
Cross-Element Vectorization in Firedrake

TJ Sun (ts2914@ic.ac.uk), Lawrence Mitchell, David A Ham, Paul H J Kelly
April 2018

What is Firedrake
oAutomated system for the portable solution of partial differential

equations (PDEs) using the finite element method (FEM)

oDSL embedded in Python

oOptimizations at suitable (highest possible) abstraction layers

oGenerate low level (e.g. C) code for performance

oUnstructured mesh à indirect data access

oComputationally, finite element ≈ assembly ≈ numerical integration

Source: Rathgeber

What is vectorization
•SIMD (single instruction multiple data) programming model

•e.g. VFMADD213PD ymm0, ymm1, ymm2 (in AVX2 instruction set)

•8 double precision operations with 1 instruction

•Need to issue 2 FMA instructions in 1 cycle to get advertised performance

•SIMD width doubles every 4 years
• AVX512 (2017) can do 8 doubles

•Naïve code usually achieves <10% peak performance

•This work is about generating vectorized code for finite element assembly

= x +

ymm0 ymm0 ymm2 ymm1

Action of linear elasticity operator on triangle mesh, Lagrange element of degree 3

Action of linear elasticity operator on triangle mesh, Lagrange element of degree 3

Kernel

Wrapper

Action of linear elasticity operator on triangle mesh, Lagrange element of degree 3

Wrapper

Outer loop over all elements in the mesh

Action of linear elasticity operator on triangle mesh, Lagrange element of degree 3

Indirect gathering of input data for kernel

Action of linear elasticity operator on triangle mesh, Lagrange element of degree 3

Kernel “call”, actually it is inlined

Action of linear elasticity operator on triangle mesh, Lagrange element of degree 3

Indirect scattering of local tensor to global tensor

Action of linear elasticity operator on triangle mesh, Lagrange element of degree 3

Kernel

Outer loop: contraction over quadrature points

inner loop over degrees of freedom

Vectorization strategy
o“Intra-kernel” can be tricky

◦ Trip count can be small and/or not multiple of SIMD width

◦ Alignment to cache boundary

◦ Stride 1 access

◦ Operations outside of innermost loop hard to vectorize

◦ Loop structure varies with PDE, discretization, mesh

◦ And we have done many of these in firedrake [1]

o“Inter-kernel” provides a generic solution
◦ Vector-expand the kernel to act on N elements together, N=SIMD width

◦ All operations can be vectorized

◦ Can always do this systematically

◦ Downside: increasing working size

[1] F. Luporini, et al. ACM TACO 2015

Action of linear elasticity operator on triangle mesh, batched by 4

Action of linear elasticity operator on triangle mesh, batched by 4

Wrapper

Split n into n_outer and n_inner
Outer loop stride 4

Action of linear elasticity operator on triangle mesh, batched by 4

Gathering input data for 4 elements
Arrays are vector-expanded

Data for different elements packed to
inner most dimension

Action of linear elasticity operator on triangle mesh, batched by 4

Kernel call

Action of linear elasticity operator on triangle mesh, batched by 4

Scattering might have race condition

Action of linear elasticity operator on triangle mesh, batched by 4

Kernel

“element” loop pushed to innermost

Trip count 4, stride 1, aligned, independent

Implementation

Polyhedral model

UFL

TSFC COFFEE

PyOP2

PETSc

Finite element

Abstraction layers

Tensor algebra

Loops

Matrices

Introducing loo.py
• Andreas Klöckner et al. (UIUC)
• ≈ isl model of loops +

transformations
• Not a blackbox

• But handy if you tell it exactly
what to do

• Support multiple backends
• CPU
• ISPC
• OpenCL, PyOpenCL
• Cuda

Loo.py

FInAT

Experimental setup
oHardware: Haswell i7-4790 (single core measurement)

o SIMD width = 4 (avx2)

o Peak flop = 3.6 GHz x 4 (avx2) x 2 (fma) x 2 (issue) = 57.6 Gflops

o Running Intel LINPACK binary: 51.0 Gflops

o STREAM triad bandwidth: 10.4 GB / s

o Roofline AI “regime switching point” = 5.54 flops / byte

oMesh: hexahedra (3D tensor product element)

o TSFC automates sum factorisation [2]

-> Innermost loop trip count = polynomial degree + 1

oAction of Helmholtz operator

o Arithmetic Intensity (perfect cache) 30.4 to 33.6 à compute bound

oWe present achieved flops / 57.6 Gflops

[2] M. Homolya, et al. arXiv:1711.02473 (2017).

AI = 30.4 AI = 39.4

AI = 6.5 AI = 18.3

AI = 2.8 AI = 56.7

AI = 30.4 AI = 39.4

Flop contributions by instruction types

not batched

batched by 4
elements

AVX2 (4 doubles) SSE (2 doubles) scalar (1 double)

Only 0.4% of
flops not

vectorized

not batched

batched by 4
elements

AVX2 (4 doubles) SSE (2 doubles) scalar (1 double)

Instruction counts by instruction types

2.02 sec

0.89 sec

To be continued…
oWe are building an abstraction layer of loops (via loo.py)

oPathway to GPUs
o…which requires a better performance model

oTry it out:
o firedrake branch tsfc2loopy
o tsfc branch tsfc2loopy
o PyOP2 branch tsfc_loopying

oGet in touch:
o firedrakeproject.org
o Email: firedrake@imperial.ac.uk
o Slack channel: firedrakeproject

mailto:firedrake@imperial.ac.uk

oLocal assembly in continuous form

oDiscretization à “just tensor contraction”

oMany open questions

o Should we always apply flop-minimising optimizations?

o Pre-evaluation of (some) compiler time constant tensors?

o Best combination of tensor representation and polyhedral model?

o Parameter search & autotuning

o… for now, I’m focusing on building the infrastructure

Aside…

