_ Imperial College London
Hardware Trends

CPU speed and memory capacity double every 18
months.

Memory performance merely grows 10%/yr:
— Capacity vs speed (esp. latency)

The gap grows ten fold every 6 yr! And 100 times
since 1986.



_ Imperial College London
Implications

* Many databases can fit in main memory

* But memory access will become the new
bottleneck

* No longer a uniform random access model
(NUMA)!

* Cache performance becomes crucial



_ Imperial College London
Memory Basics

* Memory hierarchy:
— CPU
— L1 cache (on-chip): 1 cycle, 8-64 KB, 32 byte/line
— L2 cache: 2-10 cycle, 64 KB-x MB, 64-128 byte/line
— TLB: 10-100 cycle. 64 entries (64 pages).
— Capacity restricted by price/performance.

e Cache performance is crucial

— Similar to disk cache (buffer pool)
— Catch: DBMS has no direct control. sandwistn Latency & Size

Incrases Increase
Ve SN
N Mass Storage

(hard disk, tape, etc.)

CPU




_ Imperial College London
Improving Cache Behavior

* Factors:
— Cache (TLB) capacity.
— Locality (temporal and spatial).

* To improve locality:

— Non random access (scan, index traversal):

e Clustering to a cache line.
* Squeeze more operations (useful data) into a cache line.

— Random access (hash join):
* Partition to fit in cache (TLB).
— Often trade CPU for memory access



. imperial College London

Cache Conscious Indexing



_ Imperial College London
Example Tree Index

* Index entries:<search key value, page id> they direct
search for data entries in leaves.

* Example where each node can hold 2 entries;

Root T~a.

40
20 33 51 63

/ 4\ L\

27* 33* | 37* 40* ‘ 46* 51* 55% 63* 97*

10*

15* 20%




_ Imperial College London
Example B+ Tree

* Search begins at root, and key comparisons
direct it to a leaf.

e Search for 5%, 15%*, all data entries >=24%* ...

Root \

13 17 24 30

2% | 3% | 5% | 7* 14*| 16* 19%| 20* [ 22* 24% | 27*%(29* 33% | 34*[38* | 39*




_ Imperial College London
B+ Tree - Properties

e Balanced

* Every node except root must be at least % full.
* Order: the minimum number of keys/pointers in a non-
leaf node

* Fanout of a node: the number of pointers out of the
node



_ Imperial College London
B+ Trees: Summary

e Searching:
—logy(n) — Where d is the order, and n is the number of entries

* |Insertion:
— Find the leaf to insert into
— If full, split the node, and adjust index accordingly
— Similar cost as searching

e Deletion
— Find the leaf node

— Delete
— May not remain half-full; must adjust the index accordingly



_ Imperial College London
Cache Sensitive Search Tree

* Key: Improve locality
 Similar as B+ tree (the best existing).

* Fit each node into a L2 cache line

— Higher penalty of L2 misses.
— Can fit in more nodes than L1. (32/4 vs. 64/4)

* Increase fan-out by:

— Variable length keys to fixed length via dictionary
compression.
— Eliminating child pointers
» Storing child nodes in a fixed sized array.

* Nodes are numbered & stored level by level, left to right.
e Position of child node can be calculated via arithmetic.



_ Imperial College London
Suppose cache line size = 24 bytes,
Key Size = Pointer Size = 4 bytes

B+ tree, 2-way, 3 misses CSS tree, 4-way, 2 misses

Search K =3,
2
! \ Match 37 key in
/ \ NodeO Node O.
Node# =
1 3 . 1.2 _-3 ‘0*4+3=Node3
| \ | \ . K
Y A A B Y
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
I I I I ! ! ! !

Nodel Node2 Node3 Node4



_ Imperial College London
Performance Analysis (1)

Node size = cache line size is optimal:
— Node size as S cache lines.
— Misses withinanode=1+1log,S
* Miss occurs when the binary search distance >= 1 cache line
— Total misses=log ,n*(1+log,S)
—m =S * c(c as #of keys per cache line, constant)

— Total misses = A / B where:
e A=log, n*(1+log,S)
* B=log,S+log,c
— As log,S increases by one, A increases by log, n, B by 1.

—So minimal as log,$=0,5=1



_ Imperial College London
Performance Analysis (2)

* Search improvement over B+ tree:

—log non/log ,,n—1=1/(log, m-1)
— As cache line size = 64 B, key size =4, m = 16.33%.

* Space
— About half of B+ tree (pointer saved)
— More space efficient than hashing and T trees

* CSS has the best search/space balance.
— Second the best search time (except Hash — very poor space)

— Second the best space (except binary search — very poor
search)



_ Imperial College London
Problem?

No dynamic update because fan-out and array size
must be fixed.



_ Imperial College London
With Update - Restore Some Pointers

CSB+ tree
— Children of the same node stored in an array (node group)
— Parent node with only a pointer to the child array.
— Similar search performance as CSS tree. (m decreases by 2)
— Good update performance if no split.




_ Imperial College London
Other Variants

* CSB+ tree with segments
— Divide child array into segments (usually 2)
— With one child pointer per segment
— Better split performance, but worse search.

e Full CSB+ tree

— CSB+ tree with pre-allocated children array.
— Good for both search and insertion. But more space.

2-segment CSB+ tree.

Fan-out drops by 2*2.




_ Imperial College London
Performance

* Performance:
— Search: CSS < full CSB+ ~ CSB+ < CSB+ seg < B+
— Insertion: B+ ~= full CSB+ < CSB+ seg < CSB+ < CSS

* Conclusion:
— Full CSB+ wins if space not a concern.
— CSB+ and CSB+ seg win if more reads than insertions.
— CSS best for read-only environment.



. imperial College London

Cache Conscious Join Method



_ Imperial College London
Vertical Decomposed Storage

* Divide a base table into m arrays (m as #of attributes)

 Each array stores the <oid, value> pairs for the i'th
attribute.

* Variable length fields to fixed length via dictionary
compression.

* Omit oid if oid is dense and ascending.
* Reconstruction is cheap — just an array access.

A|lB C A B C Dic-C

iy >,




e Imperial College London
Existing Equal-Join Methods

* Sort-merge:
— Bad since usually one of the relation will not fit in cache.

e Hash Join:
— Bad if inner relation can not fit in cache.

* Clustered hash join:
— One pass to generate cache sized partitions.
— Bad if #of partitions exceeds #cache lines or TLB entries.

A 4

g Cache (TLB) thrashing occurs —
one miss per tuple




. Imperial College London
Radix Join (1)

Multi passes of partition.

— The fan-out of each pass does not exceed #of cache lines AND
TLB entries.

— Partition based on B bits of the join attribute (low
computational cost)

8 | 00
5 | o1 5 | 01
6 | 10 8 | 00 e 4 | 00
7 | 11 1 | o1 = o1
g8 | 00 -~ 4 100 N, | 1| o
1 | o1 1 10
3 | 11 S




. Imperial College London
Radix Join (2)

* Join matching partitions
— Nested-loop for small partitions (<= 8 tuples)

— Hash join for larger partitions
e <=1L1 cache, L2 cache or TLB size.
* Best performance for L1 cache size (smallest).

* Cache and TLB thrashing avoided.

* Beat conventional join methods
— Saving on cache misses > extra partition cost



_ Imperial College London
Lessons

e Cache performance important, and becoming more
Important

* Improve locality
— Clustering data into a cache line

— Leave out irrelevant data (pointer elimination, vertical
decomposition)
— Partition to avoid cache and TLB thrashing

* Must make code efficient to observe improvement

— Only the cost of what we consider will improve.
— Be careful to: functional calls, arithmetic, memory allocation,
memory copy.



U imperial College London

Example — Spatial Data



_ Imperial College London
Spatial Data & Queries

* Any data with three dimensions, e.g., points
* Different queries: range query, nearest neighbor etc.

 Store objects near each other on the same disk page (or
cache line)

* Time spent on computation becomes a consideration:

M Reading Data W Computations



_ Imperial College London
Reduce Computation

* Traditionally non-uniform partitioning

0

=71

Coarsest-grained Grid Finest-grained Grid



Imperial College London

Compressing Spatial Data

43182,27112

43182,27112

112

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 I T Y Y TR I B I [ T I
Y e et e e B e el R R EE R
I T T T T O B T [ R
- I I I A | S I [ Y I M
- [ T T T T T T [
M o L | [
A---r=T1-f-r- - TrT I T T AT T T T T T
[ | [ Y T | [ I
F— - - -4 Ak kA - - - — ]
(| [ T T T | [ I T
-!--_!m._ll_:._l_l_ (T A Y Y I
1 [ [ 1 T T T
[ [ rOa 1 [
Tt rT T S T o - =
[ | [ 1 1 1
I O PRI B T R T ||_|m ad -+
[ | — [ 1 1
| _ [ — _d__I__1 _ ] Ll N _
[ [ [l IS [ 1 [l [l [ [ N
[ T 00 [T T T T T T o0
F—t——l——F—4—- A ——lm—ft A== =t —A— ==+ — ]
1 I T Y Y TR I B I [ T I
Ty R Ty S | T S
1 [ Y N | [ | [ R
|||_||_||_|||_||_||_||,00 [ | O Y
1 [ e e A 9 T T 1m0
1 [ T T B | [ | 1 [
F-t--1-—-F—-4—--1——tr—-d4-~-Ft-+—--——-tt]--1--+—
1 1 1 1 1 1 1 1 — 1 1 1
I T R [ P E N I I —_L oL _
1 o 1 R 1 [
I o I [ [ Y
1 [ R | T [ 1m0
| | | | | | T T T T |
B m el e B e e —— nJallﬁl.
[ | [ [ [ | 1 — 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(@)
[\l
o0
@\l
en
R —
—
=
(@]
N & |n
; N}
o —
w
—
e}
—
&
o~
mm "

43150,27080

43150, 27080

(c) Quantized relative coordinates

(b) Relative coordinates of R1~R3
to the lower left corner of RO



