
In-Memory Databases - VoltDB

Thomas Heinis
t.heinis@imperial.ac.uk

Scale Lab - scale.doc.ic.ac.uk

OLAP versus OLTP
• OLAP (Business Intelligence):

– Massive amounts of data

– Complex queries

– Large number of tables

– Long running but still somewhat interactive

• OLTP

– Really only transactions, i.e., updates

– Few tables touched

– Typically generated queries

3

Reality Check - Size
• Transactional database size grows at the rate

transactions increase
• 1 Tbyte is a really big TP database
• 1 Tbyte of main memory buyable for around

$50K
– (say) 64 Gbytes per server in 16 servers

• I.e. Moore’s law has eclipsed TP data base size
• If your data doesn’t fit in main memory now,

then wait a couple of years and it will…..

Reality Check - Performance
• TPC-C CPU cycles
• On the Shore DBMS prototype
• OldSQL should be similar

To Go Faster…
• Focus on overhead

– Better B-trees affects only 4% of the path length

• Get rid of ALL major sources of overhead
– Main memory deployment – gets rid of buffer pool

• Leaving other 75% of overhead intact
• i.e., win is 25%

Solution Choices
• OldSQL

– Legacy RDBMS vendors

• NoSQL
– Give up SQL and ACID for performance

• NewSQL
– Preserve SQL and ACID
– Get performance from a new architecture

OldSQL
Traditional SQL vendors (the �elephants�)

– Code lines dating from the 1980�s

– �bloatware�

– Mediocre performance on New TP

NoSQL
• Give up SQL
• Give up ACID

Give Up SQL?
• Compiler translates SQL at compile time into a

sequence of low level operations

• Similar to what the NoSQL products make you

program in your application

• 30 years of RDBMS experience

– Hard to beat the compiler

– High level languages are good (data independence, less code)

– Stored procedures are good!

• One round trip from app to DBMS rather than one one round trip per record

• Move the code to the data, not the other way around

Give Up ACID

• If you need data consistency, giving up ACID is a
decision to tear your hair out by doing database
�heavy lifting� in user code

• Can you guarantee you won’t need ACID
tomorrow?

ACID = goodness, in spite of what noSQL guys say

Who Needs ACID?
• Funds transfer

– Or anybody moving something from X to Y

• Anybody with integrity constraints
– Back out if fails
– Anybody for whom �usually ships in 24 hours� is not an

acceptable outcome

• Anybody with a multi-record state
– E.g. move and shoot

NoSQL Summary
• Appropriate for non-transactional systems
• Appropriate for single record transactions that

are commutative
• Not a good fit for New TP
• Use the right tool for the job
• But: Two recently-proposed NoSQL language

standards – CQL and UnQL – are amazingly
similar to (you guessed it!) SQL

NewSQL
• SQL
• ACID
• Performance and scalability through modern

innovative software architecture

NewSQL
• Needs something other than traditional record

level locking (1st big source of overhead)
– timestamp order
– MVCC

• Needs a solution to buffer pool overhead (2nd big
source of overhead)

– Main memory (at least for data that is not cold)
– Some other way to reduce buffer pool cost

• Needs a solution to latching for shared data
structures (3rd big source of overhead)

– Some innovative use of B-trees
– Single-threading

NewSQL
• Needs a solution to write-ahead logging (4th big

source of overhead)
– Obvious answer is built-in replication and failover
– New TP views this as a requirement anyway

A NewSQL Example – VoltDB
• Main-memory storage

• Single threaded, run transaction to completion

– No locking

– No latching

• Built-in high availability and durability

– No log (in the traditional sense)

Where all the time goes… revisited

Before VoltDB

Current VoltDB Status
• Runs a subset of SQL
• On VoltDB clusters (in memory on commodity

hardware)
•With LAN and WAN replication
• 70x a popular OldSQL DBMS on TPC-C
• 5-7x Cassandra on VoltDB key-value layer
• Scales to 384 cores

Summary
Old TP

OldSQL for New OLTP § Too slow
§ Does not scale

NoSQL for New OLTP § Lacks consistency guarantees
§ Low-level interface

NewSQL for New OLTP § Fast, scalable and consistent
§ Supports SQL

New TP

Technical Overview
�OLTP Through the Looking Glass�

http://cs-www.cs.yale.edu/homes/dna/papers/oltpperf-sigmod08.pdf

VoltDB avoids the overhead of traditional databases
– K-safety for fault tolerance

– no logging

– In memory operation for maximum throughput

– no buffer management

– Partitions operate autonomously and single-threaded

– no latching or locking

Built to horizontally scale
X

X
X

X

XX

X
X X

Technical Overview – Partitions (1/3)
One partition per physical CPU core

– Each physical server has multiple VoltDB partitions

Data - Two types of tables
– Partitioned

• Single column serves as partitioning key
• Rows are spread across all VoltDB partitions by partition column
• Transactional data (high frequency of modification)

– Replicated
• All rows exist within all VoltDB partitions
• Relatively static data (low frequency of modification)

Code - Two types of work – both ACID
– Single-Partition

• All insert/update/delete operations within single partition
• Majority of transactional workload

– Multi-Partition
• CRUD against partitioned tables across multiple partitions
• Insert/update/delete on replicated tables

Technical Overview – Partitions (2/3)
• Single-partition vs. Multi-partition

1 101 2
1 101 3
4 401 2

1 knife
2 spoon
3 fork

Partition 1

2 201 1
5 501 3
5 502 2

1 knife
2 spoon
3 fork

Partition 2

3 201 1
6 601 1
6 601 2

1 knife
2 spoon
3 fork

Partition 3

table orders : customer_id (partition key)
(partitioned) order_id

product_id

table products : product_id
(replicated) product_name

select count(*) from orders where customer_id = 5
single-partition

select count(*) from orders where product_id = 3
multi-partition

insert into orders (customer_id, order_id, product_id) values (3,303,2)
single-partition

update products set product_name = �spork� where product_id = 3
multi-partition

Technical Overview – Partitions (3/3)
Inside a VoltDB partition…

– Each partition contains data and
an execution engine.

– The execution engine contains a
queue for transaction requests.

– Requests are executed
sequentially (single threaded).

Work
Queue

execution engine

Table Data
Index Data

- Complete copy of all replicated tables
- Portion of rows (about 1/partitions) of
all partitioned tables

Technical Overview – Compiling
The database is
constructed from

– The schema (DDL)
– The work load (Java stored

procedures)
– The Project (users, groups,

partitioning)

VoltCompiler creates
application catalog

– Copy to servers along with 1
.jar and 1 .so

– Start servers

CREATE TABLE HELLOWORLD (
HELLO CHAR(15),
WORLD CHAR(15),
DIALECT CHAR(15),
PRIMARY KEY (DIALECT)

);

Schema
import org.voltdb. * ;

@ProcInfo(
partitionInfo = "HELLOWORLD.DIA
singlePartition = true

)

public class Insert extends VoltPr
public final SQLStmt sql =

new SQLStmt("INSERT INTO HELLO

public VoltTable[] run(String hel

import org.voltdb. * ;

@ProcInfo(
partitionInfo = "HELLOWORLD.DIA
singlePartition = true

)

public class Insert extends VoltPr
public final SQLStmt sql =

new SQLStmt("INSERT INTO HELLO

public VoltTable[] run(String hel

import org.voltdb. * ;

@ProcInfo(
partitionInfo = "HE
singlePartition = t

public final SQLStmt
public VoltTable[] run

Stored Procedures

<?xml version="1.0"?>
<project>

<database name='data
<schema path='ddl.
<partition table=�

</database>
</project>

Project.xml

Technical Overview - Transactions

• All access to VoltDB is via Java stored
procedures (Java + SQL)

• A single invocation of a stored procedure is a
transaction (committed on success)

• Limits round trips between DBMS
and application

• High performance client applications
communicate asynchronously with VoltDB

SQL

Technical Overview – Clusters/Durability

• Scalability
– Increase RAM in servers to add capacity
– Add servers to increase performance / capacity
– Consistently measuring 90% of single-node performance increase

per additional node

• High availability
– K-safety for redundancy

• Snapshots
– Scheduled, continuous, on demand

• Spooling to data warehouse
• Disaster Recovery/WAN replication (Future)

– Asynchronous replication

VoltDB and OLTP

28

Asynchronous Communications
Client applications communicate asynchronously with VoltDB

– Stored procedure invocations are placed �on the wire�
– Responses are pulled from the server
– Allows a single client application to generate > 100K TPS
– Client library will simulate synchronous if needed

Traditional
salary := get_salary(employee_id);

VoltDB
callProcedure(asyncCallback, �get_salary�, employee_id);

29

Transaction Control
VoltDB does not support client-side transaction control

– Client applications cannot:
• insert into t_colors (color_name) values (�purple�);
• rollback;

– Stored procedures commit if successful, rollback if failed
– Client code in stored procedure can call for rollback

30

Lack of concurrency
• Single-threaded execution within partitions (single-partition)

or across partitions (multi-partition)
• No need to worry about locking/dead-locks

– great for �inventory� type applications
• checking inventory levels
• creating line items for customers

• Because of this, transactions execute in microseconds.
• However, single-threaded comes at a price

– Other transactions wait for running transaction to complete
– Don’t do anything crazy in a SP (request web page, send email)
– Useful for OLTP, not OLAP

31

Throughput vs. Latency
• VoltDB is built for throughput over latency
• Latency measured in mid single-digits in a properly sized

cluster
• Do not estimate latency as (1 / TPS)

32

SQL Support
• SELECT, INSERT (using values), UPDATE, and DELETE

• Aggregate SQL supports AVG, COUNT, MAX, MIN, SUM

• Materialized views using COUNT and SUM

• Hash and Tree Indexes

• SQL functions and functionality will be added over time, for
now done in Java

• Execution plan for all SQL is created at compile time and
available for analysis

33

SQL in Stored Procedures
SQL can be parameterized, but not
dynamic

�select * from foo where bar = ?;� (YES)

�select * from ? where bar = ?;� (NO)

Schema Changes
Traditional OLTP

– add table…

– alter table…

VoltDB
– modify schema and stored procedures

– build catalog

– deploy catalog

Table/Index Storage
• VoltDB is entirely in-memory
• Cluster must collectively have enough

RAM to hold all tables/indexes (k + 1
copies)

• Even data distribution is important

