
XML & RDBMS’

Introduction
• XML stands for Extensible Markup Language.
• It is designed to describe data and focus on

what data is.
• It is used to structure store and to send

information.
• It is easy to understand and is self describing.

Rules
• The first tag is the root of the tree. There must be a

single root.
• Every other matching pair of tags becomes one node. If

a pair of tags is contained in another pair, the contained
pair becomes a child of the containing pair. Children
have a defined order.
• Text becomes a child of the node corresponding to the

tag that encloses the text. This is always a leaf node.
• XML allows single tag. Single tag always become leaves

with a box.
• XML Tags are case sensitive and they must be always

properly nested.

XML Example

<States>
<State>

<Name>NewJersey</Name>
<Number>1</Number>

</State>
<State>

<Name>NewYork</Name>
<Number>2<Number>

</State>
<Gov>

<Location>Washington</Location>
</Gov>

</States>

Tree Representation of XML

States

State

Name

NewJersey

Number

1

State

Name

NewYork

Number

2

Gov

Location

Washington

DTD
• A valid XML document is a “well formed” XML

document, which also conforms to the rules of a
Document Type Definition(DTD).
• A DTD is like a database schema for XML files.

Example of DTD
DTD

<?XML version = “1.0”?>

<!DOCTYPE note[

<!Element note(to,from,heading,notebody)>

<!Element to(#PCDATA)>

<!Element from(#PCDATA)>

<!Element heading(#PCDATA)>

<!Element notebody(#PCDATA)>

]>

Example XML

<note>

<to>CS 731</to>

<from>21456687</from>

<heading>presentation</heading>

<notebody>XML introduction</notebody>

</note>

Interpretation of DTD
• !ELEMENT note defines the note element as

having four
elements:”to,from,heading,notebody”. In this
order.
• <!ELEMENT to(#PCDATA)> defines the “to”

element is of type “#PCDATA”.
• PCDATA Parsed Character Data: a character string

Interpretation of DTD Cont..
• Element with children (sequence)

<!Element note(to,from,heading ,body)>

• Declaring minimum one occurrence of the same
element(one or more)

<!ELEMENT note (message +)>

• Declaring zero or more occurrences of the same element

<!ELEMENT note (message *)>

• Declaring zero or one occurrences of the same element

<!ELEMENT note (message ?)>

Advantages of XML

• XML is an open standard.
• It is human readable and not cryptic like a

machine language.
• XML processing is easy.
• It can be used to integrate complex web

based systems (using XML as
communication).

Importance of XML

• Extensible Markup Language (XML) is fast
emerging as the dominant standard for
representing data on the Internet.
•Most organizations use XML as a data

communication standard.
• All commercial development frameworks

are XML oriented (.NET, Java).
• All modern web systems architecture is

designed based on XML.

Storing and Querying XML in Databases
XML data can be stored in following ways

– Relational database
– File system
– Object-oriented database (e.g., Excelon), or
– a special-purpose (or semi-structured) system such as Lore

(Stanford), Lotus Notes, or Tamino (Software AG).

Storing XML in Databases
The primary ways to store XML data can be classified as:

– Structure-Mapping approach
In the Structure Mapping approach the design of database schema is
based on the understanding of DTD (Document Type Descriptor) that
describes the structure of XML documents.

– Model-Mapping approach.
In the Model Mapping approach no DTD information is required for data
storage. A fixed database schema is used to store any XML documents
without assistance of DTD.

Storing XML in Databases…
The advantages of the model mapping approaches are:
1. it is capable of supporting any sophisticated XML applications

that are considered either as static (the DTDs are not changed)
or dynamic (the DTDs vary from time to time)

2. it is capable of supporting well-formed but non-DTD XML
applications

3. it does not require extending the expressive power of database
models, in order to support XML documents. It is possible to
store large XML documents in off-the-shelf DBMS

Model Mapping Approaches
• Edge

All the edges of XML document are stored in a single table.
• Monet

It Partitions the edge table according to all possible label paths.
• XParent.

Based on LabelPath, DataPath, Element and Data.
• XRel.

XML data stored based on Path, Element, Text, and Attribute.

Edge Oriented
Approaches

Node Oriented
Approach

XML Document

Data Graph

Key Terms
• ORDINAL: The ordinal of an element is the order of this

element among all siblings that share the same parent.
Ex. The ordinals for the elements &4 and &5 are 3 and 1
respectively.

• A LABEL-PATH in an XML data graph is a dot separated
sequence of edge labels.

Ex. DBGroup.Member.Name.

• A DATA-PATH is a dot-separated alternating sequence of
element nodes.

Ex. &1.&2.&7

Edge Approach
The Edge table can be represented as

Edge(Source,Ordinal,Target,Label,Flag,Value)

Source represents
the source node
in the data graph

Order of
elements among
the siblings.

The name in the
XML document.

Target node to
which the current
node is pointing to.

The type of the
data being
represented.

Value represents
the data in the
XML document.

Edge Approach…
• Edge is specified by two node identifiers Source

and Target.
• The label attribute keeps the edge label of an

edge.
• The Ordinal attribute records the ordinal of the

edge among its siblings.
• A Flag value indicates ref or value.
• Value is the data stored in the XML document.

Data in Edge Table

Monet Approach
•Monet stores XML data in multiple tables.
• Partitions the Edge table on all possible label-

paths (No of Tables = No of distinct label-paths)

• Tables are classified as
– Element Node (Source, Target, Ordinal)

The combination represents unique edge in XML data graph.
– Text Node (ID, Value)

The type of the value is implicit in the table name.

Data in Monet Tables
DBGroupàMember =

{<&1, &2, 1>, <&1, &3, 2>,<&1, &4, 3>}
DBGroupàMemberàName =

{<&2, &7, 1>, <&3, &10, 1>, <&4, &12, 1>}
DBGroupàMemberàNameàString =

{<&7, Fervvac, 1>, <&7, Daniel, 1>, <&7, Ryan, 1>}
and so on….(18 tables)

XRel Approach
• Node oriented approach - maintains nodes

individually.
• XRel Stores XML data in four tables:

– Path (PathID, Pathexp)
This table maintains
the simple path

expression identifier
(PathID) and path
expression(Pathexp).

XRel Approach
Element (PathID, Start, End, Ordinal)

– This table contains the
start position of a region,
end position of a region
for a given PathId.

– Region of node is the start
and end positions of this
node in XML Document

XRel Approach
• Text (PathID,

Start, End, Value)
This table contains the
start position of a region,
end position of a region,
value of the element
for a given PathId.

• Attribute (PathID, Start,
End, Value)

This table contains the
start position of a region,
end position of a region,
value of the attribute
for a given PathId

XParent Approach
• Edge oriented approach
• XParent has four tables

LabelPath (ID, Len, Path)

XParent Approach
– DataPath (Pid, Cid)

– Element (pathID,
Ordinal, Did)

XParent Approach
Data (PathID, Did, Ordinal, Value)

Querying XML Data
Select the names of all members whose ages are
greater than 20.

– Xpath: /DBGroup/member[Age>20]/Name

Edge Query:
includes 6 selections and
3 equi joins

Querying XML Data
Monet Query:
includes 1
selection and
4 joins

Xparent Query:
includes 3
selections and
5 equi joins

Querying XML Data
XRel Query

It includes 4
selections and
7 joins

Conclusions
• XRel and XParent outperform Edge
• XRel and XParent outperform Edge in complex

queries.
• Edge performs better when using simple queries.
• Label-paths help in reducing querying time.

