exploit	next	line	prefetcher
– profile-guided	optimizations	(static)
– just-in-time	(dynamic)

• query	compilation	into	machine/naïve	code
– e.g.,	HyPer,	Hekaton,	MemSQL

18

Cache	Conscious	Data	Layouts

19

16	bytes	columns

cache	lines	(64bytes)

goal:
maximize	cache	line	utilization	&
exploit	next-line	prefetcher

row	stores:	good	for	OLTP
accessing	many	columns

column	stores:	good	for	OLAP
accessing	a	few	columns

erietta
pinar

greendanica
orangeiraklis

blue
black

row	storeerietta blue pinar black

erietta pinar column	storedanica iraklis

Cache	Conscious	Data	Structures

20

in	memoryindex	tree

exploit	next-line	prefetcher	in	tree	probe
goal:	maximize	cache	line	utilization	&

lookup-heavy	workload

scan-heavy	workload

+	align	nodes	to	cache	lines

Volcano	Iterator	Model

21

SCAN

SELECT

next()

next() erietta

erietta

erietta

û poor	data	&	instruction	cache	locality

erietta
pinar

greendanica
orangeiraklis

blue
black

.

Vectorized Execution

22

SCAN

SELECT

next()

next()

ü allows	exploiting	SIMD
ü good	data	&	instruction	cache	locality

erietta
pinar
danica
iraklis

erietta
pinar

greendanica
orangeiraklis

blue
black

erietta
pinar
danica
iraklis

erietta
iraklis

.

Minimizing	Memory	Stalls

23

being	cache	conscious
code	optimizations
alternative	data	structures/layout
vectorized execution

exploiting	common	instructions
computation	spreading

prefetching
light
temporal	stream
software-guided

Instruction	&	Data	Overlap

24

mix new	order

da
ta

in
st
ru
ct
io
ns

payment

TPC-C	(100GB	data)	on	Shore-MT
overlapping	cache	blocks cold hot

higher	overlap	in	same-type	transactions
overlap:	significant	for	instructions	&	low	for	data

Computation	Spreading

25

T1

T2 T1

CORES

1
T1

T1 T2

CORES
T1

Conventional SLICC

L1I

3

5

7

1

2

3

4

T2

Threads
tim

e
#Cache
Miss

#Cache
Miss

T1

T1 T2

T1 T2 T2 T1

T2 T1

need	to	track	recent	misses	and	cache	contents
exploits	aggregate	L1-I	&	instruction	overlap

Summary
• DBMSs	underutilize	a	core’s	resources
• Problem	1:	L1-I	misses

–due	to	capacity
–minimized	footprint	&
illusion	of	a	larger	cache	by	maximizing	re-use

• Problem	2:	LLC	data	misses
– compulsory
–maximize	cache-line	utilization	through
cache-conscious	algorithms	and	layout

26

Modern	Parallelism

27

core

instruction	&	data
parallelism

core

multithreading

core

horizontal
parallelism

core

Challenges	when	Scaling	Up

28

th
ro
ug
hp

ut

number	of	threads

OLTP OLAP

th
ro
ug
hp

ut
number	of	threads

access	latency memory	bandwidth

Critical	Path	of	Transaction	Execution

29

Core Core Core Core Core Core Core Core

Data

System	state

threads

many	accesses	to	shared	data	structures

Data	Access	Pattern

30

0

20

40

60

80

100

0.2 0.4 0.6 0.8

DI
ST
RI
CT

	re
co
rd
s

time	(secs)

unpredictable	data	accesses
clutter	code	with	critical	sections ->	contention

Critical	Sections

0

10

20

30

40

50

60

70

80

CS
s	p

er
	T
ra
ns
ac
tio

n

other
xct	manager
logging
buffer	pool
catalog
latching
locking

31

Updating	1	row

many	critical	sections	even	for	simplest	transaction

unbounded	à fixed	/	cooperative

Critical	Section	Types
unbounded

32

fixed cooperative

locking,	latching transaction	manager logging

Scaling	up	OLTP

33

unscalable components
locking
latching
logging synchronization

tradeoffs
best	practices

non-uniform	communication
hardware	Islands

34

Hot	Shared	Locks	Cause	Contention

lock	manager

trx1 trx2 trx3

agent	thread	execution

hot	lock
cold	lock

release	and	request	the	same	locks	repeatedly

35

Speculative	Lock	Inheritance

lock	manager

trx1 trx2 trx3

agent	thread	execution

hot	lock
cold	lock

commit	without	
releasing	hot	locks

seed	lock	list	
of	next	trx

significantly	reduces	lock	contention
co-locate	atomic	counters	with	data

Data-Oriented	Transaction	Execution

36convert	centralized	locking	to	thread-local

Upd(WH) Upd(DI) Upd(CU)

Ins(HI)

Phase	1

Phase	2

TPC-C	Payment

Completed

Input

Local	Lock	Table
Pref LM Own Wait

AAB

A{1,0} EX A

{1,3} EX B

A

Routing	fields:	{WH_ID,	D_ID}

Range Executor

A-H 1

I-N 2

Thread-to-transaction	- Access	Pattern

37

0

20

40

60

80

100

0.2 0.4 0.6 0.8

DI
ST
RI
CT

	re
co
rd
s

time	(secs)

Thread-to-data	– Access	Pattern

38

0

20

40

60

80

100

0.2 0.4 0.6 0.8

DI
ST
RI
CT

	re
co
rd
s

time	(secs)

predictable	data	accesses

In-memory	Databases

39

Traditional	disk-based	OLTP

Disk

Main	Memory

Buffer	Manager

Cache

CPU
I/O

in	ms

No	buffer	manager	(35%)

No	use	of	disk

Lighter	concurrency	control

Optimized	for	better	cache	
utilization

In-memory	OLTP

Scaling	up	OLTP

40

unscalable components
locking
latching
logging synchronization

tradeoffs
best	practices

non-uniform	communication
hardware	Islands

Data	Access	in	Centralized	B-tree

41

heap

index

conflicts	on	both	index	and	heap	pages

range worker

A – M	

N	– Z	

Physiological	Partitioning	(PLP)

42

R1 R2

logical
physical

heap

multi-rooted	B-tree

Scaling	up	OLTP

45

unscalable components
locking
latching
logging synchronization

tradeoffs
best	practices

non-uniform	communication
hardware	Islands

A	Day	in	the	Life	of	a	Serial	Log

xct 1

xct 2

commitWAL

working

lock	Mgr.

log	Mgr.

I/O	Wait

serializeWAL

A

A serialize	at	the	log	head

B

B I/O	delay	to	harden	the	commit	record

C

C serialize	on	incompatible	lock

END

Aether Holistic	Logging

• early	lock	release
– can	be	improved	further	with	control	lock	violation

• flush	pipelining
– reduces	context	switches

• consolidation	array
– minimize	log	contention

47

Xct 1
Commit

WAL
END

Thread	1

Time

Xct 1

Xct 2Thread	2

Log	Writer

Xct 3

Xct 4

Xct 1

Xct 2

Commit

WAL
ENQUEUE

Xct 3

Scaling	up	OLTP

48

unscalable components
locking
latching
logging synchronization

tradeoffs
best	practices

non-uniform	communication
hardware	Islands

Multisocket Multicores

49

<10	cycles

core core core

L1

L2

L1

L2

L1

L2

L3

core

L1

L2

memory	controller

Inter-socket	links

core core core

L1

L2

L1

L2

L1

L2

L3

memory	controller

core

L1

L2

Inter-socket	links

L1

inter-socket	links inter-socket	links

50	cycles
500	cycles

Island
L3

threads

socket	0 socket	1

communication	latencies	vary	by	order-of-magnitude

OLTP	on	Hardware	Islands

Challenges:
– optimal	configuration	depends	on	workload	and	hardware
– expensive	repartitioning	due	to	physical	data	movement

50

shared-everything shared-nothingIsland	shared-nothing

ü stable
û not	optimal

ü fast
û sensitive	to	workload

ü robust	middle	ground

Adaptive	Transaction	Processing

51

Core Core

System	state

Core Core

System	state
Probe	A Probe	B

Scaling	up	OLTP
• identify	bottlenecks	in	existing	systems

– eliminate	bottlenecks	systematically	and	holistically

• design	new	system	from	the	ground	up
– without	creating	new	bottlenecks

• do	not	assume	uniformity	in	communication
• choose	the	right	synchronization	mechanism

52

