
Cross-Element Vectorization in Firedrake

TJ SUN, LAWRENCE MITCHELL , DAVID HAM, PAUL H J KELLY

MARCH 2018

What is Firedrake
oWe care about features and performance
o Achieve this through abstraction layers and code generation

oUnstructured mesh

oFinite element ≈ integration ≈ assembly

Source: Rathgeber

Action of linear elasticity operator on triangle mesh, Lagrange element of degree 3

Action of linear elasticity operator on triangle mesh, Lagrange element of degree 3

Kernel

Wrapper

Action of linear elasticity operator on triangle mesh, Lagrange element of degree 3

Wrapper

Loop through all elements in the mesh

Action of linear elasticity operator on triangle mesh, Lagrange element of degree 3

Indirect gathering of input data for kernel

Action of linear elasticity operator on triangle mesh, Lagrange element of degree 3

Kernel “call”, actually it is inlined

Action of linear elasticity operator on triangle mesh, Lagrange element of degree 3

Indirect scattering of local matrix to global matrix

Action of linear elasticity operator on triangle mesh, Lagrange element of degree 3

Kernel

Outer loop: contraction over quadrature points

inner loop over degrees of freedoms

What’s the problem with vectorization?
oSIMD width doubles every 4 years

o AVX512 (2017) can do 8 doubles

oVectorizing loops in one kernel (intra-kernel) is not easy

◦ Trip count can be small and/or not multiple of SIMD width

◦ Possible dependencies

◦ Alignment to cache boundary

◦ Stride 1 access

◦ Varies with PDE, discretization, mesh

oInter-kernel vectorization provides a generic solution

◦ Vector-expand the kernel to act on N elements together, N=SIMD width

◦ Can always do this systematically

◦ Downside: increasing working size

UFL

TSFC

FInAT

COFFEE

PyOP2

PETSc

UFL

TSFC COFFEE

PyOP2

PETSc

Finite element

Abstraction layers

Tensor algebra

Loops

Matrices

FInAT

Polyhedral?

UFL

TSFC COFFEE

PyOP2

PETSc

Finite element

Abstraction layers

Tensor algebra

Loops

Matrices

Introducing loo.py

• Andreas Klöckner et. al

(UIUC)

• ≈ isl model of loops +

transformations

• Not a blackbox

• But handy if you tell it exactly

what to do

• Support multiple backends

• CPU

• ISPC

• OpenCL, PyOpenCL

• Cuda

Loo.py

FInAT

Action of linear elasticity operator on triangle mesh, batched by 4

Action of linear elasticity operator on triangle mesh, batched by 4

Wrapper

Split n into n_outer and n_inner
Outer loop stride 4

Action of linear elasticity operator on triangle mesh, batched by 4

Gathering input data for 4 elements
Arrays are vector-expanded

Data for different elements packed to
inner most dimension

Action of linear elasticity operator on triangle mesh, batched by 4

Kernel call

Action of linear elasticity operator on triangle mesh, batched by 4

Scattering might have race condition

Action of linear elasticity operator on triangle mesh, batched by 4

Kernel

“element” loop pushed to innermost

Trip count 4, stride 1, aligned, independent

Action of linear elasticity operator on triangle mesh, batched by 4

Kernel

“element” loop pushed to innermost

Trip count 4, stride 1, aligned, independent

“easily vectorizable, right?”

Experimental setup
oHardware: Haswell i7-4790 (single core measurement)
o Peak flop = 3.6 GHz x 4 (avx2) x 2 (fma) x 2 (issue) = 57.6 Gflops
o Running Intel LINPACK binary: 51.0 Gflops
o STREAM triad bandwidth: 10.4 GB / s
o Roofline AI “regime switching point” = 5.54 flops / byte

oIn reality we don’t have enough registers, so expect a bottleneck in L1
cache access to spilled values

oMesh: hexagon (3D)

oAction of Helmholtz operator
o AI (perfect cache) 6.5 to 33.6

oWe present achieved flops / 57.6 Gflops

Higher polynomial degree (more degrees of freedoms)

…need to tell compiler to vectorise the innermost loop

Higher polynomial degree (more degrees of freedoms)

…need to tell compiler to vectorise the innermost loop

Flop contribution by instruction types

Helmholtz on hexahedron, degree 4

Only 0.4% of
flops not

vectorized

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

not batched

batched by 4 elements

AVX2 FMA AVX2 arithmatic SSE FMA SSE arithmatic scalar FMA scalar arithmatic

What we think so far
oBatch is effective way to utilize SIMD resources
o If not outright better, certainly smoother

oRegister pressure likely to be the problem now
o But there might be low-hanging fruits

oTell compilers to vectorize the inner most loop

oHaswell is quite old, oddities might disappear on more recent
architecture

To be continued…

oHelp the compiler with register allocation?

oTrade-off between compute and storage
o Currently we minimize flop

oBigger picture: what we really aiming at is the abstraction of loops
o Cross-element vectorization is almost a by-product
o Pathway to GPUs (and beyond)…
o … which requires a performance model and/or autotuning

Speedup vs not batched

Various forms, polynomial degrees, meshes

