
Hardware Trends
CPU speed and memory capacity double every 18 
months.
Memory performance merely grows 10%/yr:

– Capacity vs speed (esp. latency)
The gap grows ten fold every 6 yr! And 100 times 
since 1986.



Implications
•Many databases can fit in main memory
• But memory access will become the new 

bottleneck
• No longer a uniform random access model 

(NUMA)!
• Cache performance becomes crucial



Memory Basics
• Memory hierarchy:

– CPU
– L1 cache (on-chip): 1 cycle, 8-64 KB, 32 byte/line
– L2 cache: 2-10 cycle, 64 KB-x MB, 64-128 byte/line
– TLB: 10-100 cycle. 64 entries (64 pages).
– Capacity restricted by price/performance.

• Cache performance is crucial
– Similar to disk cache (buffer pool)
– Catch: DBMS has no direct control.



Improving Cache Behavior
• Factors:

– Cache (TLB) capacity.
– Locality (temporal and spatial).

• To improve locality:
– Non random access (scan, index traversal):

• Clustering to a cache line. 
• Squeeze more operations (useful data) into a cache line. 

– Random access (hash join):
• Partition to fit in cache (TLB). 

– Often trade CPU for memory access



Cache Conscious Indexing



Example Tree Index
• Index entries:<search key value, page id> they direct 

search for data entries in leaves.
• Example where each node can hold 2 entries;

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root



Example B+ Tree
• Search begins at root, and key comparisons 

direct it to a leaf.
• Search for 5*, 15*, all data entries >= 24* ...

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13



B+ Tree - Properties
• Balanced
• Every node except root must be at least ½ full.
• Order: the minimum number of keys/pointers in a non-

leaf node
• Fanout of a node: the number of pointers out of the 

node



B+ Trees: Summary
• Searching:

– logd(n) – Where d is the order, and n is the number of entries

• Insertion:
– Find the leaf to insert into
– If full, split the node, and adjust index accordingly
– Similar cost as searching

• Deletion
– Find the leaf node
– Delete
– May not remain half-full; must adjust the index accordingly



Cache Sensitive Search Tree
• Key: Improve locality
• Similar as B+ tree (the best existing).
• Fit each node into a L2 cache line

– Higher penalty of L2 misses.
– Can fit in more nodes than L1. (32/4 vs. 64/4)

• Increase fan-out by:
– Variable length keys to fixed length via dictionary 

compression.
– Eliminating child pointers

• Storing child nodes in a fixed sized array.
• Nodes are numbered & stored level by level, left to right.
• Position of child node can be calculated via arithmetic.



1 2 3 4 1 2 3 4

1 3

2

B+ tree, 2-way, 3 misses

21 3

Suppose cache line size = 24 bytes, 

Key Size = Pointer Size = 4 bytes

CSS tree, 4-way, 2 misses

Node0

Node1 Node2 Node3 Node4

Search K = 3,

Match 3rd key in 
Node 0.

Node# = 

0*4 + 3 = Node 3



Performance Analysis (1)
Node size = cache line size is optimal:

– Node size as S cache lines.
– Misses within a node = 1 + log 2 S 

• Miss occurs when the binary search distance >= 1 cache line
– Total misses = log m n * ( 1 + log 2 S )
– m = S * c (c as #of keys per cache line, constant)
– Total misses = A / B where:

• A = log2 n * (1+log2 S)
• B = log2 S + log2 c

– As log2S increases by one, A increases by log2 n, B by 1. 
– So minimal as log2S = 0, S = 1



Performance Analysis (2)
• Search improvement over B+ tree:

– log m/2 n / log m n – 1 = 1/(log2 m –1)
– As cache line size = 64 B, key size = 4, m = 16.33%.

• Space
– About half of B+ tree (pointer saved)
– More space efficient than hashing and T trees

• CSS has the best search/space balance.
– Second the best search time (except Hash – very poor space)
– Second the best space (except binary search – very poor 

search)



Problem?
No dynamic update because fan-out and array size 
must be fixed.



With Update - Restore Some Pointers
CSB+ tree

– Children of the same node stored in an array (node group)
– Parent node with only a pointer to the child array.
– Similar search performance as CSS tree. (m decreases by 2)
– Good update performance if no split.



Other Variants
• CSB+ tree with segments

– Divide child array into segments (usually 2)
– With one child pointer per segment
– Better split performance, but worse search.

• Full CSB+ tree 
– CSB+ tree with pre-allocated children array.
– Good for both search and insertion. But more space.

2-segment CSB+ tree.

Fan-out drops by 2*2.



Performance
• Performance:

– Search: CSS < full CSB+ ~ CSB+ < CSB+ seg < B+
– Insertion: B+ ~= full CSB+ < CSB+ seg < CSB+ < CSS

• Conclusion:
– Full CSB+ wins if space not a concern.
– CSB+ and CSB+ seg win if more reads than insertions.
– CSS best for read-only environment.



Cache Conscious Join Method



Vertical Decomposed Storage
• Divide a base table into m arrays (m as #of attributes)
• Each array stores the <oid, value> pairs for the iʼth 

attribute.
• Variable length fields to fixed length via dictionary 

compression.
• Omit oid if oid is dense and ascending.
• Reconstruction is cheap – just an array access.

A B C A B Dic-CC



Existing Equal-Join Methods
• Sort-merge: 

– Bad since usually one of the relation will not fit in cache.

• Hash Join: 
– Bad if inner relation can not fit in cache.

• Clustered hash join: 
– One pass to generate cache sized partitions.
– Bad if #of partitions exceeds #cache lines or TLB entries.

.
Cache (TLB) thrashing occurs –
one miss per tuple



Radix Join (1)
Multi passes of partition. 

– The fan-out of each pass does not exceed #of cache lines AND 
TLB entries.

– Partition based on B bits of the join attribute (low 
computational cost)

5
6
7
8
1
2
3
4

01
10
11
00
01
10
11
00

5
8
1
4

01
00
01
00

6
7
2
3

10
11
10
11

8
4

00
00

5
1

01
01

…



Radix Join (2)
• Join matching partitions

– Nested-loop for small partitions (<= 8 tuples) 
– Hash join for larger partitions

• <= L1 cache, L2 cache or TLB size.
• Best performance for L1 cache size (smallest).

• Cache and TLB thrashing avoided.
• Beat conventional join methods

– Saving on cache misses > extra partition cost



Lessons
• Cache performance important, and becoming more 

important
• Improve locality

– Clustering data into a cache line
– Leave out irrelevant data (pointer elimination, vertical 

decomposition)
– Partition to avoid cache and TLB thrashing

• Must make code efficient to observe improvement
– Only the cost of what we consider will improve.
– Be careful to: functional calls, arithmetic, memory allocation, 

memory copy.



Example – Spatial Data



Spatial Data & Queries
• Any data with three dimensions, e.g., points
• Different queries: range query, nearest neighbor etc.

• Store objects near each other on the same disk page (or 
cache line)
• Time spent on computation becomes a consideration:

Query

4.7

96.7

95.3

3.3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R-Tree in Memory

R-Tree on Disk

Reading Data Computations



Reduce Computation
• Traditionally non-uniform partitioning

• Reduce computations by using several grids:

Query

Range Query

Coarsest-grained Grid Finest-grained Grid



Compressing Spatial Data

compression technique can reduce the MBR size to less than a
fourth, thereby increasing the fanout by more than 150%. A
potential problem with the proposed technique is that the
information loss by quantization may increase false hits, which
have to be filtered out through a subsequent refinement step in
most multidimensional indexes [9]. However, we can keep the
number of false hits negligibly small by the proper choice of the
quantization level so that the cost of filtering out false hits can be
paid off by the significant savings in cache misses.

This paper also explores several options in the design of CR-
tree including whether to use the pointer elimination technique of
the CSB+-tree, whether to apply the proposed compression
technique to leaf nodes or not, the choice of quantization levels,
and the choice of node size. Our experimental study shows that all
the resultant CR-tree variants significantly outperform the R-tree
in terms of the search performance and the space requirement.
The basic CR-tree that uses only the proposed technique performs
search operations up to 2.5 times faster than the R-tree while
performing update operations similarly to the R-tree and using
about 54% less memory space. Compared with the basic CR-tree,
most of CR-tree variants use less memory with algorithmic
overhead. Our analysis of the proposed technique and various
indexes used in our experiment coincides with the experimental
result.

This paper is organized as follows. Section 2 presents the basic
idea of this paper and formulates our problem. Section 3 presents
the proposed MBR compression scheme, and the section 4
describes the proposed CR-tree. Section 5 analytically compares
the CR-tree with the ordinary R-tree, and section 6 presents the
result of the experiment conducted to compare the CR-tree with

the R-tree. Section 7 finally concludes this paper.

2. Motivation
2.1 Memory Hierarchy
Table 1 summarizes the properties of the memory hierarchy
observed in Sun UltraSPARC II and Intel Xeon platforms. In
UltraSPARC II, the block size is 32 bytes for the L1 cache and 64
bytes for the L2 cache [10]. Typically, the L1 cache can be
accessed in one clock cycle, and the L2 cache can be accessed in
two clock cycles. The memory access time depends on the DRAM
type. When EDO DRAM is used, each memory access takes 50 ns
on average. When a cache miss occurs in the L1 cache and the L2
cache, a victim is selected. The miss penalty is the cost of
selecting a victim and accessing the backing store. In
UltraSPARC II, each L1 cache miss incurs two accesses to the L2
cache, and each L2 cache miss incurs four accesses to main
memory.

2.2 Basic Idea
The idea in this paper is to make the R-tree cache-conscious by
compressing MBRs. Figure 1 illustrates the compression scheme
used in this paper. Figure 1(a) shows the absolute coordinates of
R0~R3. Figure 1(b) shows the coordinates of R1~R3 represented
relatively to the lower left corner of R0. These relative coordinates
have a less number of significant bits than absolute coordinates.
Figure 1(c) shows the coordinates of R1~R3 quantized into 16
levels or four bits by cutting off trailing insignificant bits. We call
the resultant MBR QRMBR (quantized relative representation of
MBR). Note that QRMBRs can be slightly bigger than original
MBRs.

The CR-tree is a cache-conscious R-tree that uses QRMBRs as
index keys. For the sake of simplicity, the quantization levels are
made the same for all nodes. Figure 2 shows the structure of a
CR-tree node that can contain up to M entries. It keeps a flag
indicating whether it is a leaf or not, the number of stored entries,
and the reference MBR that tightly encloses its entire child MBRs.
The reference MBR is used to calculate the QRMBRs stored in
the node. Internal nodes store entries of the form (QRMBR, ptr),
where ptr is the address of a child node and QRMBR is a
quantized relative representation of the child node MBR. Leaf
nodes store entries of the form (QRMBR, ptr), where ptr refers to
an object and QRMBR is a quantized relative representation of the

R0

R1

R3

R2

43150, 27080

43153, 27087

43160, 27095

43166, 27085

43170, 27091

43166, 27102

43178, 27109

43182, 27112

(a) Absolute coordinates of R0~R3

R0

R1

R3

R2

43150, 27080

3, 7

10, 15

16, 5

20, 11

16, 22

28, 29

43182, 27112

(b) Relative coordinates of R1~R3
to the lower left corner of R0 (c) Quantized relative coordinates

43150, 27080

1,3

5, 8

8, 2

10, 6

8, 11

14, 15
43182, 27112

R0

R1

R3

R2

Figure 1: QRMBR Technique

L1 Cache L2 Cache Memory
Block size 16~32B 32~64B 4~16KB
Size 16~64KB 256KB~8MB ~32GB

Hit time 1 clock cycle 1~4 clock cycles 10~40 clock
cycles

Backing store L2 cache Memory Disks

Miss penalty 4~20 clock
cycles

40~200 clock
cycles

~6M clock
cycles

Table 1: Summary of Current Memory Hierarchy


