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Flash disks
• Secondary storage or caching layer.
•Main advantage over disks:  random reads

equally fast as sequential reads.
• BUT: Slow random writes.
• Data organized in pages (similarly to disks) and 

pages organized in flash blocks.
• Like RAM, time to retrieve a disk page is not 

related to location on flash disk.  
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The Internals of Flash Disks
Interconnected 
flash chips

No mechanical 
limitations

Maintain the block 
API – compatible 
with disks layout

Internal parallelism 
in read/write

Complex software 
driver
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Accessing a Flash Page
• Access time depends on

– Device organization (internal parallelism)
– Software efficiency (driver)
– Bandwidth of flash packages

• Flash Translation Layer (FTL)
– Complex device driver (firmware)
– Tunes performance and device lifetime
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HDD
üLarge – inexpensive 

capacity
x Inefficient random reads

Flash disks
x Small – expensive 

capacity
üVery efficient random 

reads

Flash disks vs HDD

5



Storage Hierarchy -- 80’s
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CPU RAM
HDD

1ns 1us 1ms

2-3 orders of magnitude
Latency:

CPU RAM
HDD

100GB 1GB 0.1MB10MB

1-2 orders of magnitude

Bandwidth:



Storage Hierarchy -- Now

CPU RAM
HDD

1ns 1us 1ms

L1 L2 L3

Caches help bridge the gap

CPU RAM
HDD

100GB 1GB 0.1MB10MB

2-3 orders difference
Bandwidth:

Latency:

“…Disk is Tape, Flash is Disk, RAM Locality is King”

?

?

4-5 orders difference

SSMs as bridge



SSM today
• Only Flash & PCM pursued commercially

– Flash most developed, PCM promising competitor    

• Flash

• PCM
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Flash parameter Status Trend
Density Not enough ↗J

Bulk erase size Problematic ↗ L
Access time Good ↗ (slowly) K
Endurance Bad ↘ L

PCM parameter Status Trend
Density Too low ↗J

Access time Very good ↗ K
Endurance OK ?

Look similar to DBMS
Neither is a HDD drop-in replacement



Storage and Data Management
• DBMS traditionally designed from ground up 

around a HDD model
• Some common HDD optimizations

– Data structures:
• B-trees, bitmap indexes, column organization, compression

– Query plans (prefer sequential vs random access)
– Buffer pool, buffering policies, Write-ahead logging
– Column stores

9Need to revisit DBMS design



What to do with flash?
• Flash position in memory hierarchy

– HDD replacement
– Intermediate layer
– Side by side with HDDs

• No “correct” use
– Depends on workload (dataset size, access pattern)
– Future trends: e.g. flash density competitive with HDD
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RAM HDD

RAM
HDD

RAM

Three example ways to use flash



1) Flash-only OLTP

• OLTP I/O dominated by random reads/writes
• Random reads/writes much faster on flash

– Also, smaller random-to-sequential gap

• Flash-resident workload
– Usually a couple of flash devices can hold working set

• Should benefit from fast random access of flash
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+ unpredictability

8KiB random writes – Fusion ioDrive
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Trade random writes with sequential ops

Append/Pack
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Reclaim space

No more space

Update pageUpdate page

Valid page

Invalid page
Log end

Log start

Write hot
dataset

Write cold
dataset

Update page

Reclaim space

Write seq.
No in-place 

updates

Filter cold pages



Append/Pack on Fusion 160GB PCIe
>16 threads, 50% Rand Write / 50% Rand Read, 8KiB I/Os
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Log-structured writes good for flash-only OLTP

Append/Pack



2) Flash-aided Business Intelligence (OLAP)

• Data warehouse workload
– Read-only queries (scans)
– Scattered updates
– How to combine efficiently?

• Traditionally two choices
– Freshness: in-place updates 
– Performance: batch updates

• Ideally, zero overhead
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Flash as a (write) cache for analytics

• Buffer updates on Flash instead of memory
ØFlash has larger capacity and smaller price

• But: Flash limitations
– Access time: Avoid random writes
– Endurance: Limit/control total # of writes
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Materialized Sort-Merge (MaSM)
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Main memory
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Seagate Barracuda + Intel X25-E SSD

• negligible impact on 10MB or larger scans 
• fine-grain index incurs 4% overhead for 4KB 

ranges (modeling point queries)
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100GB main data, 4GB flash for 
cached updates, 16MB memory
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Request queue

In-memory log buffer

Interface
Worker

Worker

Worker

Database

3) Logging on Flash+HDD

• Transactional logging: major bottleneck
–Today, OLTP DBs fit into main memory 
–But still must flush redo log to stable media

• Log access pattern: small sequential writes
–HDDs incur full rotational delays

Faster recovery at lower price

RAM
HDD



SSD+DBMS: Where and how?

1. SSM as helper of a memory level (DBMS 
unchanged)

2. Adapt I/O pattern, “small” DBMS changes

3. Change storage mgmt, query optimization
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Conclusions
• SSM can help bridge the I/O gap

But SW needs to help in building!
•Many flash/SSM uses in data management

– Stream processing, hash tables, graph DBs

• SSM a very rapidly evolving field
– several possible commercially viable technologies
– memristor variations
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