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ABSTRACT
This paper presents a new lightweight technique for auto-
matically generating high coverage test suites for Haskell
library code. Our approach combines four main features
to increase test coverage: (1) automatically inferring the
constructors and functions needed to generate test data;
(2) using needed narrowing to take advantage of Haskell’s
lazy evaluation semantics; (3) inspecting elements inside re-
turned data structures through the use of case statements,
and (4) efficiently handling polymorphism by lazily instan-
tiating all possible instances.

We have implemented this technique in Irulan, a fully au-
tomatic tool for systematic black-box unit testing of Haskell
library code. We have designed Irulan to generate high cov-
erage test suites and detect common programming errors in
the process. We have applied Irulan to over 50 programs
from the spectral and real suites of the nofib benchmark
and show that it can effectively generate high-coverage test
suites—exhibiting 70.83% coverage for spectral and 59.78%
coverage for real—and find errors in these programs.

Our techniques are general enough to be useful for several
other types of testing, and we also discuss our experience of
using Irulan for property and regression testing.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Reliability
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1. INTRODUCTION
Writing enough tests to provide confidence in a given piece

of code is difficult and time-consuming. If the code is non-
trivial, such a task may not even be possible in a realistic
timeframe. This has led to a large body of work on automat-
ically generating test suites in the imperative programming
community [5, 6, 12,13,15,23].

The Haskell programming language contains a variety of
interesting features which present unusual challenges and
opportunities for automatic testing. These include a rich
and expressive static type system, higher order program-
ming, polymorphism, and laziness.

Haskell currently provides support for testing through tools
such as QuickCheck [7] and (Lazy) SmallCheck [22], which
allow developers to express and check functional properties
that should hold in their programs. Such manually-encoded
properties can include arbitrary correctness checks, but writ-
ing them is often cumbersome. The Check tool family, for
example, requires programmers to explicitly write both the
property they want to check, and special functions that gen-
erate values for each user-defined type.

Writing a comprehensive set of explicit properties is hard,
whereas programmers already implicitly state invariants and
properties that must hold in their code. Pattern matches
may ignore cases the programmer believes can never hap-
pen (leaving the compiler to silently insert calls to throw an
exception in the missing cases); or the programmer may ex-
plicitly throw an assertion exception if control flow reaches
an unexpected program point. When packaged up into a re-
leasable API, the programmer may wish to ensure that the
user of their API can’t trigger these errors. Furthermore,
we can use Irulan to automatically find higher-level errors
by cross-checking different implementations of the same in-
terface, or different versions of the same application.

The main contribution of this paper is a new lightweight
technique for generating high coverage test suites for Haskell
library code. Like Lazy SmallCheck, our approach is based
on needed narrowing, the refinement of argument terms into
values only when their evaluation is demanded, first intro-
duced in [3]. However, we go beyond previous work [7, 22],
which focuses on programmer provided property/predicate
checking, and propose the follow automated techniques:

1. Generating high-coverage test suites for Haskell library
functions without requiring the user to specify gener-
ator functions.

2. Detecting generic errors such as non-exhaustive pat-
tern matches, extracting elements from an empty list,



infinite loops, and stack overflows.

3. Matching output expressions in different test suites to
automatically highlight any changes in behaviour be-
tween different implementations of the same interface.

To accomplish these goals, we take advantage of the main
features of the Haskell language, i.e., its rich static type
system, laziness and polymorphism. To this end, we have
designed techniques that:

1. Take advantage of Haskell’s laziness through the use
of needed narrowing.

2. Automatically infer the constants and functions needed
to generate test data.

3. Inspect elements inside returned data structures by us-
ing case expressions.

4. Efficiently handle polymorphism by lazily instantiating
all possible instances.

We have implemented these techniques in a tool called Ir-
ulan, a high coverage test suite generator for Haskell library
code. We have applied Irulan to over 50 programs from the
spectral and real suites of the nofib benchmarks. We show
that it can effectively generate high-coverage test suites—
exhibiting 70.83% coverage for spectral and 59.78% coverage
for real—and discover common programming errors in these
programs, such as non-exhaustive patterns errors, extracting
elements from an empty list, infinite loops, and stack over-
flows. We have also used Irulan to perform both property
testing and regression testing, and report on three case stud-
ies where erroneous changes in behaviour have been found.

The rest of the paper is structured as follows. Section 2
gives a high-level overview of Irulan by providing a con-
trived but illustrative running example. Section 3 presents
the main features of the tool, namely support set construc-
tion (§3.1), plan generation (§3.2), decomposition of data
structures (§3.3), support for polymorphism (§3.4), execu-
tion engine (§3.5), and exploration strategies (§3.6). Next,
Section 4 presents our experimental evaluation. Section 5
discusses some extensions to Irulan, namely property test-
ing (§5.1) and regression testing (§5.2). Finally Section 6
discusses related work, and Section 7 concludes.

2. OVERVIEW
Figure 1 defines a sorted binary tree data type IntTree

together with a function insert that adds a node to the tree.
The insert function contains a bug: if the user tries to in-
sert a node with the same value as that of a node already
in the tree, the compiler throws a Non-exhaustive patterns
exception. In this section, we show how Irulan can auto-
matically find this bug, as well as generate a comprehensive
test suite providing 100% expression code coverage in the
IntTreeExample module.

For those unfamiliar with Haskell, the IntTree data type
has two constructors: Empty and Branch. Empty takes no
arguments, while Branch takes two IntTrees for its left and
right children, and an Int for the value of the new root node.

The type signature for insert says it is a function that
accepts an Int and an IntTree and returns a new IntTree
result. The function works by pattern matching on the ex-
isting IntTree. In the case of inserting an Int into an Empty

module IntTreeExample where

data IntTree
= Empty
| Branch IntTree Int IntTree

insert :: Int → IntTree → IntTree
insert n Empty = Branch Empty n Empty
insert n (Branch left x right)
| n < x = Branch (insert n left) x right
| n > x = Branch left x (insert n right)

Figure 1: Haskell sorted binary tree.

tree, a new Branch with two Empty children is created. In
the case of inserting an Int into an existing Branch, guards
(|) are used to establish where to place the new Int value in
the sorted binary tree.

Unfortunately, our programmer has forgotten to imple-
ment the case when n = x , i.e. the value n to be inserted
is already in the tree. When the program has an incom-
plete pattern list and does not specify a default alternative,
the Haskell compiler will insert a call to the library func-
tion error , which throws a Non-exhaustive patterns excep-
tion that will typically terminate the program. If Irulan
runs an expression and catches an otherwise uncaught ex-
ception, it will report that expression as a potential bug.

Note that although Figure 1 includes the code for the
insert function, Irulan is in fact a lightweight black-box tool
that does not analyse the actual implementation of Haskell
modules. To construct test cases, Irulan only makes use
of the signatures of exported data types and functions, and
a set of predefined constants. In our example, Irulan gen-
erates IntTree values by using IntTree’s two constructors,
Empty and Branch, together with two integer constants, 0
and 1, which are set explicitly on the Irulan command line.
In addition, Irulan can also construct expressions of a given
type by making use of publicly exported functions (§3.1) or
by taking apart wrapped values (§3.3).

When Irulan runs, it will try to build expressions to use
as arguments for the function being tested. As the space of
possible expressions is infinite for all but the simplest pro-
grams, Irulan bounds its search to encourage breadth in
the exploration. The bounding on the search space, given
by its depth, is roughly a function of the number of steps
necessary for constructing test expressions, and will be dis-
cussed in more detail in §3.6.

Figure 2 shows the output of Irulan when used to test
the insert function. To test a Haskell module with Irulan,
the user needs to provide several arguments: the name of
the module to be tested (IntTreeExample in our case), the
maximum exploration depth (13 in this example), the explo-
ration strategy used (-d, depth first search in this example;
see §3.6 for details), and (optionally) a set of predefined con-
stants used, in our case the Int values 0 and 1. With these
arguments, Irulan starts generating test cases up to that
maximum depth for all functions exported by the module.

As shown in Figure 2, Irulan took 0.35 seconds to gen-
erate 29 test expressions which achieved 100% coverage of
the 22 expressions in the sample module.1 Irulan also gen-

1The expression coverage metrics are obtained by HPC [11].
Expression coverage is formally defined in Section 4.



$ irulan --depth=13 -d --ints=’[0,1]’ IntTreeExample
IntTreeExample:
Error expressions:
insert 0 (Branch ?1 0 ?2) ==> !
IntTreeExample.hs:(8,0)-(11,41):
Non-exhaustive patterns in function insert

insert 1 (Branch ?1 1 ?2) ==> !
IntTreeExample.hs:(8,0)-(11,41):

Non-exhaustive patterns in function insert

Runtime: 0.35 seconds
Test expressions generated: 29
Expression coverage: 100% (22/22)

Figure 2: Irulan running on the IntTreeExample with
additional information about the run presented.

1 insert ==> OK
2 insert ?1 ==> OK
3 insert ?1 ?2 ==> ?2
4 insert ?1 (Branch ?2 ?3 ?4) ==> ?1
5 insert 0 (Branch ?1 ?2 ?3) ==> ?2
6 insert 0 (Branch ?1 0 ?2) ==> !

IntTreeExample.hs:(8,0)-(11,41):
Non-exhaustive patterns in function insert

...
7 insert 1 (Branch ?1 ?2 ?3) ==> ?2
8 insert 1 (Branch ?1 0 ?2) ==> OK
9 insert 1 (Branch ?1 1 ?2) ==> !

IntTreeExample.hs:(8,0)-(11,41):
Non-exhaustive patterns in function insert

...
10 insert ?1 Empty ==> OK

...

Figure 3: Part of the steps followed by Irulan to
discover the error in Figure 1.

erated two test cases exposing the bug discussed above: one
in which the value 0 is inserted into a tree consisting of a
single node with value 0, and a similar test case for value 1.

In Figure 3, we show the main steps taken by Irulan to
detect the bug in Figure 1. At each step, Irulan generates a
test case of the form E ==> R, where E is an expression and
R the result of its evaluation. Each E consists of a function
or constant exported by the module applied to zero or more
arguments, which can have one of the following two forms:

1. A fully-defined expression, such as 1 or Empty .

2. A partially-defined expression which contains one or
more arguments of the form ?n, which throw an ex-
ception when evaluated.

Irulan prunes program states by observing how the code
uses its arguments, and not generating test expressions for
the unused arguments. In order to accomplish this, Iru-
lan initally provides dummy arguments (the ?n arguments
mentioned above) that throw a special exception when eval-
uated. For example, the compilation of insert ?1 ?2 is
insert (error "?1") (error "?2")2.

2In the implementation, a custom Irulan-specific exception
is thrown to prevent accidental clashes with user errors, but
the purpose is the same.

The use of these ? arguments, which are then replaced
later with more concrete expressions only if they are needed,
is a form of needed narrowing. This works particularly well
for Haskell due to the lazy evaluation at its core. As a
simple example, consider the case of inserting a value n into
an Empty tree. This operation always succeeds, and returns
a tree of the form (Branch Empty n Empty) without ever
evaluating the inserted value n.

When Irulan evaluates an expression E , there can be
three possible outcomes:

1. E ==> OK This outcome means that E was evaluated
to Weak Head Normal Form (WHNF) [21] without an
exception being raised. An expression is in WHNF if it
cannot be simplified further without being taken apart
by pattern matching (i.e., it is a constructor possibly
applied to some arguments), or applied to arguments
(i.e., it is a function that expects an argument). Al-
ternatively, an expression being evaluated to WHNF
could throw an exception, or terminate abnormally
(e.g., by infinite recursion). In order to see if an expres-
sion runs to WHNF without generating an exception
Irulan uses the built-in function seq , which will guar-
antee it’s first argument has a WHNF before returning
the second argument.

As this outcome means no exceptions were raised, it
also means that E ran without having to evaluate any
of its ?n arguments. For example, line 10 contains the
test case insert ?1 Empty ==> OK because inserting
any number into an Empty tree always succeeds by
returning a tree of the form Branch Empty n Empty
(the first line of the definition of insert in Figure 1).
The number inserted (?1) won’t be evaluated unless
some later code inspects it.

2. E ==> ?k This outcome occurs when the evaluation of
E requires the evaluation of its k th argument. For ex-
ample, line 4 contains the test case insert ?1 (Branch

?2 ?3 ?4) ==> ?1 meaning that in order to insert the
value ?1 into a non-empty tree, insert needs to evalu-
ate it (to compare it to the Int inside the Branch).

3. E ==> ! This outcome occurs when the evaluation of
E raises an uncaught exception. For example, line 6
catches our bug: trying to insert 0 into a tree that
already contains a node with value 0 raises the Non-
exhaustive patterns exception.

An important feature of Irulan is that the test cases pro-
duced are almost completely valid Haskell expressions (mod-
ulo the ?n arguments, and type class dictionaries). A devel-
oper could load IntTreeExample into an interactive Haskell
system and execute

> insert 1 (Branch undefined 1 undefined)

(replacing the ? arguments in the counter-example with
undefined) and get back the Non-exhaustive patterns error.
Irulan is designed to provide test cases like this, which only
make use of publicly exported identifiers.

3. KEY FEATURES
We now discuss in more detail the key aspects of our tech-

nique, including some of the most important implementation



details. When Irulan starts execution, it first establishes a
support set (§3.1), i.e., a set of constants, constructors and
functions that it uses to build arguments for the functions
being tested. With the support set in place, Irulan then
generates a Plan (§3.2), a lazy data structure that repre-
sents the (possibly infinite) ways of building up expressions
to be used for these arguments. Two particular challenges
associated with building a Plan are the need to inspect ele-
ments inside returned data structures (§3.3) and to handle
polymorphism (§3.4).

The Plan is then traversed by an Engine (§3.5) that uses
the GHC3 API to execute states from the Plan and generate
test cases. The choice of states to be run is directed by an
exploration strategy (§3.6).

Irulan has been implemented in Haskell, making exten-
sive use of the GHC API to reflect dynamically on Haskell
modules and to generate and run Haskell code. Although
Irulan presents test cases to the user in a Haskell-like syn-
tax, which treats type application as implicit and inferred,
internally it keeps the type arguments that are also applied
to polymorphic functions in order to make sure that result-
ing expressions are well typed. We discuss some of the more
interesting consequences of test generation in a fully poly-
morphic language in §3.4.

3.1 Support Sets
In order to test a function, Irulan first needs to establish

a support set. This will be a set of constants, construc-
tors, type class instances and functions that can be used to
build arguments for the function being tested. As Haskell is
statically typed, Irulan can use type information to incre-
mentally build up its support set. In the first step, Irulan
examines the type of each argument of the test function.
Then, for each argument type T , Irulan inspects the API
of the module declaring T , and adds to T ’s support set all
the constants, constructors and functions declared in that
module that return expressions of type T . This process then
continues recursively for any new types that are needed to
construct arguments for any newly added support functions.

The size of the state space that Irulan needs to explore
increases exponentially with the number of elements in the
support set. To avoid an exponential blow-up of the state
space, Irulan uses the following important observation: if
all the constructors of a type T are exported by a module,
then Irulan only adds them to T ’s support set, ignoring
any functions that return expressions of type T . The in-
sight here is that when all of T ’s constructors are available,
we can (almost always) generate all expressions of type T 4.
Only when a module does not make T ’s constructors avail-
able do we use functions that return expressions of type
T . For example, the support set for the type IntTree in
Figure 1 consists of IntTree’s two constructors, Empty and
(Branch IntTree Int IntTree), together with the (command-
line specified) constants 0 and 1 which are used as arguments
to the second constructor. Because all of IntTree’s construc-
tors are exported by the IntTreeExample module, the func-
tion insert , which returns expressions of type IntTree, is
not added to IntTree’s support set. In practice we have seen

3http://www.haskell.org/ghc
4The exception being when a publicly exported constructor
makes use of an abstract type that has no public way of
being constructed, a rare situation that we haven’t seen in
practice.

insert

insert ?1

 onAcceptArgs

insert ?1 ?2

 onAcceptArgs

 onStrictArg: ?2

insert ?1 Empty insert ?1 (Branch ?2 ?3 ?4)

 onStrictArg: ?1

insert 0 (Branch ?1 ?2 ?3) insert 1 (Branch ?1 ?2 ?3)

Figure 4: Part of the Plan followed by Irulan while
testing the insert function in Figure 1, which illus-
trates the onAcceptArgs and onStrictArg cases.

this optimisation give a decrease of up to 50% in the size of
support sets generated.

Finally, we allow users to explicitly add additional func-
tions to the support set, should they want some larger val-
ues available for testing, or to provide higher order functions
that may not have been found by Irulan’s recursive search-
ing algorithm. This can simply be accomplished by creating
a new module that defines a set of constants, constructors
and functions, and instructing Irulan to include the module
via a command-line option.

3.2 Planning
With a support set in place, Irulan then builds a Plan,

a lazy data structure that represents the (possibly infinite)
number of ways in which Irulan could build expressions to
test the functions under testing.

Figure 4 shows part of the Plan dynamically generated by
Irulan while testing the insert function in Figure 1. The
Plan consists of a series of steps: each step is denoted by
an oval containing the expression to be evaluated in that
step. Where there are several ways to generate test data, a
diamond is used to split the Plan. The arrows linking the
steps are annotated with the outcome when evaluating the
expression in that step. There are four cases to consider
when testing an expression e in the context of a function
under test f :

1. onAcceptArgs: This case is triggered when Irulan
tests whether e accepts its arguments. For example,
line 2 in Figure 3 shows that insert always accepts its
first argument. When this happens, Irulan is given a
Plan to follow unconditionally. This new Plan either
increases the number of arguments passed to e, or, if e



is used to build an argument to f , it instantiates that
argument to e and continues f ’s evaluation.

2. onStrictArg: This case is triggered when e requires
the evaluation of one of its arguments, which is looked
up in a map to find a list of Plan(s) detailing pos-
sible ways of instantiating that argument. A non-
deterministic choice can be made between these plans.

3. onConstructor: This case is triggered when Irulan
applies a function f to all of its arguments, and f suc-
cessfully returns a data constructor d without gener-
ating an error -thrown exception. In this case, if d is
publicly exported, Irulan will go on to inspect (using
case statements) the arguments passed to d by f . To
do so, the Plans for inspecting each argument can be
retrieved by looking up d in a map from data construc-
tors to Plans. We discuss the onConstructor case in
detail in §3.3.

4. If the evaluation of e generates an error -thrown excep-
tion, the current Plan reports the error and stops.

The first Step in the plan of Figure 4 tests whether insert
accepts any of its arguments. This triggers the onAcceptArgs
case, because running insert with no arguments returns suc-
cessfully. Following onAcceptArgs means Irulan next tries
to apply insert to one argument. This again returns suc-
cessfully, so in the third step Irulan applies insert to two
arguments. The application of insert to two arguments re-
quires the evaluation of the second argument, which triggers
the onStrictArg case. At this point, Irulan returns a Plan
with a non-deterministic choice (denoted in Figure 4 by a di-
amond): in the next step it must either use the Empty data
constructor to create the ?2 argument, or use the Branch
constructor.

When the Branch constructor is used, the new expres-
sion requires the evaluation of its first argument of type
Int , so the onStrictArg case is again triggered. In the
context of the example there are two ways of making an
Int value, by using the constants 0 and 1, so Irulan re-
turns again a Plan with a non-deterministic choice of using
either the constant 0 to create the Int argument, or the con-
stant 1. These are used to instantiates the first argument
of (insert ?1 (Branch ?2 ?3 ?4)) with the respective Int
constant.

Note that the existence of non-deterministic choice points
in the Plans generated by Irulan gives rise to different ex-
ploration strategies (e.g. depth first search, iterative deep-
ening), which we will discuss in §3.6.

3.3 Planning with Case Statements
Haskell makes it easy to use data structures, particularly

simple ones such as tuples and lists, to wrap several items to-
gether and pass them as function arguments or return values.
Consequently, the ability to take apart data structures, im-
plemented in Irulan by using Haskell case statements that
operate on data constructors to extract their elements, is
essential for our technique. In particular, this ability serves
three purposes: (1) it allows Irulan to increase program
coverage by executing the individual elements (2) it leads to
the discovery of errors in the elements that would otherwise
be hidden by laziness, and (3) it allows Irulan to use the
elements as arguments to the functions under testing. We
discuss each of these cases below:

insert ?1 Empty

 onConstructor: Branch

insert ?1 (Branch ?2 ?3 ?4)

case insert ?1 Empty of 
 Branch x _ _ -> x

case insert ?1 Empty of 
 Branch _ x _ -> x

case insert ?1 Empty of 
 Branch _ _ x -> x

Figure 5: Part of the Plan followed by Irulan while
testing the insert function in Figure 1, illustrating
the onConstructor case.

module Board (start , step,Board) where
data Board = . .
start :: Board
step :: Board → [Board ]

(a) A module that needs case statements to test its
functions.

step

[Board]Board -> [Board]

(_ : x) -> x

Board(x : _) -> x

start

(b) Case Constructor Graph for the Board module.

Figure 6: A case statement example.

(1) Increasing coverage and (2) discovering errors
hidden by lazy evaluation: Returning to our running
example, Figure 5 shows the Plan followed by Irulan when
the insert ?1 Empty expression is selected at the first non-
deterministic choice point in Figure 4. Because this expres-
sion has applied the function under testing (insert) on all of
its arguments, and successfully returned a data constructor
(Branch Empty ?1 Empty), Irulan proceeds to take the re-
turned data structure apart. Specifically, the onConstructor
case in the current Plan is triggered, and Irulan inspects all
of the arguments of the returned data constructor, namely
Empty, ?1, and Empty. As shown by our experimental results
in Section 4, this allows Irulan to significantly increase the
coverage in the modules under testing and discover errors
that would otherwise pass undetected.

(3) Using data structure elements as arguments to a
tested function: To understand how Irulan can use data
structure elements to construct arguments for the functions
under testing, consider Figure 6a, which represents the API
for modelling a board game. In this example, Board is a
data type representing a board, start constructs an initial
Board , and step provides a way to generate new Boards
based on an existing one (for example by making all the
possible moves from some Board). In order to test the step
function, it is essential for Irulan to be able to take apart
the list returned by step, so that it can test sequences of



board moves. Without this ability, Irulan could only test
the step function on the initial board returned by start .

As part of the support set discovery phase, Irulan builds
a Case Constructor Graph, a graph of all types for which case
statements can be used to produce expressions. Figure 6b
shows the graph for Figure 6a. The roots of this graph are
the functions in the support set, in our case start and step.
Each root points to nodes representing the types returned
by applying the respective function to zero or more argu-
ments. An arc between two types T1 and T2 is labelled by a
case statement pattern that can be used to obtain a value of
type T2 from one of type T1. For example, the arc between
[Board ] and Board is annotated by (x : ) → x which rep-
resents the case pattern that takes the head element out of
the list of Boards.

To construct a value of a given type using the Construc-
tor Graph, Irulan first eliminates from the graph all the
nodes which are not inversely reachable from the desired
type (e.g., for our example, if the type of interest is Board ,
then we would eliminate the node Board → [Board ]). Then,
starting from the roots of the graph (start and step in our
example), Irulan traverses the graph as though it were
a non-deterministic finite automaton, with the accepting
state being the node containing the desired type (Board in
our case). During this non-deterministic traversal, each arc
adds an appropriate case statement to the expression being
constructed. For example, if we start with the expression
step ?1 from the step root, we will begin the traversal on
the [Board ] node. If we follow the ( : x )→ x edge, we will
build and test the expression case (step ?1) of : x → x .
If that succeeds, we will be back at the [Board ] node. Then
following the (x : )→ x arc, we will build and test the ex-
pression case (case (step ?1) of : x → x ) of x : → x ,
which upon success puts the algorithm on the Board node.
As the Board node is the desired node, we can use the ex-
pression case (case (step ?1) of : x → x ) of x : → x as
a test expression of type Board .

3.4 Polymorphism
Haskell has a rich type system that allows type variables

to be used as types. In Figure 7a, for example, values of
type Format a represent some strategy for turning values
of a generic type a into Strings. The code has two example
formatters for Strings and Bools, and a function format that
takes a value of type a and a formatter for that type, and
uses the formatter to turn the value into a string.

Figure 7b shows the first steps taken by Irulan while test-
ing the function format . In addition, the figure also shows
the type of some of the generated arguments. At runtime,
type information is erased, and the runtime assumes the
code it executes is type correct, meaning that Irulan must
only create correctly typed expressions.

The first three steps shown in Figure 7b proceed as before,
testing the format function with an increasing number of
arguments. The execution of the expression in the third step
requires a value for the first argument, which currently has
generic type a. At this point, Irulan could try to populate
the first argument with every single value from the support
set. However, the only thing that the format function can
safely do with a variable of any type is force it to WHNF.
We call this an unconstrained value, and represent it as *

(which at the implementation level is compiled to (), the
unit value).

module Format (Format , simpleString ,
simpleBool , format) where

data Format a = ...
simpleString :: Format String
simpleBool :: Format Bool
format :: a → Format a → String

(a) A polymorphic formatter.

format

format (?1 :: a)

 onAcceptArgs

format (?1 :: a) (?2 :: Format a)

 onAcceptArgs

format (* :: a) (?1 :: Format a)

 onStrictArg: ?1

 onStrictArg: ?1

format (?1 :: Bool) simpleBool format (?1 :: String) simpleString

 onStrictArg: ?1

format True simpleBool format False simpleBool

(b) Part of the Plan followed by Irulan while testing the
formatter, with additional type annotations shown.

Figure 7: An example containing polymorphism.

Irulan next determines that format is strict in its sec-
ond argument, which is of type Format a. As the type
of this argument is not a type variable, but a constructor
application, it attempts to unify it with elements from the
support set. In our example, there are two possibilities:
simpleBool and simpleString . Thus Irulan makes a non-
deterministic choice between the two, and instantiates the
type variable a to Bool or String . At this point, Irulan
re-abstracts the * back to ?1. The Plan algorithm then
proceeds as before, instantiating the new ?1 with True and
False in the simpleBool branch, and appropriate strings in
the simpleString one.

3.5 The Execution Engine
The actual execution of test expressions in Irulan is han-

dled by an execution Engine. The Engine is responsible for
converting Irulan test expressions into runtime values, eval-
uating them, and then inspecting the result to see if it is an
error, a ?k argument, or a WHNF value. For efficiency, Ir-
ulan uses GHC to compile the test modules to native code,
and test expressions are built by manipulating function and
data closures in the heap.

The compilation and execution of test cases happens in the
same process as Irulan itself, to remove inter-process com-
munication overheads. Once an expression has been con-
verted into an executable entity, it is evaluated to WHNF



using the built-in function seq ; this has several possible out-
comes:

• Evaluation terminates normally: This case occurs
if the test expression evaluates to some WHNF. In the
onConstructor cases of the Plan, the name of the con-
structor at the head of the WHNF value will need to
be looked up in a map. To find its name, the Engine
interrogates the closure on the heap that represents
the value.

• An exception is thrown: This could be due either
to an error call inside the function, or the evaluation
of a ?k argument (which stands for (error ?k)). To
distinguish between the two cases, Irulan inspects the
caught exception.

• A time-out is reached: Some test expressions may
not terminate, or may take a very long time to com-
plete. To avoid becoming blocked on such expressions,
a time-out mechanism is used to abort execution after
a user-configurable time limit has expired.

• Evaluation allocates too much memory: If a test
expression uses up large amounts of memory, it could
cause the Irulan process to start thrashing, signifi-
cantly degrading performance. To guard against this,
Irulan monitors the allocations performed by test ex-
pressions, and kills any test expression that allocates
more than a user-configurable amount of memory.

3.6 Exploration Strategies
As discussed in Sections 3.2 and 3.4, the Plan followed

by Irulan has a series of non-deterministic choice points,
denoted by diamonds in Figures 4, 5 and 7. For example,
Irulan has to choose the expression to be used to instantiate
a strict argument to the function under test, or the argument
to explore from a data constructor.

The state space defined by Irulan’s Plan is exponential
in the number of choice points, and the strategy used to
explore it has significant impact on the errors found and the
coverage achieved by Irulan in practice.

We have experimented with several kinds of exploration
strategies in Irulan. This includes the depth limited, depth
first strategy used in Figure 2; a random strategy starting
at the root of the Plan, choosing random branches, and
restarting at the root if it hits a leaf (inspired by [6]); and
an iterative deepening of the depth first strategy. After ex-
perimentation, we have determined that the iterative deep-
ening strategy appears to be the most effective strategy for
Irulan and so this is the strategy used in our evaluation.

4. EXPERIMENTAL EVALUATION
Haskell has an established set of benchmarking programs,

called nofib [20]. From nofib, we took the library compo-
nents of its constituent programs for testing. The bench-
mark programs we used came from two suites:

• The spectral suite, consisting of the algorithmic cores
of real programs, such as a chess end-game solver and
a minimal expert system implementation. We tested
24 programs in this suite.

• The real suite, consisting of real Haskell programs.
This includes implementations of a Prolog interpreter,

Table 1: Code size (in number of expressions, as
reported by HPC) of the benchmark programs from
the real and spectral suites.

# Expressions Real Spectral
0 - 100 0 2

100 - 1000 6 17
1000 - 10,000 19 4

10,000 - 100,000 2 1

a grep utility and an LZW compression tool. We tested
27 programs in this suite.

In order to evaluate coverage, we used HPC [11], the stan-
dard tool used by Haskell programmers to record program
coverage. HPC associates every expression in the program
being tested (not including the standard libraries) with a
“tick box”. Everytime an expression is evaluated during
program execution, its corresponding tick box is ticked. Ex-
pression coverage is the number of tick boxes ticked over the
total number of tick boxes inserted.

Table 1 shows the approximate sizes of the 51 programs
tested in these suites—in terms of number of expressions, as
reported by HPC—after filtering out the modules that only
export a main :: IO() function.5 In Section 4.1, we report
coverage results for these programs in terms of percentage
of expressions executed.

We ran Irulan with various configuration options on all
the functions exported by the modules in these programs.
In total we tested 4,030 different functions in 403 modules.
For all runs, we configured Irulan to use the constants 0,
1, and −1 of type Int and Integer , −1, 0, 0.5 and 1 of types
Double and Float , and ’a’, ’0’, and ’\NUL’ of type Char ,
for a total of 17 constants. All experiments were run on
a heterogeneous cluster of 64-bit Linux machines, most of
which have dual core Intel CoreTM2 CPUs at 2-3 GHz, with
2 GB of RAM.

4.1 Coverage Results
Figure 8a gives the code coverage for the spectral suite,

where each module in each program was tested for 5 min-
utes using iterative deepening. The average coverage per
program is 70.83%, with a minimum of 18.48% (for awards)
and a maximum of 97.86% (for minimax).

There are several reasons why Irulan achieves such high
coverage. For example, minimax is an implementation of a
mini-max search tree for a noughts and crosses game. It
has several top level functions that produce (using all the
exported helper functions for creating boards and placing
pieces) enumerations of the entire search space and that also
evaluate that search space. Since Irulan can test those top
level functions thoroughly, all of the dependant source code
also gets tested.

As another example, the reason why Irulan achieves such
high coverage for fft2 (a Fourier transform library and ap-
plication) is that fft2 is mostly a numeric library that takes

5The modules we removed were determined by the following
simple rule: if a module is called Main and only exports a
function main :: IO () we removed it from our tests; if that
Main was the only module in the benchmark program, we
removed the program.



Int arguments, where our constants (−1, 0 and 1) are enough
to trigger the different cases. Irulan completely explores
every exported function, the only un-executed code being
an unexported and unreachable function that should be re-
moved.

The reasons for which Irulan achieves low code coverage
for certain benchmarks vary. In many cases, our simplistic
library filtering rule has meant that a program which has
been factored into smaller parts that run in IO and are all
exported is still being tested. Unfortunately (but by de-
sign), Irulan does not perform any meaningful testing of
functions that return an IO type. This is because IO values
are opaque, non-referentially transparent operations repre-
senting system side-effects (e.g. writing to disk).

Irulan could also provide greater functionality for creat-
ing support sets for type classes; this affects a few of the
benchmark programs, such as awards.

Figure 8a also shows the effect that case statements (§3.3)
have on coverage. With case statements disabled, the av-
erage coverage decreases from 70.83% to only 48.35%. We
achieve similar results for real, with code coverage decreas-
ing from 59.78% to 34.38%. In some extreme cases, the
inability to use case statements prevents testing almost en-
tirely: e.g., for hartel Irulan achieves only 0.09% coverage,
compared to 77.64% when case statements are used. This
is because hartel consists of constant definitions which in-
clude large data structures containing lists of values. With-
out case statements, none of these wrapped values are ex-
plored.

Figure 8b gives the code coverage for the real suite after
1 second and respectively 5 minutes of testing. The aver-
age coverage per program after 5 minutes is 59.78%, with a
minimum of 10.65% (for maillist) and maximum of 93.91%
(for cacheprof). The maillist program (a mailing list gen-
erator) achieves such low coverage because it consists solely
of a Main module that exports lots of functions that have
an IO result type. The few constants and non-IO functions
in the module are tested thoroughly by Irulan, but they
represent a very small amount of the application’s code.

It is worth noting that testing each module for just 1 sec-
ond achieves useful results, getting two thirds the coverage
achieved after 5 minutes (40.62%).

4.2 Errors Found
In this section, we present the main types of errors found

by Irulan in the nofib benchmarks. When run for 5 min-
utes per module, Irulan reported 880,345 unique expres-
sions that caused errors, spanning 47 different programs.

Given the large number of error expressions generated by
Irulan, the first step is to group them into clusters of unique
errors. First, we group error expressions based on the type of
exception thrown, e.g., Non-exhaustive patterns or Prelude
head exceptions. Then, for those error types that include
the location of the error, we group expressions based on the
source location. For example, of the 191,388 error expres-
sions generated for the spectral suite, 95,200 include source
locations, which correspond to 37 unique program locations.
(This is of course a rather crude method of grouping errors,
as Haskell error messages do not contain the equivalent of
stack traces [1]; we plan to address this issue in future work.)

As mentioned in Section 3.3, the use of case statements
allows Irulan to discover errors that would otherwise be left
undetected. Of the 37 unique locations mentioned above, 7
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Figure 8: Code coverage as a percentage of expres-
sions executed for the spectral and real suites.

of them were identified only by expressions with case state-
ments in them.

We next give examples of some errors found by Irulan:
Non-exhaustive pattern errors: these are errors in

which the pattern matching of an expression reaches a case
that the programmer has not considered. While some of
the non-exhaustive pattern errors found involve relatively
simple cases, Irulan was also able to generate more com-
plicated expressions that lead to a non-exhaustive pattern
error in a function that is not mentioned in the expression.
For example when testing Game.hs in minimax in spectral,
Irulan discovers the following:

case searchTree ?1 ([]) of

Branch _ x -> x ==> !

Board.hs:(34,0)-(36,35):

Non-exhaustive patterns in function empty

The second argument to searchTree (the []) represents a
Board , which as a precondition is expected to have three
elements in it. However, searchTree does not check this
and happily returns a Branch value. It is only when that
Branch is unpacked and the second argument to the branch
inspected that the precondition violation results in an excep-
tion being thrown. This error also demonstrates a difficulty
with working with Haskell, where laziness often causes errors
to manifest themselves far away from their root cause.

Prelude.head (empty list) errors: these are errors



where the program tries to access an element from an empty
list. For example, Irulan discovered such an error in the
max_list function of the simple program from the spectral
suite. The function extracts the first element of the given
list without checking that the list is not empty:

max list :: [Double ]→ Double
max list list

= reduce list max (head (list :: [Double ])) list

Infinite loops and stack overflow errors: While Ir-
ulan cannot detect these types of errors per se, cases in
which the evaluation of an expression exceeds the resources
allocated by Irulan (see §3.5) are often indicative of patho-
logical cases caused by bugs in the program.

In our experiments, the limits were set to 1 second and
128 MB of memory allocation per expression evaluation.
These limits were exceeded 4,265 times: 143 times for the 1
second timeout, and 4,122 times for the 128 MB allocation
limit. On further examination, we found that these events
were often caused by missing base cases in the functions
under test.

For example, consider the following code in the primetest
program of the spectral suite:

log2 :: Integer → Integer
log2 = genericLength ◦ chop 2

chop :: Integer → Integer → [Integer ]
chop b = chop′ [ ]

where chop′ a n = if n ≡ 0 then a
else chop′ (r : a) q

where (q , r) = n ‘divMod ‘ b

Irulan generates the expression log2 (-1) whose evalu-
ation exceeds the allocation limit, and which in fact causes
the code to loop indefinitely. The problem here is that the
helper function chop′ misses the base case for negative num-
bers.

5. EXTENSIONS TO IRULAN
Once we had built Irulan, it became clear that the core

could be applied to other types of testing. In this section
we explore two such examples: property testing (§5.1) and
regression testing (§5.2).

5.1 Property Testing
Testing of functional properties, also known as property

testing, is available to Haskell programmers through tools
such as QuickCheck [7], SmallCheck and Lazy SmallCheck
[22]. In this section, we show that Irulan can also be ap-
plied to property testing, and discuss its relative advantages
and disadvantages for this problem domain.

Property testing is used to check that program invariants
hold. For example, a programmer might write the property
that list reversal is invertible as:

prop reverse :: [Int ]→ Bool
prop reverse xs = xs ≡ reverse (reverse xs)

We extended Irulan so that if it tests functions that are
prefixed with prop and return a Bool , it will also report
test cases that make these functions return False.

To find property violations, existing tools require the user
to provide functions that facilitate the generation of test
values for any custom data type that is needed for testing.

At runtime, such tools use these functions to create test
values, feeding them into property functions and reporting
(typically using the Show instance for the test value) any
values that make the test fail.

Irulan provides two advantages over existing tools. First,
its support set inference system means that it does not re-
quire the user to write any functions for generating test data.
Second, Irulan has the advantage of producing test expres-
sions that are compiled on the fly into test values, whereas
QuickCheck and (Lazy) SmallCheck produce test values di-
rectly. This means that the counterexample values presented
by the other tools do not always explain how to construct
the produced test values.

As an informal comparison between the different testing
tools, we took the benchmark of properties made available
in [22] and set up Irulan, QuickCheck, SmallCheck, and
Lazy SmallCheck to run them. Full details of these results
are available on-line (§8). Currently the overhead of reflect-
ing, dynamically compiling and running test expressions,
as opposed to using type-class overloading to create values,
means Irulan is much slower when compared to the other
tools. However, we believe the advantages of automatic ar-
gument discovery and of test expression generation outweigh
the performance losses in many cases. We plan to investigate
the possibility of designing a hybrid tool that combines Ir-
ulan’s set of support and reflection features with a runtime
loop similar to the Check family of tools, in hope of elim-
inating the need for manually-written generation functions
whilst obtaining better runtime performance.

5.2 Regression Testing
We have used Irulan to find high-level regression bugs

by cross-checking different versions of the same application.
To compare two different versions, we first use Irulan to
generate a test suite for each, and then compare the two
test suites to detect changes in behaviour.6 Such changes
are either made intentionally (in which case the test case
generated by Irulan can act as an illustrative example), or
can indicate a bug introduced in the newer release.

Given two test suites, T1 and T2, we try to match input-
output pairs in T1 with corresponding pairs from T2. Con-
sider a pair (i1, o1) from T1; there are several cases to con-
sider:

1. There is exactly one test case (i2, o2) in T2 where i2 is
identical to i1. We then report a change in behaviour
if o1 and o2 differ.

2. If i1 contains ?s, then there may be many test cases
(i2, o2) in T2 such that i1 is more general than i2. By
more general, we mean that i1 is identical to i2, ex-
cept that where i1 features a ?, i2 may feature any
subexpression. In general, this case shows a change
in strictness of a function, which is indicative of an
algorithm performing more work in T2 than in T1.

We match the single more general test expression i1
with all of its more specific instances in the second

6Alternatively, we could generate one test suite for one
implementation and run it on the second implementation.
However, this would lose information about new functions
in the second implementation and, due to subtleties intro-
duced by Haskell’s laziness, would miss some of the errors
that our approach can detect.



suite. We report an error if any of the specific out-
put instances o2 have a different result value from the
output o1.

3. The symmetric case, where i1 is one of several test
inputs in T1 that are more specific than a single test
input i2 in T2 is treated in a similar way.

4. The input i1 may have no corresponding test input in
the other suite. We report i1 as unmatched by the
other test suite. This is not necessarily an error, but
should be brought to the attention of the programmer.

This case can arise due to a complete change in strict-
ness of the implementation of the function being tested
e.g. foo ? X ==> True in T1, but foo Y ? ==>False
in T2. This could also occur if one implementation has
more functions to test, or provides more ways to create
test data.

To ensure only one of the above cases is true, our test
suites must obey the following invariant: If a test suite T
features a test case with input i , then all other test inputs
i ′ in T will be disjoint from i . That is, i will not equal, be
more general or be less general than i ′. We guarantee this
by removing all the test cases that return ? from the test
suites generated by Irulan.

We applied this automated regression testing technique in
two different contexts: an undergraduate Haskell program-
ming exam (§5.2.1), and several libraries that had been up-
loaded to the Hackage library database (§5.2.2).

5.2.1 Undergraduate Programming Exam
The first year undergraduate Computing students at Im-

perial undergo a three hour on-line Haskell exam. This
year the exam included implementing unification and the
Martelli-Montanari polymorphic type inference algorithm
for a small functional language. We used Irulan’s regres-
sion testing to cross-check the official sample answer with
two PhD student answers before giving the exam to the stu-
dents. All three solutions had passed a manually written
test suite. The cross-checking revealed errors in all three
solutions, including an infinite loop in an implementation of
unification by one of the PhD students, and several subtle
bugs in the implementation of type inference in the sample
answer. The test questions, the three solutions, regression
testing output and explanations can be found on-line (§8).

5.2.2 Hackage Libraries
Hackage7 is a public collection of Haskell libraries and ap-

plications. Hackage retains snapshots of all previous versions
of released software, and it also allows authors to provide
links to home pages and version control repositories for the
latest development versions of the libraries.

We took a selection of libraries from the Data Structures
and Algorithms sections of Hackage, and built test suites
for each exported module in their released versions. In ad-
dition, we also built test suites for the current development
version, if available. We present our findings from two of
these libraries.

TreeStructures: The TreeStructures library provides im-
plementations of heap and tree data structures. Test suites
for each exported module in each version of the library were

7http://www.hackage.haskell.org

built by running Irulan for 60 seconds using iterative deep-
ening with Int constants 0,1,2 and 3.

The comparison of the test suites revealed that the build-
ing of a binary heap from a list of elements had changed
between two released versions. Upon closer inspection, the
example inputs and outputs showed that the new implemen-
tation was not building balanced trees; and that this incor-
rect behaviour remained between the second release and the
development version.

Using the version control history, we were able to work
backwards from the example inputs and establish the com-
mit that caused the bug to manifest, which was due to a
contributed patch with the commit message Changed def-
inition of fromList (get rid of ugly lambda). Fixed heap.
Contacting the library author with the relevant examples
revealed that the test cases do indicate a bug, and that the
author had run a QuickCheck test suite prior to applying
the patch, which didn’t catch the bug.

Presburger: The Presburger library provides an imple-
mentation of a decision procedure for Presburger arithmetic.
The released versions on Hackage are drawn from a pub-
lished algorithm [8], however the latest development version
has switched to an alternative approach. Irulan identi-
fied several base cases to do with checking for the existence
of numbers that divide by 0 or -1, where behaviour had
changed: in particular, certain test cases which were return-
ing a value in previous versions, now throw a divide by zero
exception.

6. RELATED WORK
Like Irulan, Lazy SmallCheck uses a form of needed nar-

rowing [3] in order to avoid generating arguments that are
not strict. This technique is well known in the functional-
logic programming community, and has been employed in
different settings. In particular, in the context of the Curry
programming language, narrowing and coverage information
have been used to generate regression test suites and to give
a metric on their effectiveness [9]. Before Lazy SmallCheck,
Lindblad [14] proposed a similar technique of instantiat-
ing lazy variables to generate property testing data, but
for a small term language. Their technique, lazy instan-
tiation, uses explicit unrefined meta-variables, represented
by a ?. These meta-variables are analogous to Irulan’s ?

arguments, and are where Irulan drew the name from.
An alternative to the dynamic execution of expressions

that Irulan performs would be a static analysis of Haskell
source code. Work in this area has proved successful, man-
aging to analyse and prove safety and/or find bugs in several
heavily used Haskell libraries and programs [16, 17]. Static
analysis has the advantage that it can prove the safety of
code, but in terms of bug-finding, the costs are false pos-
itives and the inability to generate actual test expressions
that trigger the discovered errors.

The testing and model checking community uses the small
scope hypothesis which states that testing with small inputs
can give high confidence in the reliability of an implemen-
tation [2]. In relation to this work, Irulan can be seen as
testing the small scope hypothesis for Haskell programs.

There is a large body of work on testing imperative pro-
grams. Testing tools developed in the past for languages
such as C and Java make use of a variety of techniques,
including random testing [10, 18] systematic testing [2, 5],
model checking [23, 24], and symbolic execution [6, 12]. Ir-



ulan’s building up of expressions and discarding those that
cause errors (and not using them as arguments later) is anal-
ogous to part of the feedback loop used in the RANDOOP
tool [19], although RANDOOP (and related tools such as
ECLAT [18]) also have ways of expressing pre and post con-
ditions (filters and contracts), which Irulan currently lacks
and would be useful for pruning the number of error expres-
sions presented to the user. It is interesting to note here
that work such as RWSet [4] and Korat [5] try to prune
large parts of the program state space by monitoring the
values read by the program, in order to avoid constructing
values that will not be subsequently read. This is somewhat
equivalent to inferring the values that are lazy, which comes
almost for free in a non-strict language like Haskell.

7. CONCLUSION
We have presented Irulan, a black-box unit testing tool

designed to automatically generate high-coverage test suites,
and find programming errors in Haskell library code. Our
experience building Irulan and applying it to real Haskell
code has demonstrated that: (1) the static types attached to
the functions to be tested can be used to guide test data gen-
eration; (2) lazy evaluation can be exploited to prune large
parts of the search space; and (3) taking apart result val-
ues from functions using case expressions can dramatically
increase code coverage in a lazy language like Haskell.

We have applied Irulan to over 50 benchmarks from the
spectral and real suites of the nofib benchmarks and showed
that it can effectively generate high-coverage test suites—
exhibiting 70.83% coverage for spectral and 59.78% coverage
for real—and discover common programming errors in these
programs, such as non-exhaustive patterns errors, extract-
ing elements from an empty list, infinite loops, and stack
overflows.

Furthermore, we have adapted the core of Irulan to per-
form property and regression testing and demonstrated Ir-
ulan’s ability to find high-level errors by cross-checking dif-
ferent releases of several third-party libraries.

8. AVAILABILITY
Irulan is freely available, together with our experimen-

tal evaluation, property checking experiments and regression
testing case studies, at the following URL:
http://www.doc.ic.ac.uk/~tora/irulan.
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