
Solid State Storage and Databases:
Where and How?

Thomas Heinis
t.heinis@imperial.ac.uk

Scale Lab - scale.doc.ic.ac.uk

Flash disks
• Secondary storage or caching layer.
•Main advantage over disks: random reads

equally fast as sequential reads.
• BUT: Slow random writes.
• Data organized in pages (similarly to disks) and

pages organized in flash blocks.
• Like RAM, time to retrieve a disk page is not

related to location on flash disk.

2

The Internals of Flash Disks
Interconnected
flash chips

No mechanical
limitations

Maintain the block
API – compatible
with disks layout

Internal parallelism
in read/write

Complex software
driver

3

FlashFlashFlash

Flash
Controller

FlashFlashFlashInternal
Memory

Internal
CPU

Interface (SATA / PCI)

SSD

Flash Package

Dies
Planes

Blocks
Pages

Accessing a Flash Page
• Access time depends on

– Device organization (internal parallelism)
– Software efficiency (driver)
– Bandwidth of flash packages

• Flash Translation Layer (FTL)
– Complex device driver (firmware)
– Tunes performance and device lifetime

4

HDD
üLarge – inexpensive

capacity
x Inefficient random reads

Flash disks
x Small – expensive

capacity
üVery efficient random

reads

Flash disks vs HDD

5

Storage Hierarchy -- 80’s

6

CPU RAM
HDD

1ns 1us 1ms

2-3 orders of magnitude
Latency:

CPU RAM
HDD

100GB 1GB 0.1MB10MB

1-2 orders of magnitude

Bandwidth:

Storage Hierarchy -- Now

CPU RAM
HDD

1ns 1us 1ms

L1 L2 L3

Caches help bridge the gap

CPU RAM
HDD

100GB 1GB 0.1MB10MB

2-3 orders difference
Bandwidth:

Latency:

“…Disk is Tape, Flash is Disk, RAM Locality is King”

?

?

4-5 orders difference

SSMs as bridge

SSM today
• Only Flash & PCM pursued commercially

– Flash most developed, PCM promising competitor

• Flash

• PCM

8

Flash parameter Status Trend
Density Not enough ↗J

Bulk erase size Problematic ↗ L
Access time Good ↗ (slowly) K
Endurance Bad ↘ L

PCM parameter Status Trend
Density Too low ↗J

Access time Very good ↗ K
Endurance OK ?

Look similar to DBMS
Neither is a HDD drop-in replacement

Storage and Data Management
• DBMS traditionally designed from ground up

around a HDD model
• Some common HDD optimizations

– Data structures:
• B-trees, bitmap indexes, column organization, compression

– Query plans (prefer sequential vs random access)
– Buffer pool, buffering policies, Write-ahead logging
– Column stores

9Need to revisit DBMS design

What to do with flash?
• Flash position in memory hierarchy

– HDD replacement
– Intermediate layer
– Side by side with HDDs

• No “correct” use
– Depends on workload (dataset size, access pattern)
– Future trends: e.g. flash density competitive with HDD

10

RAM HDD

RAM
HDD

RAM

Three example ways to use flash

1) Flash-only OLTP

• OLTP I/O dominated by random reads/writes
• Random reads/writes much faster on flash

– Also, smaller random-to-sequential gap

• Flash-resident workload
– Usually a couple of flash devices can hold working set

• Should benefit from fast random access of flash

11

RAM

+ unpredictability

8KiB random writes – Fusion ioDrive

12

Time(hours)

Th
ro

ug
hp

ut
 (M

iB
/s

)

0

100

200

300

150

50

250

350

0 5 10 15 20

Average over 1s
Moving average

80000 80200
0

10

20

94% performance drop

Trade random writes with sequential ops

Append/Pack

13

Reclaim space

No more space

Update pageUpdate page

Valid page

Invalid page
Log end

Log start

Write hot
dataset

Write cold
dataset

Update page

Reclaim space

Write seq.
No in-place

updates

Filter cold pages

Append/Pack on Fusion 160GB PCIe
>16 threads, 50% Rand Write / 50% Rand Read, 8KiB I/Os

14

3000 4000
Time (s)

100003000 4000
0

10000

100

200

300

400

500

Th
ro

ug
hp

ut
 (M

iB
/s

)

Average over 1s
Moving average

Log-structured writes good for flash-only OLTP

Append/Pack

2) Flash-aided Business Intelligence (OLAP)

• Data warehouse workload
– Read-only queries (scans)
– Scattered updates
– How to combine efficiently?

• Traditionally two choices
– Freshness: in-place updates
– Performance: batch updates

• Ideally, zero overhead

15

0

0.5

1

1.5

2

2.5

Query only Query w/
updates

Query only +
Updates only

Ideal

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e TPCH queries (on avg)

Fr
es

hn
es

s

Pe
rfo

rm
an

ce

RAM HDD

Flash as a (write) cache for analytics

• Buffer updates on Flash instead of memory
ØFlash has larger capacity and smaller price

• But: Flash limitations
– Access time: Avoid random writes
– Endurance: Limit/control total # of writes

16

Incoming
updates

Merge data from
disks and flash

Answer
query

SSD

Materialized Sort-Merge (MaSM)

17

Main memory

17

Disks
(main data)

e.g. TBs

Incoming
query

Merge data & updates

Ta
bl

e
Ra

ng
e

Sc
an

Ru
n

Sc
an

Ru
n

Sc
an

Ru
n

Sc
an

Merge updates

M
em

Sc
an

M pages

M
 p

ag
es

M=

SSD
e.g. GBs

3-point merge with minimum overhead

Seagate Barracuda + Intel X25-E SSD

• negligible impact on 10MB or larger scans
• fine-grain index incurs 4% overhead for 4KB

ranges (modeling point queries)
18

100GB main data, 4GB flash for
cached updates, 16MB memory

0

1

2

3

4

4KB 100KB 1MB 10MB 100MB 1GB 10GB 100GB

no
rm

al
iz

ed
 ti

m
e

range size

in-place updates MaSM w/ coarse-grain index MaSM w/ fine-grain index

Request queue

In-memory log buffer

Interface
Worker

Worker

Worker

Database

3) Logging on Flash+HDD

• Transactional logging: major bottleneck
–Today, OLTP DBs fit into main memory
–But still must flush redo log to stable media

• Log access pattern: small sequential writes
–HDDs incur full rotational delays

Faster recovery at lower price

RAM
HDD

SSD+DBMS: Where and how?

1. SSM as helper of a memory level (DBMS
unchanged)

2. Adapt I/O pattern, “small” DBMS changes

3. Change storage mgmt, query optimization

20

Ti
m

e

Conclusions
• SSM can help bridge the I/O gap

But SW needs to help in building!
•Many flash/SSM uses in data management

– Stream processing, hash tables, graph DBs

• SSM a very rapidly evolving field
– several possible commercially viable technologies
– memristor variations

21

