
Cross-Element Vectorization in Firedrake

TJ Sun (ts2914@ic.ac.uk), Lawrence Mitchell, David A Ham, Paul H J Kelly
June 2018

loo.py as our new backend

Introducing loo.py
• Andreas Klöckner et al. (UIUC)
• Based on polyhedral model of loops
• ≈ model of loops + transformations
• “Do what I tell you”
• Support multiple backends
• CPU
• ISPC
• OpenCL, PyOpenCL
• Cuda

Code generation for assembly

FFC Code

string

Code generation for assembly

FFC COFFEE Code

StringAST

Code generation for assembly

Two-Stage
Form Compiler COFFEE Code

StringASTTensor

Code generation for assembly

Two-Stage
Form Compiler COFFEE Code

StringASTTensor

For cells
Gather data

Scatter data
end

PyOP2

Code generation for assembly

Two-Stage
Form Compiler loopy

loopy kernelPyOP2 loopy

inline

Code

What is vectorization
•SIMD (single instruction multiple data) programming model

•e.g. VFMADD213PD ymm0, ymm1, ymm2 (in AVX2 instruction set)

•8 double precision operations with 1 instruction

•Need to issue 2 FMA instructions in 1 cycle to get advertised
performance

•SIMD width doubles every 4 years
• AVX512 instructions can do 8 doubles

•Naïve code usually achieves <10% peak performance

= x +

ymm0 ymm0 ymm2 ymm1

Action of linear elasticity operator on triangle mesh, CG3 space

Kernel

Wrapper

Action of linear elasticity operator on triangle mesh, CG3 space

Wrapper

Outer loop over all elements in the mesh

Action of linear elasticity operator on triangle mesh, CG3 space

Indirect gathering of input data for kernel

Action of linear elasticity operator on triangle mesh, CG3 space

Kernel “call”, actually it is inlined

Action of linear elasticity operator on triangle mesh, CG3 space

Indirect scattering of local tensor to global tensor

Action of linear elasticity operator on triangle mesh, CG3 space

Kernel

Outer loop: contraction over quadrature points

inner loop over degrees of freedom

Action of linear elasticity operator on triangle mesh, CG3 space

Vectorization strategy
o“Intra-kernel” can be tricky

◦ Trip count can be small and/or not multiple of SIMD width

◦ Alignment to cache boundary

◦ Stride 1 access

◦ Operations outside of innermost loop not vectorized

◦ Loop structure varies with PDE, discretization, mesh

◦ And we have done many of these in firedrake [1]

o“Inter-kernel” provides a generic solution
◦ Vector-expand the kernel to act on N elements together, N=SIMD width

◦ All operations can be vectorized

◦ Can always do this systematically

◦ Downside: increasing working size

[1] F. Luporini, et al. ACM TACO 2015

Action of linear elasticity operator on triangle mesh, batched by 4

Action of linear elasticity operator on triangle mesh, batched by 4

Wrapper

Split n into n_outer and n_inner
Outer loop stride 4

Action of linear elasticity operator on triangle mesh, batched by 4

Gathering input data for 4 elements
Arrays are vector-expanded

Data for different elements packed to
inner most dimension

Action of linear elasticity operator on triangle mesh, batched by 4

Kernel call

Action of linear elasticity operator on triangle mesh, batched by 4

Scattering might have race condition

Action of linear elasticity operator on triangle mesh, batched by 4

Kernel

“element” loop pushed to innermost

Trip count 4, stride 1, aligned, independent

Experimental setup
oHardware: Haswell i7-4790 (single core measurement)

o SIMD width = 4 (avx2)

o Peak flop = 3.6 GHz x 4 (avx2) x 2 (fma) x 2 (issue) = 57.6 Gflops

o Running Intel LINPACK binary: 51.0 Gflops

o STREAM triad bandwidth: 10.4 GB / s

o Roofline AI “regime switching point” = 5.54 flops / byte

oMesh: hexahedra (3D tensor product element)

o TSFC automates sum factorisation [2]

-> Innermost loop trip count = polynomial degree + 1

oAction of Helmholtz operator

o Arithmetic Intensity (perfect cache) 30.4 to 33.6 à compute bound

oWe present achieved flops / 57.6 Gflops

[2] M. Homolya, et al. arXiv:1711.02473 (2017).

AI = 30.4 AI = 39.4

AI = 6.5 AI = 18.3

AI = 2.8 AI = 56.7

AI = 30.4 AI = 39.4

Flop contributions by instruction types

not batched

batched by 4
elements

AVX2 (4 doubles) SSE (2 doubles) scalar (1 double)

Only 0.4% of
flops not

vectorized

not batched

batched by 4
elements

AVX2 (4 doubles) SSE (2 doubles) scalar (1 double)

Instruction counts by instruction types

2.02 sec

0.89 sec

To be continued…
oWe are building an abstraction layer of loops (via loo.py)

oPathway to GPUs
o…which requires a better performance model

oTry it out:
o firedrake branch tsfc2loopy
o tsfc branch tsfc2loopy
o PyOP2 branch tsfc_loopying
o loopy branch opaque-types

CG1 Poisson bilinear form

